File size: 23,314 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 |
# mypy: allow-untyped-defs
import ast
import dataclasses
import inspect
import math
import operator
import re
from inspect import Parameter
from typing import Any, Dict, Iterable, List, Optional, Tuple, Type
import torch
from torch._subclasses.fake_tensor import FakeTensor
from torch.export import ExportedProgram
from torch.export.exported_program import (
_name_hoo_subgraph_placeholders,
_rename_without_collisions,
)
from torch.export.graph_signature import InputKind, OutputKind
from torch.utils._pytree import (
_register_pytree_node,
Context,
FlattenFunc,
FromDumpableContextFn,
GetAttrKey,
KeyPath,
keystr,
MappingKey,
SequenceKey,
ToDumpableContextFn,
tree_flatten_with_path,
UnflattenFunc,
)
placeholder_prefixes = {
InputKind.USER_INPUT: "",
InputKind.PARAMETER: "p_",
InputKind.BUFFER: "b_",
InputKind.CONSTANT_TENSOR: "c_",
InputKind.CUSTOM_OBJ: "obj_",
InputKind.TOKEN: "token",
}
def _check_input_constraints_for_graph(
input_placeholders: List[torch.fx.Node], flat_args_with_path, range_constraints
):
def get_keystr(key_path: KeyPath) -> str:
"""For a given index into the flat_args, return a human readable string
describing how to access it, e.g. "*args["foo"][0].bar"
"""
# Prefix the keypath with "*args" or "**kwargs" to make it clearer where
# the arguments come from. Ultimately we ought to serialize the
# original arg names for the best error message here.
args_kwargs_key_path = key_path[0]
assert isinstance(args_kwargs_key_path, SequenceKey)
if args_kwargs_key_path.idx == 0:
return f"*args{keystr(key_path[1:])}"
else:
kwarg_key = key_path[1]
assert isinstance(kwarg_key, MappingKey)
name = str(kwarg_key)[1:-1] # get rid of the enclosed []
return f"{name}{keystr(key_path[2:])}"
import sympy
from torch._export.passes.add_runtime_assertions_for_constraints_pass import (
_convert_range_to_int,
)
from torch.utils._sympy.solve import try_solve
if len(flat_args_with_path) != len(input_placeholders):
raise RuntimeError(
"Unexpected number of inputs "
f"(expected {len(input_placeholders)}, got {len(flat_args_with_path)})"
)
# NOTE: export already guarantees that the same symbol is used in metadata
# for all InputDims related by equality constraints, so we can just unify
# symbols with given input dimension values to check equality constraints.
unification_map: Dict[sympy.Symbol, Any] = {}
for (key_path, arg), node in zip(flat_args_with_path, input_placeholders):
node_val = node.meta.get("val")
if isinstance(node_val, FakeTensor):
if not isinstance(arg, torch.Tensor):
raise RuntimeError(
f"Expected input at {get_keystr(key_path)} to be a tensor, but got {type(arg)}",
)
if len(node_val.shape) != len(arg.shape):
raise RuntimeError(
f"Unexpected number of dimensions in input at {get_keystr(key_path)}.shape "
f"(expected {node_val.shape}, got {arg.shape})"
)
for j, (arg_dim, node_dim) in enumerate(zip(arg.shape, node_val.shape)):
# TODO(avik): Assert the following property in the IR verifier:
# node_dim is either an int or a SymInt containing an int or a unary sympy.Expr
if (
isinstance(node_dim, torch.SymInt)
and len(node_dim.node.expr.free_symbols) == 1
):
symbol = next(iter(node_dim.node.expr.free_symbols))
if symbol in unification_map:
existing_dim = node_dim.node.expr.subs(unification_map)
if arg_dim != existing_dim:
raise RuntimeError(
f"Expected input at {get_keystr(key_path)}.shape[{j}] to be equal to "
f"{existing_dim}, but got {arg_dim}",
)
else:
if (
isinstance(arg_dim, torch.SymInt)
and not arg_dim.node.expr.is_number
):
# This can happen when, say, arg is a fake tensor.
# We do not run checks on symbolic shapes of fake inputs as
# such checks can affect the shape env.
pass
else:
solution = try_solve(
sympy.Eq(node_dim.node.expr, arg_dim), symbol
)
if solution is None:
raise RuntimeError( # noqa: B904
f"Expected input {node.name}.shape[{j}] = {arg_dim} to be "
f"of the form {node_dim.node.expr}, where {symbol} is an integer"
)
else:
unification_map[symbol] = int(solution[1])
if node_dim.node.expr in range_constraints:
min_val, max_val = _convert_range_to_int(
range_constraints[node_dim.node.expr]
)
# NOTE: we allow dimensions to be 0/1 at runtime
if min_val > 2:
if arg_dim < min_val:
raise RuntimeError(
f"Expected input at {get_keystr(key_path)}.shape[{j}] to be >= "
f"{min_val}, but got {arg_dim}",
)
if max_val < math.inf:
if arg_dim > max_val:
raise RuntimeError(
f"Expected input at {get_keystr(key_path)}.shape[{j}] to be <= "
f"{max_val}, but got {arg_dim}",
)
else:
if arg_dim != node_dim:
if isinstance(
node_dim, torch.SymInt
): # this means we deferred a guard from export analysis to runtime, let this pass
continue
raise RuntimeError(
f"Expected input at {get_keystr(key_path)}.shape[{j}] to be equal to "
f"{node_dim}, but got {arg_dim}",
)
elif isinstance(node_val, (int, float, str)):
if type(arg) != type(node_val) or arg != node_val:
raise RuntimeError(
f"Expected input at {get_keystr(key_path)} to be equal to {node_val}, but got {arg}",
)
def register_dataclass_as_pytree_node(
cls: Type[Any],
flatten_fn: Optional[FlattenFunc] = None,
unflatten_fn: Optional[UnflattenFunc] = None,
*,
serialized_type_name: Optional[str] = None,
to_dumpable_context: Optional[ToDumpableContextFn] = None,
from_dumpable_context: Optional[FromDumpableContextFn] = None,
return_none_fields: bool = False,
) -> None:
assert dataclasses.is_dataclass(
cls
), f"Only dataclasses can be registered with this function: {cls}"
def default_flatten_fn(obj: Any) -> Tuple[List[Any], Context]:
flattened = []
flat_names = []
none_names = []
for f in dataclasses.fields(obj):
name, val = f.name, getattr(obj, f.name)
if val is not None or return_none_fields:
flattened.append(val)
flat_names.append(name)
else:
none_names.append(name)
return flattened, [flat_names, none_names]
def default_unflatten_fn(values: Iterable[Any], context: Context) -> Any:
flat_names, none_names = context
return cls(**dict(zip(flat_names, values)), **dict.fromkeys(none_names))
def default_flatten_fn_with_keys(obj: Any) -> Tuple[List[Any], Context]:
flattened, (flat_names, none_names) = flatten_fn(obj) # type: ignore[misc]
return [(MappingKey(k), v) for k, v in zip(flat_names, flattened)], flat_names
flatten_fn = flatten_fn if flatten_fn is not None else default_flatten_fn
unflatten_fn = unflatten_fn if unflatten_fn is not None else default_unflatten_fn
if (to_dumpable_context is None) ^ (from_dumpable_context is None):
raise ValueError(
f"Both to_dumpable_context and from_dumpable_context for {cls} must "
"be None or registered."
)
_register_pytree_node(
cls,
flatten_fn,
unflatten_fn,
serialized_type_name=serialized_type_name,
flatten_with_keys_fn=default_flatten_fn_with_keys,
to_dumpable_context=to_dumpable_context,
from_dumpable_context=from_dumpable_context,
)
def is_param(program: ExportedProgram, node: torch.fx.Node) -> bool:
"""
Checks if the given node is a parameter within the exported program
"""
return node.name in program.graph_signature.inputs_to_parameters
def get_param(
program: ExportedProgram,
node: torch.fx.Node,
) -> Optional[torch.nn.Parameter]:
"""
Returns the parameter associated with the given node in the exported program.
Returns None if the node is not a parameter within the exported program
"""
if is_param(program, node):
parameter_name = program.graph_signature.inputs_to_parameters[node.name]
return program.state_dict[parameter_name]
return None
def is_buffer(program: ExportedProgram, node: torch.fx.Node) -> bool:
"""
Checks if the given node is a buffer within the exported program
"""
return node.name in program.graph_signature.inputs_to_buffers
def get_buffer(
program: ExportedProgram,
node: torch.fx.Node,
) -> Optional[torch.Tensor]:
"""
Returns the buffer associated with the given node in the exported program.
Returns None if the node is not a buffer within the exported program
"""
if is_buffer(program, node):
buffer_name = program.graph_signature.inputs_to_buffers[node.name]
if buffer_name in program.graph_signature.non_persistent_buffers:
return program.constants[buffer_name]
else:
return program.state_dict[buffer_name]
return None
def is_lifted_tensor_constant(
program: ExportedProgram,
node: torch.fx.Node,
) -> bool:
"""
Checks if the given node is a lifted tensor constant within the exported program
"""
return node.name in program.graph_signature.inputs_to_lifted_tensor_constants
def get_lifted_tensor_constant(
program: ExportedProgram,
node: torch.fx.Node,
) -> Optional[torch.Tensor]:
"""
Returns the lifted tensor constant associated with the given node in the exported program.
Returns None if the node is not a lifted tensor constant within the exported program
"""
if is_lifted_tensor_constant(program, node):
lifted_tensor_name = program.graph_signature.inputs_to_lifted_tensor_constants[
node.name
]
return program.constants[lifted_tensor_name]
return None
def sequential_split(gm: torch.fx.GraphModule, node_call_back) -> torch.fx.GraphModule:
"""
Splits the graph module into multiple submodules based on the node_call_back.
The node_call_back should return True if the node is a delimiter. Delimiter will be
the first node in the next submodule.
"""
from torch.fx.passes.split_module import split_module
split_map = {}
split_id = 0
for node in gm.graph.nodes:
if node_call_back(node):
split_id += 1
split_map[node] = split_id
new_gm = split_module(
gm,
gm,
lambda node: split_map[node],
keep_original_order=True,
keep_original_node_name=True,
)
# Keep the codegen from original graph module to preserve e.g. pytree info.
new_gm.graph._codegen = gm.graph._codegen
new_gm.recompile()
return new_gm
def nodes_filter(nodes: List[torch.fx.Node], node_call_back) -> List[torch.fx.Node]:
"""Returns the nodes that match the node_call_back as a list."""
return [node for node in nodes if node_call_back(node)]
def nodes_first(
nodes: List[torch.fx.Node], node_call_back=None
) -> Optional[torch.fx.Node]:
"""
Returns the first node that matches the node_call_back. If no node matches, returns None.
When node_call_back is None, returns the first node in the node list.
"""
ret = nodes_filter(nodes, node_call_back if node_call_back else lambda node: True)
if len(ret) > 0:
return ret[0]
return None
def nodes_count(nodes: List[torch.fx.Node], node_call_back) -> int:
"""Returns the number of nodes that match the node_call_back."""
return len(nodes_filter(nodes, node_call_back))
def nodes_map(nodes: List[torch.fx.Node], node_call_back) -> List[torch.fx.Node]:
"""
Sequentially visit the nodes list and invoke node_call_back on each element.
Returns the nodes list after the node_call_back is invoked on each element.
"""
for node in nodes:
node_call_back(node)
return nodes
def node_replace_(
old_node: torch.fx.Node, new_node: torch.fx.Node, delete_old: bool = False
) -> None:
"""
Replace all uses of old_node with new_node.
"""
old_node.replace_all_uses_with(new_node)
if delete_old:
old_node.users.clear()
old_node.graph.erase_node(old_node)
def node_inline_(call_mod_node: torch.fx.Node) -> None:
"""
Inline the submodule of the given node into the parent module.
Note: we only support the case where submodule takes tensors inputs.
"""
assert call_mod_node.op == "call_module"
gm = call_mod_node.graph.owning_module
assert isinstance(call_mod_node.target, str)
sub_gm = getattr(gm, call_mod_node.target)
phs = (node for node in sub_gm.graph.nodes if node.op == "placeholder")
body = (
node for node in sub_gm.graph.nodes if node.op not in ("placeholder", "output")
)
output = [node for node in sub_gm.graph.nodes if node.op == "output"]
for ph, arg in zip(phs, call_mod_node.args):
assert isinstance(arg, torch.fx.Node)
node_replace_(ph, arg, delete_old=True)
with gm.graph.inserting_before(call_mod_node):
for node in body:
new_node = gm.graph.node_copy(node)
node_replace_(node, new_node, delete_old=True)
if len(output) > 0:
assert len(output) == 1 and len(output[0].args) == 1
new_output = output[0].args[0]
if isinstance(new_output, torch.fx.Node):
node_replace_(call_mod_node, new_output, delete_old=True)
elif isinstance(new_output, (list, tuple)):
# Inline the get_item calls for the output node.
get_item_users = nodes_filter(
list(call_mod_node.users.keys()),
lambda node: node.op == "call_function"
and node.target == operator.getitem,
)
# get_item_node.args[1] is the idx referring to new_output[idx]
nodes_map(
get_item_users,
lambda get_item_node: node_replace_(
get_item_node,
new_output[get_item_node.args[1]],
delete_old=True,
),
)
call_mod_node.graph.erase_node(call_mod_node)
else:
raise NotImplementedError(
f"Unsupported output type {type(new_output)}. Expect it to be a Node or a list/tuple of Nodes."
)
else:
call_mod_node.graph.erase_node(call_mod_node)
gm.delete_all_unused_submodules()
gm.recompile()
return gm
def _get_torch_jit_trace_forward_signature(mod: torch.nn.Module):
"""
Get source code and parse argument names using AST. The function returns
a signature of the forward() function.
# TODO: Directly provide inspect.signature compatible TS-d module.
"""
ast_mod = ast.parse(mod.code)
ast_func_def: ast.FunctionDef = ast_mod.body[0] # type: ignore[assignment]
# FIXME(jiashenc): TorchScript should only allow positional or keywords arguments.
arg_type_map = {"args": Parameter.POSITIONAL_OR_KEYWORD}
# Traverse all argument types in AST tree and create associated parameters.
param_list = []
for arg_type, param_type in arg_type_map.items():
arg_name_list = [a.arg for a in getattr(ast_func_def.args, arg_type)]
for arg_name in arg_name_list:
if arg_name == "self":
continue # Skip self argument.
param_list.append(inspect.Parameter(arg_name, param_type))
return inspect.Signature(parameters=param_list)
def _bind_signature_to_inputs(mod, fake_args, fake_kwargs):
if isinstance(mod, (torch.jit.ScriptModule, torch.jit.TracedModule)):
sig = _get_torch_jit_trace_forward_signature(mod)
# Sanity check for placeholder names coming from TorchScript.
assert len(sig.parameters) == len(fake_args) + len(fake_kwargs), (
"Arguments other than POSITIONAL_OR_KEYWORD kinds in forward() "
"are not supported in _get_torch_jit_trace_forward_signature"
)
else:
sig = inspect.signature(mod.forward)
return sig.bind(*fake_args, **fake_kwargs).arguments
def placeholder_naming_pass(
gm: torch.fx.GraphModule,
export_graph_signature: torch.export.ExportGraphSignature,
mod: torch.nn.Module,
fake_args,
fake_kwargs,
fake_params_buffers,
constants: Dict[str, Any],
) -> None:
"""
This pass is run at the end of _export_non_strict() to assign better placeholder node names:
- User inputs:
These follow the signature of mod.forward(), e.g. forward(x, y) produces nodes x, y.
For nested inputs from dictionaries, lists, tuples, or dataclasses,
the names are a concatenation of the path to the tensor.
e.g. x = {
'a': torch.randn(),
'b': [torch.randn(), torch.randn()]
}
produces nodes x_a, x_b_0, x_b_1.
- Parameters/buffers/constants/custom objects:
These follow the FQN of the object, prefixed by "p", "b", "c", "obj" respectively.
e.g. self.bar.l0.weight produces "p_bar_l0_weight".
- Effect tokens:
These are named token, token_1, ...
"""
def _strip_name(x):
if x.startswith("L__self___"):
x = x[len("L__self___") :]
x = re.sub(r"[^a-zA-Z0-9]", "_", x)
return x
def _extract_pytree_key(x):
if isinstance(x, MappingKey):
x = re.sub(r"[^a-zA-Z0-9]", "_", str(x.key))
return x
elif isinstance(x, SequenceKey):
return str(x.idx)
elif isinstance(x, GetAttrKey):
return x.name
else:
raise RuntimeError(f"Pytree key of type {type(x)} not handled for {x}")
name_map: Dict[str, str] = {}
# map user input names with mod.forward() signature
combined_args = _bind_signature_to_inputs(mod, fake_args, fake_kwargs)
flat_args_with_path, _ = tree_flatten_with_path(combined_args)
user_input_names = [
spec.arg.name
for spec in export_graph_signature.input_specs
if spec.kind == InputKind.USER_INPUT
]
# use pytree path to name nested user inputs
for (arg_path, arg), user_input_name in zip(flat_args_with_path, user_input_names):
if user_input_name:
_rename_without_collisions(
name_map,
user_input_name,
placeholder_prefixes[InputKind.USER_INPUT]
+ "_".join(_extract_pytree_key(x).lower() for x in arg_path),
is_placeholder=True,
)
# use graph signature input specs to map param/buffer/constant names
# name effect tokens as token, token_1, ... (these aren't visible to user)
for spec in export_graph_signature.input_specs:
if spec.kind == InputKind.USER_INPUT:
continue
if spec.kind == InputKind.TOKEN:
base_name = ""
else:
base_name = _strip_name(spec.target).lower()
base_name = re.sub(r"[^a-zA-Z0-9]", "_", base_name)
_rename_without_collisions(
name_map,
spec.arg.name,
placeholder_prefixes[spec.kind] + base_name,
is_placeholder=True,
)
# handle naming collisions with call_function/get_attr inputs.
# here, we want to prioritize user input names over call_function names
# e.g. not have forward(self, mul): lead to a placeholder node called mul_13,
# so we increment the suffix of call_function nodes as needed
for node in gm.graph.nodes:
if node.op == "placeholder":
continue
_rename_without_collisions(name_map, node.name, node.name)
# assign new node names
for node in gm.graph.nodes:
if node.op == "placeholder":
assert node.name in name_map
node.name = node.target = name_map[node.name]
elif node.name in name_map:
node.name = name_map[node.name]
# propagate names to higher order op subgraphs
_name_hoo_subgraph_placeholders(gm)
# re-generate graph module code
gm.recompile()
# modify graph signature (input specs, output specs, user input mutations)
for spec in export_graph_signature.input_specs:
assert spec.arg.name in name_map
spec.arg.name = name_map[spec.arg.name]
if ( # handle targets for custom objects
spec.kind == InputKind.CUSTOM_OBJ and spec.target in name_map
):
spec.target = name_map[spec.target][4:] # strip obj_ prefix
for spec in export_graph_signature.output_specs:
if spec.arg.name in name_map:
spec.arg.name = name_map[spec.arg.name]
if spec.kind == OutputKind.USER_INPUT_MUTATION and spec.target in name_map:
spec.target = name_map[spec.target]
# rename keys in constants dict for custom objects
for name in list(constants.keys()):
constant = constants[name]
if name in name_map and not isinstance(
constant, torch.Tensor
): # rename custom objects with generic names
new_name = name_map[name]
if (
new_name != name
and re.match(r"arg(\d+)_1", name)
and new_name != placeholder_prefixes[InputKind.CUSTOM_OBJ] + name
):
constants[new_name] = constant
del constants[name]
|