File size: 4,170 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# mypy: allow-untyped-defs
# mypy: disable-error-code="method-assign"

import functools
import weakref

import torch.nn
from torch.nn import Module
from . import config

from .utils import ExactWeakKeyDictionary, is_lazy_module, nn_module_has_global_hooks


class MutationTracker:
    db = ExactWeakKeyDictionary()

    def __init__(self):
        self.mutation_count = 0
        self.watchers = []

    def on_mutation(self, name):
        self.mutation_count += 1
        tmp = self.watchers
        self.watchers = []
        for ref in tmp:
            guarded = ref()
            if guarded is not None:
                guarded.invalidate(ref)

    def track(self, guarded_code):
        self.watchers.append(weakref.ref(guarded_code))


def watch(obj, guarded_code):
    """invalidate guarded_code when obj is mutated"""
    ensure_patched(type(obj))

    if obj not in MutationTracker.db:
        MutationTracker.db[obj] = MutationTracker()
    tracker = MutationTracker.db[obj]
    tracker.track(guarded_code)


def ensure_patched(cls):
    if getattr(cls, "___needs_mutation_patch", True):
        cls.___needs_mutation_patch = False
        original_setattr = cls.__setattr__

        @functools.wraps(original_setattr)
        def custom_setattr(self, key, value):
            try:
                MutationTracker.db[self].on_mutation(key)
            except KeyError:
                pass
            return original_setattr(self, key, value)

        cls.__setattr__ = custom_setattr


class GenerationTracker:
    generation = 0
    dynamic_classes = ExactWeakKeyDictionary()
    generation_values = ExactWeakKeyDictionary()

    @classmethod
    def tag(cls, obj):
        cls.generation_values[obj] = cls.generation

    @staticmethod
    def mark_class_dynamic(cls):
        assert issubclass(cls, torch.nn.Module)
        GenerationTracker.dynamic_classes[cls] = True

    @classmethod
    def get_generation_value(cls, obj):
        if obj not in cls.generation_values:
            return -1
        return cls.generation_values[obj]

    @classmethod
    def check(cls, obj):
        return (
            obj in cls.generation_values
            and cls.generation_values[obj] == cls.generation
        )

    @classmethod
    def clear(cls):
        cls.generation = 0
        cls.dynamic_classes = ExactWeakKeyDictionary()
        cls.generation_values = ExactWeakKeyDictionary()


def is_dynamic_nn_module(obj, is_export):
    """Check for nn.Modules() created dynamically or mutated"""
    if isinstance(obj, torch.nn.Module) and "forward" in obj.__dict__:
        # A monkey patched `.forward` indicates something wacky is going on
        return True
    if hasattr(obj, "torchdynamo_force_dynamic"):
        return obj.torchdynamo_force_dynamic
    if is_lazy_module(obj):
        return False
    # For export, we will have to fix
    # 1) Input signature problem because params are lifted as inputs
    # 2) nn module stack info changes
    # 3) adjust failing tests
    if (
        isinstance(obj, torch.nn.Module)
        and config.inline_inbuilt_nn_modules
        and not is_export
    ):
        return True

    if isinstance(obj, torch.nn.Module) and nn_module_has_global_hooks():
        return True
    dyn = GenerationTracker.dynamic_classes.get(type(obj)) or GenerationTracker.check(
        obj
    )
    return dyn


def install_generation_tagging_init():
    """
    Monkey patch torch.nn.Module.__init__ and torch.nn.Module.__setstate__
    so we can detect nn.Module instances created dynamically inside forward methods.
    """

    if getattr(Module, "___needs_generation_tag_patch", True):
        init = Module.__init__

        def patched_init(self, *args, **kwargs):
            init(self, *args, **kwargs)
            GenerationTracker.tag(self)

        Module.__init__ = patched_init

        setstate = Module.__setstate__

        def patched_setstate(self, state):
            setstate(self, state)
            GenerationTracker.tag(self)

        Module.__setstate__ = patched_setstate

        Module.___needs_generation_tag_patch = False  # type: ignore[attr-defined]

    GenerationTracker.generation += 1