File size: 21,602 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 |
# mypy: allow-untyped-defs
import operator
from typing import Any, Dict, List, Optional, Set, Tuple, Union
import torch
import torch.export._trace
from torch.export.exported_program import ExportedProgram
from torch.export.graph_signature import (
ConstantArgument,
InputKind,
InputSpec,
OutputKind,
OutputSpec,
TensorArgument,
)
from torch.fx import subgraph_rewriter
from torch.onnx.utils import _create_jit_graph
from torchgen.model import FunctionSchema
def inplace_optimize_sym_size_div(gm: torch.fx.GraphModule):
def pattern(im, dim, scale):
sym_size_int = torch.ops.aten.sym_size.int(im, dim)
scalar_tensor = torch.ops.aten.scalar_tensor(sym_size_int)
div_scalar_mode = torch.ops.aten.div.Scalar_mode(
scalar_tensor, scale, rounding_mode="trunc"
)
int_tensor = torch.ops.aten.Int.Tensor(div_scalar_mode)
return int_tensor
def replacement(im, dim, scale):
sym_size_int = torch.ops.aten.sym_size.int(im, dim)
return sym_size_int // scale
replaced_patterns = subgraph_rewriter.replace_pattern(gm, pattern, replacement)
def normalize_name(name: str) -> str:
return name.replace(".", "_")
def ir_name_to_func_name(name: str) -> str:
"""prim::If -> convert_prim_If"""
name_list = name.split("::")
return "convert_" + "_".join(name_list)
# Those operators will be automatically populated to a instance method
# of TS2FXGraphConverter with name convert_<namespace>_<opname>().
# Please check __init__ for method population implementations.
kind_to_standard_operators = {
"prim::TupleIndex": operator.getitem,
"aten::__is__": operator.is_,
"aten::__isnot__": operator.is_not,
"aten::__not__": operator.not_,
"aten::__contains__": operator.contains,
}
def get_op_overload(node: torch._C.Node):
schema_str = node.schema()
schema = FunctionSchema.parse(schema_str)
ns, op_name = str(schema.name.name).split("::")
override = schema.name.overload_name
try:
op_overload_mod = getattr(torch.ops, ns)
op_overload_packet = getattr(op_overload_mod, op_name)
if override:
op_overload = getattr(op_overload_packet, override)
else:
op_overload = op_overload_packet.default
except Exception as e:
raise RuntimeError(
f"Unable to find operator {node.kind()} with schema {node.schema}"
) from e
return op_overload
class TS2FXGraphConverter:
def __init__(
self,
ts_graph: Union[torch._C.Graph, torch._C.Block],
param_names: Set[str],
buffer_names: Set[str],
):
self.ts_graph = ts_graph
self.param_names = param_names
self.buffer_names = buffer_names
self.fx_graph: torch.fx.Graph = torch.fx.Graph()
self.input_specs: List[InputSpec] = []
self.output_specs: List[OutputSpec] = []
self.name_to_node: Dict[
str, Union[torch.fx.Node, List[torch.fx.Node], Dict[Any, torch.fx.Node]]
] = {}
self.constant_map: Dict[str, Any] = {}
self.attribute_map: Dict[str, Any] = {}
self.tensor_constants: Dict[str, torch.Tensor] = {}
self.subgraphs: Dict[str, torch.fx.GraphModule] = {}
# Populate methods for the standard operators.
for k in kind_to_standard_operators.keys():
handler_func_name = ir_name_to_func_name(k)
# Create an indirect function call:
# convert_<namespace>_<opname> --> lambda node: _convert_standard_operator(node)
setattr(
self,
handler_func_name,
lambda node: self._convert_standard_operators(node),
)
def add_subgraph(self, subgraph) -> str:
name = f"subgraph_{len(self.subgraphs)}"
self.subgraphs[name] = subgraph
return name
def get_args_kwargs(self, node: torch._C.Node, schema):
args = []
kwargs = {}
for input, schema_arg in zip(node.inputs(), schema.arguments):
if schema_arg.kwarg_only:
kwargs[schema_arg.name] = self.get_fx_value(input)
else:
args.append(self.get_fx_value(input))
return tuple(args), kwargs
def get_fx_value(self, value: torch._C.Value):
value_name = value.debugName()
if value_name in self.name_to_node:
input_node = self.name_to_node[value_name]
return input_node
elif value_name in self.attribute_map:
attr_name = self.attribute_map[value_name]
if attr_name in self.name_to_node:
input_node = self.name_to_node[attr_name]
return input_node
else:
raise ValueError(f"Value {attr_name} not found")
elif value_name in self.constant_map:
return self.constant_map[value_name]
else:
raise ValueError(f"Input {value_name} not found")
def convert(self) -> torch.fx.GraphModule:
self.convert_graph_inputs()
for node in self.ts_graph.nodes():
self.convert_node(node)
self.convert_graph_outputs()
gm = torch.fx.GraphModule(self.subgraphs, self.fx_graph)
inplace_optimize_sym_size_div(gm)
gm.graph.lint()
return gm
def convert_graph_inputs(self):
for graph_input in self.ts_graph.inputs():
name = graph_input.debugName()
normalized_name = normalize_name(name)
fx_node = self.fx_graph.placeholder(normalized_name)
# fx_node.meta["val"] = FakeTensor()
# TODO: set fx_node.meta["val"]
self.name_to_node[name] = fx_node
if name in self.param_names:
self.input_specs.append(
InputSpec(
InputKind.PARAMETER,
arg=TensorArgument(name=normalized_name),
target=name,
)
)
elif name in self.buffer_names:
self.input_specs.append(
InputSpec(
InputKind.BUFFER,
arg=TensorArgument(name=normalized_name),
target=name,
persistent=True,
)
)
else:
self.input_specs.append(
InputSpec(
InputKind.USER_INPUT,
arg=TensorArgument(name=normalized_name),
target=name,
)
)
def convert_prim_Constant(self, node: torch._C.Node):
name = node.output().debugName()
value: Any = None
if node.hasAttribute("value"):
constant_kind = node.kindOf("value")
if constant_kind == "i":
value = node.i("value")
elif constant_kind == "f":
value = node.f("value")
elif constant_kind == "s":
value = node.s("value")
elif constant_kind == "t":
# lift tensor constant as a placeholder
placeholder_name = f"constant_{name}"
fx_node = self.fx_graph.placeholder(placeholder_name)
self.name_to_node[name] = fx_node
self.tensor_constants[placeholder_name] = node.t("value")
self.input_specs.append(
InputSpec(
InputKind.CONSTANT_TENSOR,
arg=TensorArgument(name=placeholder_name),
target=placeholder_name,
)
)
value = fx_node
elif constant_kind == "ival":
value = node.ival("value")
else:
raise ValueError(f"Unsupported constant type: {node.kindOf('value')}")
else:
value = None
self.constant_map[name] = value
def convert_prim_device(self, node: torch._C.Node):
input_type = node.input().type()
if input_type.isSubtypeOf(torch._C.TensorType.get()):
device = input_type.device() # type: ignore[attr-defined]
output_name = node.output().debugName()
self.constant_map[output_name] = device
else:
raise ValueError(f"Unsupported JitType ({input_type}) when get device")
def convert_prim_dtype(self, node: torch._C.Node):
dtype = node.input().type().dtype()
output_name = node.output().debugName()
self.constant_map[output_name] = dtype
def convert_prim_GetAttr(self, node: torch._C.Node):
def get_attr(name: str):
if name in self.attribute_map:
return self.attribute_map[name]
else:
raise ValueError(f"Attribute {name} not found")
output_name = node.output().debugName()
attr_name = node.s("name")
input_name = node.input().debugName()
root_attr_name = get_attr(input_name)
self.attribute_map[output_name] = (
f"{root_attr_name}.{attr_name}" if root_attr_name else attr_name
)
def convert_call_function_op(self, node: torch._C.Node):
target = get_op_overload(node)
if target is torch.ops.aten.size.int:
target = torch.ops.aten.sym_size.int
args, kwargs = self.get_args_kwargs(node, target._schema)
fx_node = self.fx_graph.call_function(target, args, kwargs)
# TODO: covnert sourceRange() into stack_trace
# fx_node.meta["stack_trace"] = node.sourceRange()
output_name = node.output().debugName()
self.name_to_node[output_name] = fx_node
def convert_prim_TupleConstruct(self, node: torch._C.Node):
self._convert_prim_iterator(node)
def convert_prim_ListConstruct(self, node: torch._C.Node):
self._convert_prim_iterator(node)
def _convert_prim_iterator(self, node: torch._C.Node):
output_list = []
for inp in node.inputs():
output_list.append(self.get_fx_value(inp))
output_name = node.output().debugName()
self.name_to_node[output_name] = output_list
def convert_prim_DictConstruct(self, node: torch._C.Node):
output_dict = {}
k, v = None, None
for i, inp in enumerate(node.inputs()):
# We assume key value are stored in pair in the DictConstruct.
# The first element is the key and the following is the value.
if i % 2 == 0:
k = self.get_fx_value(inp)
else:
v = self.get_fx_value(inp)
assert (
k is not None and v is not None
), "DictConstruct has an empty key value pair."
output_dict[k] = v
k, v = None, None
assert (
k is None and v is None
), "DictConstruct has an odd number of elements (violating our assumption)."
output_name = node.output().debugName()
self.name_to_node[output_name] = output_dict
def convert_prim_ListUnpack(self, node: torch._C.Node):
self._convert_prim_unpack_iterator(node)
def convert_prim_TupleUnpack(self, node: torch._C.Node):
self._convert_prim_unpack_iterator(node)
def _convert_prim_unpack_iterator(self, node: torch._C.Node):
# Single input and multiple outputs for unpacking.
for i, outp in enumerate(node.outputs()):
outp_name = outp.debugName()
inp = self.get_fx_value(node.input())
fx_node = self.fx_graph.call_function(operator.getitem, (inp, i))
self.name_to_node[outp_name] = fx_node
def convert_aten_Int(self, node: torch._C.Node):
# converts aten::Int as aten._to_copy + aten::_local_scalar_dense
target = torch.ops.aten._to_copy.default
args = tuple(self.get_fx_value(input) for input in node.inputs())
to_copy_node = self.fx_graph.call_function(target, args, {"dtype": torch.int32})
fx_node = self.fx_graph.call_function(
torch.ops.aten._local_scalar_dense.default, (to_copy_node,)
)
# TODO: covnert sourceRange() into stack_trace
# fx_node.meta["stack_trace"] = node.sourceRange()
output_name = node.output().debugName()
self.name_to_node[output_name] = fx_node
def convert_prim_NumToTensor(self, node: torch._C.Node):
# converts prim::NumToTensor as aten.scalar_tensor
target = torch.ops.aten.scalar_tensor
args = tuple(self.get_fx_value(input) for input in node.inputs())
fx_node = self.fx_graph.call_function(target, args)
output_name = node.output().debugName()
self.name_to_node[output_name] = fx_node
def convert_prim_CreateObject(self, node: torch._C.Node):
output_name = node.output().debugName()
self.attribute_map[output_name] = ""
def convert_aten__convolution(self, node: torch._C.Node):
# converts aten::_convolution as aten.convolution, since aten::_convolution
# doesn't have a meta function
target = torch.ops.aten.convolution.default
args, kwargs = self.get_args_kwargs(node, target._schema)
fx_node = self.fx_graph.call_function(target, args, kwargs)
output_name = node.output().debugName()
self.name_to_node[output_name] = fx_node
def convert_aten_div(self, node: torch._C.Node):
target = get_op_overload(node)
schema = target._schema
args, kwargs = self.get_args_kwargs(node, schema)
# converts aten::div.Tensor_mode(x, tensor_constant)
# as aten.div.Scalar_mode(x, tensor_constant.item())
if schema.overload_name == "Tensor_mode":
arg1_name = args[1].name
if arg1_name in self.tensor_constants:
tensor_constant = self.tensor_constants[arg1_name]
if tensor_constant.numel() == 1:
updated_args = list(args)
updated_args[1] = self.tensor_constants[arg1_name].item()
fx_node = self.fx_graph.call_function(
torch.ops.aten.div.Scalar_mode,
tuple(updated_args),
kwargs,
)
# TODO: covnert sourceRange() into stack_trace
# fx_node.meta["stack_trace"] = node.sourceRange()
output_name = node.output().debugName()
self.name_to_node[output_name] = fx_node
return
self.convert_call_function_op(node)
def convert_aten___getitem__(self, node: torch._C.Node):
input_container, index = tuple(
self.get_fx_value(input) for input in node.inputs()
)
fx_node = self.fx_graph.call_function(
operator.getitem, (input_container, index)
)
output_name = node.output().debugName()
self.name_to_node[output_name] = fx_node
def convert_prim_If(self, node: torch._C.Node):
inputs = list(node.inputs())
assert len(inputs) == 1
predicate = self.get_fx_value(inputs[0])
# Get union of inputs to blocks
arguments = set()
for block in node.blocks():
block_args = set()
# TODO: block.inputs(), not sure what theyre used for
for block_node in block.nodes():
for block_node_in in block_node.inputs():
if block_node_in.debugName() in self.name_to_node:
block_args.add(block_node_in.debugName())
arguments.update(block_args)
arguments = list(arguments)
# Convert blocks to subgraphs
subgraph_nodes = []
for block in node.blocks():
subgraph_converter = TS2FXGraphConverter(block, set(), set())
subgraph_converter.constant_map = self.constant_map
for block_arg in arguments:
normalized_block_arg_name = normalize_name(block_arg)
placeholder_node = subgraph_converter.fx_graph.placeholder(
normalized_block_arg_name
)
subgraph_converter.name_to_node[block_arg] = placeholder_node
subgraph = subgraph_converter.convert()
subgraph_name = self.add_subgraph(subgraph)
subgraph_nodes.append(self.fx_graph.get_attr(subgraph_name))
assert len(subgraph_nodes) == 2
fx_block_args = [self.name_to_node[arg_name] for arg_name in arguments]
args = (
predicate,
subgraph_nodes[0],
subgraph_nodes[1],
tuple(fx_block_args),
)
cond_node = self.fx_graph.call_function(torch.cond, args, {})
output_name = node.output().debugName()
self.name_to_node[output_name] = cond_node
def convert_aten_Bool(self, node: torch._C.Node):
self._convert_as_noop(node)
def _convert_as_noop(self, node: torch._C.Node):
# Converts the node as a no-op by mapping its output node as arg[0]
target = get_op_overload(node)
schema = target._schema
args, kwargs = self.get_args_kwargs(node, schema)
output_name = node.output().debugName()
self.name_to_node[output_name] = args[0]
def convert_profiler__record_function_enter_new(self, node: torch._C.Node):
target = torch.ops.profiler._record_function_enter_new
args = tuple(self.get_fx_value(input) for input in node.inputs())
fx_node = self.fx_graph.call_function(target, args)
output_name = node.output().debugName()
self.name_to_node[output_name] = fx_node
def convert_profiler__record_function_exit(self, node: torch._C.Node):
# _record_function_exit has side effect so we keep it in fx.graph
# currently, _record_function_enter_new and _record_function_exit are
# discarded during `retrace_as_exported_program`.
target = torch.ops.profiler._record_function_exit
args = tuple(self.get_fx_value(input) for input in node.inputs())
self.fx_graph.call_function(target, args)
def _convert_standard_operators(self, node: torch._C.Node):
target = kind_to_standard_operators[node.kind()]
args = tuple(self.get_fx_value(input) for input in node.inputs())
fx_node = self.fx_graph.call_function(target, args)
output_name = node.output().debugName()
self.name_to_node[output_name] = fx_node
def convert_node(self, node: torch._C.Node):
node_kind = node.kind()
# Get handler based on namespace and operator name.
# Provide a default node handler as well in case we don't find
# matching converter for that.
handler_func_name = ir_name_to_func_name(node_kind)
handler_func = getattr(self, handler_func_name, self.convert_call_function_op)
handler_func(node)
def convert_graph_outputs(self):
args = []
for graph_output in self.ts_graph.outputs():
output_name = graph_output.debugName()
if output_name in self.name_to_node:
args.append(self.name_to_node[output_name])
self.output_specs.append(
OutputSpec(
OutputKind.USER_OUTPUT,
arg=TensorArgument(name=output_name),
target=output_name,
)
)
elif output_name in self.constant_map:
args.append(self.constant_map[output_name])
self.output_specs.append(
OutputSpec(
OutputKind.USER_OUTPUT,
arg=ConstantArgument(
name=output_name, value=self.constant_map[output_name]
),
target=output_name,
)
)
else:
raise ValueError(f"Output {output_name} not found")
self.fx_graph.output(
args[0]
) # Get rid of an extra list wrapped around final output.
class TS2EPConverter:
# TorchScript model to ExportedProgram converter
def __init__(
self,
ts_model,
sample_args: Tuple[Any, ...],
sample_kwargs: Optional[Dict[str, Any]] = None,
):
self.ts_model = ts_model
self.ts_graph, self.params, _, _ = _create_jit_graph(ts_model, sample_args)
self.sample_args = sample_args
self.sample_kwargs = sample_kwargs
self.param_names: Set[str] = {name for name, _ in ts_model.named_parameters()}
self.buffer_names: Set[str] = {name for name, _ in ts_model.named_buffers()}
def convert(self) -> ExportedProgram:
graph_converter = TS2FXGraphConverter(
self.ts_graph, self.param_names, self.buffer_names
)
gm = graph_converter.convert()
ep = self.retrace_as_exported_program(gm, graph_converter.tensor_constants)
return ep
def retrace_as_exported_program(self, gm: torch.fx.GraphModule, tensor_constants):
# TODO: adjust input orders to match GraphSignature convention
inputs = [*self.sample_args, *self.params, *tensor_constants.values()]
ep = torch.export._trace._export(
gm,
tuple(inputs),
strict=False,
pre_dispatch=True,
)
return ep
|