File size: 21,602 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
# mypy: allow-untyped-defs
import operator

from typing import Any, Dict, List, Optional, Set, Tuple, Union

import torch
import torch.export._trace

from torch.export.exported_program import ExportedProgram
from torch.export.graph_signature import (
    ConstantArgument,
    InputKind,
    InputSpec,
    OutputKind,
    OutputSpec,
    TensorArgument,
)
from torch.fx import subgraph_rewriter
from torch.onnx.utils import _create_jit_graph

from torchgen.model import FunctionSchema


def inplace_optimize_sym_size_div(gm: torch.fx.GraphModule):
    def pattern(im, dim, scale):
        sym_size_int = torch.ops.aten.sym_size.int(im, dim)
        scalar_tensor = torch.ops.aten.scalar_tensor(sym_size_int)
        div_scalar_mode = torch.ops.aten.div.Scalar_mode(
            scalar_tensor, scale, rounding_mode="trunc"
        )
        int_tensor = torch.ops.aten.Int.Tensor(div_scalar_mode)
        return int_tensor

    def replacement(im, dim, scale):
        sym_size_int = torch.ops.aten.sym_size.int(im, dim)
        return sym_size_int // scale

    replaced_patterns = subgraph_rewriter.replace_pattern(gm, pattern, replacement)


def normalize_name(name: str) -> str:
    return name.replace(".", "_")


def ir_name_to_func_name(name: str) -> str:
    """prim::If -> convert_prim_If"""
    name_list = name.split("::")
    return "convert_" + "_".join(name_list)


# Those operators will be automatically populated to a instance method
# of TS2FXGraphConverter with name convert_<namespace>_<opname>().
# Please check __init__ for method population implementations.
kind_to_standard_operators = {
    "prim::TupleIndex": operator.getitem,
    "aten::__is__": operator.is_,
    "aten::__isnot__": operator.is_not,
    "aten::__not__": operator.not_,
    "aten::__contains__": operator.contains,
}


def get_op_overload(node: torch._C.Node):
    schema_str = node.schema()
    schema = FunctionSchema.parse(schema_str)
    ns, op_name = str(schema.name.name).split("::")
    override = schema.name.overload_name

    try:
        op_overload_mod = getattr(torch.ops, ns)
        op_overload_packet = getattr(op_overload_mod, op_name)
        if override:
            op_overload = getattr(op_overload_packet, override)
        else:
            op_overload = op_overload_packet.default
    except Exception as e:
        raise RuntimeError(
            f"Unable to find operator {node.kind()} with schema {node.schema}"
        ) from e

    return op_overload


class TS2FXGraphConverter:
    def __init__(
        self,
        ts_graph: Union[torch._C.Graph, torch._C.Block],
        param_names: Set[str],
        buffer_names: Set[str],
    ):
        self.ts_graph = ts_graph
        self.param_names = param_names
        self.buffer_names = buffer_names

        self.fx_graph: torch.fx.Graph = torch.fx.Graph()
        self.input_specs: List[InputSpec] = []
        self.output_specs: List[OutputSpec] = []

        self.name_to_node: Dict[
            str, Union[torch.fx.Node, List[torch.fx.Node], Dict[Any, torch.fx.Node]]
        ] = {}
        self.constant_map: Dict[str, Any] = {}
        self.attribute_map: Dict[str, Any] = {}
        self.tensor_constants: Dict[str, torch.Tensor] = {}

        self.subgraphs: Dict[str, torch.fx.GraphModule] = {}

        # Populate methods for the standard operators.
        for k in kind_to_standard_operators.keys():
            handler_func_name = ir_name_to_func_name(k)
            # Create an indirect function call:
            # convert_<namespace>_<opname> --> lambda node: _convert_standard_operator(node)
            setattr(
                self,
                handler_func_name,
                lambda node: self._convert_standard_operators(node),
            )

    def add_subgraph(self, subgraph) -> str:
        name = f"subgraph_{len(self.subgraphs)}"
        self.subgraphs[name] = subgraph
        return name

    def get_args_kwargs(self, node: torch._C.Node, schema):
        args = []
        kwargs = {}
        for input, schema_arg in zip(node.inputs(), schema.arguments):
            if schema_arg.kwarg_only:
                kwargs[schema_arg.name] = self.get_fx_value(input)
            else:
                args.append(self.get_fx_value(input))

        return tuple(args), kwargs

    def get_fx_value(self, value: torch._C.Value):
        value_name = value.debugName()
        if value_name in self.name_to_node:
            input_node = self.name_to_node[value_name]
            return input_node
        elif value_name in self.attribute_map:
            attr_name = self.attribute_map[value_name]
            if attr_name in self.name_to_node:
                input_node = self.name_to_node[attr_name]
                return input_node
            else:
                raise ValueError(f"Value {attr_name} not found")
        elif value_name in self.constant_map:
            return self.constant_map[value_name]
        else:
            raise ValueError(f"Input {value_name} not found")

    def convert(self) -> torch.fx.GraphModule:
        self.convert_graph_inputs()

        for node in self.ts_graph.nodes():
            self.convert_node(node)

        self.convert_graph_outputs()

        gm = torch.fx.GraphModule(self.subgraphs, self.fx_graph)

        inplace_optimize_sym_size_div(gm)

        gm.graph.lint()

        return gm

    def convert_graph_inputs(self):
        for graph_input in self.ts_graph.inputs():
            name = graph_input.debugName()
            normalized_name = normalize_name(name)

            fx_node = self.fx_graph.placeholder(normalized_name)

            # fx_node.meta["val"] = FakeTensor()
            # TODO: set fx_node.meta["val"]

            self.name_to_node[name] = fx_node

            if name in self.param_names:
                self.input_specs.append(
                    InputSpec(
                        InputKind.PARAMETER,
                        arg=TensorArgument(name=normalized_name),
                        target=name,
                    )
                )
            elif name in self.buffer_names:
                self.input_specs.append(
                    InputSpec(
                        InputKind.BUFFER,
                        arg=TensorArgument(name=normalized_name),
                        target=name,
                        persistent=True,
                    )
                )
            else:
                self.input_specs.append(
                    InputSpec(
                        InputKind.USER_INPUT,
                        arg=TensorArgument(name=normalized_name),
                        target=name,
                    )
                )

    def convert_prim_Constant(self, node: torch._C.Node):
        name = node.output().debugName()

        value: Any = None
        if node.hasAttribute("value"):
            constant_kind = node.kindOf("value")
            if constant_kind == "i":
                value = node.i("value")
            elif constant_kind == "f":
                value = node.f("value")
            elif constant_kind == "s":
                value = node.s("value")
            elif constant_kind == "t":
                # lift tensor constant as a placeholder
                placeholder_name = f"constant_{name}"
                fx_node = self.fx_graph.placeholder(placeholder_name)
                self.name_to_node[name] = fx_node
                self.tensor_constants[placeholder_name] = node.t("value")

                self.input_specs.append(
                    InputSpec(
                        InputKind.CONSTANT_TENSOR,
                        arg=TensorArgument(name=placeholder_name),
                        target=placeholder_name,
                    )
                )

                value = fx_node
            elif constant_kind == "ival":
                value = node.ival("value")
            else:
                raise ValueError(f"Unsupported constant type: {node.kindOf('value')}")
        else:
            value = None

        self.constant_map[name] = value

    def convert_prim_device(self, node: torch._C.Node):
        input_type = node.input().type()
        if input_type.isSubtypeOf(torch._C.TensorType.get()):
            device = input_type.device()  # type: ignore[attr-defined]
            output_name = node.output().debugName()
            self.constant_map[output_name] = device
        else:
            raise ValueError(f"Unsupported JitType ({input_type}) when get device")

    def convert_prim_dtype(self, node: torch._C.Node):
        dtype = node.input().type().dtype()
        output_name = node.output().debugName()
        self.constant_map[output_name] = dtype

    def convert_prim_GetAttr(self, node: torch._C.Node):
        def get_attr(name: str):
            if name in self.attribute_map:
                return self.attribute_map[name]
            else:
                raise ValueError(f"Attribute {name} not found")

        output_name = node.output().debugName()

        attr_name = node.s("name")
        input_name = node.input().debugName()

        root_attr_name = get_attr(input_name)
        self.attribute_map[output_name] = (
            f"{root_attr_name}.{attr_name}" if root_attr_name else attr_name
        )

    def convert_call_function_op(self, node: torch._C.Node):
        target = get_op_overload(node)

        if target is torch.ops.aten.size.int:
            target = torch.ops.aten.sym_size.int

        args, kwargs = self.get_args_kwargs(node, target._schema)

        fx_node = self.fx_graph.call_function(target, args, kwargs)

        # TODO: covnert sourceRange() into stack_trace
        # fx_node.meta["stack_trace"] = node.sourceRange()

        output_name = node.output().debugName()
        self.name_to_node[output_name] = fx_node

    def convert_prim_TupleConstruct(self, node: torch._C.Node):
        self._convert_prim_iterator(node)

    def convert_prim_ListConstruct(self, node: torch._C.Node):
        self._convert_prim_iterator(node)

    def _convert_prim_iterator(self, node: torch._C.Node):
        output_list = []
        for inp in node.inputs():
            output_list.append(self.get_fx_value(inp))

        output_name = node.output().debugName()
        self.name_to_node[output_name] = output_list

    def convert_prim_DictConstruct(self, node: torch._C.Node):
        output_dict = {}
        k, v = None, None
        for i, inp in enumerate(node.inputs()):
            # We assume key value are stored in pair in the DictConstruct.
            # The first element is the key and the following is the value.
            if i % 2 == 0:
                k = self.get_fx_value(inp)
            else:
                v = self.get_fx_value(inp)
                assert (
                    k is not None and v is not None
                ), "DictConstruct has an empty key value pair."
                output_dict[k] = v
                k, v = None, None

        assert (
            k is None and v is None
        ), "DictConstruct has an odd number of elements (violating our assumption)."

        output_name = node.output().debugName()
        self.name_to_node[output_name] = output_dict

    def convert_prim_ListUnpack(self, node: torch._C.Node):
        self._convert_prim_unpack_iterator(node)

    def convert_prim_TupleUnpack(self, node: torch._C.Node):
        self._convert_prim_unpack_iterator(node)

    def _convert_prim_unpack_iterator(self, node: torch._C.Node):
        # Single input and multiple outputs for unpacking.
        for i, outp in enumerate(node.outputs()):
            outp_name = outp.debugName()
            inp = self.get_fx_value(node.input())
            fx_node = self.fx_graph.call_function(operator.getitem, (inp, i))
            self.name_to_node[outp_name] = fx_node

    def convert_aten_Int(self, node: torch._C.Node):
        # converts aten::Int as aten._to_copy + aten::_local_scalar_dense
        target = torch.ops.aten._to_copy.default
        args = tuple(self.get_fx_value(input) for input in node.inputs())
        to_copy_node = self.fx_graph.call_function(target, args, {"dtype": torch.int32})

        fx_node = self.fx_graph.call_function(
            torch.ops.aten._local_scalar_dense.default, (to_copy_node,)
        )

        # TODO: covnert sourceRange() into stack_trace
        # fx_node.meta["stack_trace"] = node.sourceRange()

        output_name = node.output().debugName()
        self.name_to_node[output_name] = fx_node

    def convert_prim_NumToTensor(self, node: torch._C.Node):
        # converts prim::NumToTensor as aten.scalar_tensor
        target = torch.ops.aten.scalar_tensor
        args = tuple(self.get_fx_value(input) for input in node.inputs())

        fx_node = self.fx_graph.call_function(target, args)

        output_name = node.output().debugName()
        self.name_to_node[output_name] = fx_node

    def convert_prim_CreateObject(self, node: torch._C.Node):
        output_name = node.output().debugName()
        self.attribute_map[output_name] = ""

    def convert_aten__convolution(self, node: torch._C.Node):
        # converts aten::_convolution as aten.convolution, since aten::_convolution
        # doesn't have a meta function
        target = torch.ops.aten.convolution.default
        args, kwargs = self.get_args_kwargs(node, target._schema)

        fx_node = self.fx_graph.call_function(target, args, kwargs)

        output_name = node.output().debugName()
        self.name_to_node[output_name] = fx_node

    def convert_aten_div(self, node: torch._C.Node):
        target = get_op_overload(node)
        schema = target._schema

        args, kwargs = self.get_args_kwargs(node, schema)

        # converts aten::div.Tensor_mode(x, tensor_constant)
        # as aten.div.Scalar_mode(x, tensor_constant.item())
        if schema.overload_name == "Tensor_mode":
            arg1_name = args[1].name
            if arg1_name in self.tensor_constants:
                tensor_constant = self.tensor_constants[arg1_name]
                if tensor_constant.numel() == 1:
                    updated_args = list(args)
                    updated_args[1] = self.tensor_constants[arg1_name].item()

                    fx_node = self.fx_graph.call_function(
                        torch.ops.aten.div.Scalar_mode,
                        tuple(updated_args),
                        kwargs,
                    )

                    # TODO: covnert sourceRange() into stack_trace
                    # fx_node.meta["stack_trace"] = node.sourceRange()

                    output_name = node.output().debugName()
                    self.name_to_node[output_name] = fx_node
                    return

        self.convert_call_function_op(node)

    def convert_aten___getitem__(self, node: torch._C.Node):
        input_container, index = tuple(
            self.get_fx_value(input) for input in node.inputs()
        )
        fx_node = self.fx_graph.call_function(
            operator.getitem, (input_container, index)
        )
        output_name = node.output().debugName()
        self.name_to_node[output_name] = fx_node

    def convert_prim_If(self, node: torch._C.Node):
        inputs = list(node.inputs())
        assert len(inputs) == 1
        predicate = self.get_fx_value(inputs[0])

        # Get union of inputs to blocks
        arguments = set()
        for block in node.blocks():
            block_args = set()

            # TODO: block.inputs(), not sure what theyre used for

            for block_node in block.nodes():
                for block_node_in in block_node.inputs():
                    if block_node_in.debugName() in self.name_to_node:
                        block_args.add(block_node_in.debugName())

            arguments.update(block_args)

        arguments = list(arguments)

        # Convert blocks to subgraphs
        subgraph_nodes = []
        for block in node.blocks():
            subgraph_converter = TS2FXGraphConverter(block, set(), set())
            subgraph_converter.constant_map = self.constant_map

            for block_arg in arguments:
                normalized_block_arg_name = normalize_name(block_arg)
                placeholder_node = subgraph_converter.fx_graph.placeholder(
                    normalized_block_arg_name
                )
                subgraph_converter.name_to_node[block_arg] = placeholder_node

            subgraph = subgraph_converter.convert()
            subgraph_name = self.add_subgraph(subgraph)
            subgraph_nodes.append(self.fx_graph.get_attr(subgraph_name))

        assert len(subgraph_nodes) == 2

        fx_block_args = [self.name_to_node[arg_name] for arg_name in arguments]
        args = (
            predicate,
            subgraph_nodes[0],
            subgraph_nodes[1],
            tuple(fx_block_args),
        )

        cond_node = self.fx_graph.call_function(torch.cond, args, {})

        output_name = node.output().debugName()
        self.name_to_node[output_name] = cond_node

    def convert_aten_Bool(self, node: torch._C.Node):
        self._convert_as_noop(node)

    def _convert_as_noop(self, node: torch._C.Node):
        # Converts the node as a no-op by mapping its output node as arg[0]

        target = get_op_overload(node)
        schema = target._schema

        args, kwargs = self.get_args_kwargs(node, schema)

        output_name = node.output().debugName()
        self.name_to_node[output_name] = args[0]

    def convert_profiler__record_function_enter_new(self, node: torch._C.Node):
        target = torch.ops.profiler._record_function_enter_new
        args = tuple(self.get_fx_value(input) for input in node.inputs())
        fx_node = self.fx_graph.call_function(target, args)
        output_name = node.output().debugName()
        self.name_to_node[output_name] = fx_node

    def convert_profiler__record_function_exit(self, node: torch._C.Node):
        # _record_function_exit has side effect so we keep it in fx.graph
        # currently, _record_function_enter_new and _record_function_exit are
        # discarded during `retrace_as_exported_program`.
        target = torch.ops.profiler._record_function_exit
        args = tuple(self.get_fx_value(input) for input in node.inputs())
        self.fx_graph.call_function(target, args)

    def _convert_standard_operators(self, node: torch._C.Node):
        target = kind_to_standard_operators[node.kind()]
        args = tuple(self.get_fx_value(input) for input in node.inputs())
        fx_node = self.fx_graph.call_function(target, args)
        output_name = node.output().debugName()
        self.name_to_node[output_name] = fx_node

    def convert_node(self, node: torch._C.Node):
        node_kind = node.kind()

        # Get handler based on namespace and operator name.
        # Provide a default node handler as well in case we don't find
        # matching converter for that.
        handler_func_name = ir_name_to_func_name(node_kind)
        handler_func = getattr(self, handler_func_name, self.convert_call_function_op)
        handler_func(node)

    def convert_graph_outputs(self):
        args = []
        for graph_output in self.ts_graph.outputs():
            output_name = graph_output.debugName()
            if output_name in self.name_to_node:
                args.append(self.name_to_node[output_name])
                self.output_specs.append(
                    OutputSpec(
                        OutputKind.USER_OUTPUT,
                        arg=TensorArgument(name=output_name),
                        target=output_name,
                    )
                )
            elif output_name in self.constant_map:
                args.append(self.constant_map[output_name])
                self.output_specs.append(
                    OutputSpec(
                        OutputKind.USER_OUTPUT,
                        arg=ConstantArgument(
                            name=output_name, value=self.constant_map[output_name]
                        ),
                        target=output_name,
                    )
                )
            else:
                raise ValueError(f"Output {output_name} not found")

        self.fx_graph.output(
            args[0]
        )  # Get rid of an extra list wrapped around final output.


class TS2EPConverter:
    # TorchScript model to ExportedProgram converter
    def __init__(
        self,
        ts_model,
        sample_args: Tuple[Any, ...],
        sample_kwargs: Optional[Dict[str, Any]] = None,
    ):
        self.ts_model = ts_model
        self.ts_graph, self.params, _, _ = _create_jit_graph(ts_model, sample_args)

        self.sample_args = sample_args
        self.sample_kwargs = sample_kwargs

        self.param_names: Set[str] = {name for name, _ in ts_model.named_parameters()}
        self.buffer_names: Set[str] = {name for name, _ in ts_model.named_buffers()}

    def convert(self) -> ExportedProgram:
        graph_converter = TS2FXGraphConverter(
            self.ts_graph, self.param_names, self.buffer_names
        )
        gm = graph_converter.convert()
        ep = self.retrace_as_exported_program(gm, graph_converter.tensor_constants)
        return ep

    def retrace_as_exported_program(self, gm: torch.fx.GraphModule, tensor_constants):
        # TODO: adjust input orders to match GraphSignature convention
        inputs = [*self.sample_args, *self.params, *tensor_constants.values()]

        ep = torch.export._trace._export(
            gm,
            tuple(inputs),
            strict=False,
            pre_dispatch=True,
        )
        return ep