File size: 5,210 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# mypy: allow-untyped-defs
"""
The APIs in this file are exposed as `functorch.*`. They are thin wrappers
around the torch.func.* APIs that have deprecation warnings -- we're trying
to move people to the torch.func.* equivalents.

NB: We don't use *args, **kwargs in the signatures because that changes the
documentation.
"""

import textwrap
import warnings
from typing import Any, Callable, Optional, Tuple, Union

import torch._functorch.apis as apis
import torch._functorch.eager_transforms as _impl
import torch._functorch.make_functional as _nn_impl
import torch.nn as nn
from torch._functorch.eager_transforms import argnums_t
from torch._functorch.vmap import in_dims_t, out_dims_t


def get_warning(api, new_api=None, replace_newlines=False):
    if new_api is None:
        new_api = f"torch.func.{api}"
    warning = (
        f"We've integrated functorch into PyTorch. As the final step of the \n"
        f"integration, `functorch.{api}` is deprecated as of PyTorch \n"
        f"2.0 and will be deleted in a future version of PyTorch >= 2.3. \n"
        f"Please use `{new_api}` instead; see the PyTorch 2.0 release notes \n"
        f"and/or the `torch.func` migration guide for more details \n"
        f"https://pytorch.org/docs/main/func.migrating.html"
    )
    if replace_newlines:
        warning = warning.replace("\n", "")
    return warning


def warn_deprecated(api, new_api=None):
    warning = get_warning(api, new_api, replace_newlines=True)
    warnings.warn(warning, FutureWarning, stacklevel=3)


def setup_docs(functorch_api, torch_func_api=None, new_api_name=None):
    api_name = functorch_api.__name__
    if torch_func_api is None:
        torch_func_api = getattr(_impl, api_name)
    # See https://docs.python.org/3/using/cmdline.html#cmdoption-OO
    if torch_func_api.__doc__ is None:
        return

    warning = get_warning(api_name, new_api_name)
    warning_note = "\n.. warning::\n\n" + textwrap.indent(warning, "    ")
    warning_note = textwrap.indent(warning_note, "    ")
    functorch_api.__doc__ = torch_func_api.__doc__ + warning_note


def vmap(
    func: Callable,
    in_dims: in_dims_t = 0,
    out_dims: out_dims_t = 0,
    randomness: str = "error",
    *,
    chunk_size=None,
) -> Callable:
    warn_deprecated("vmap", "torch.vmap")
    return apis.vmap(func, in_dims, out_dims, randomness, chunk_size=chunk_size)


def grad(func: Callable, argnums: argnums_t = 0, has_aux: bool = False) -> Callable:
    warn_deprecated("grad")
    return apis.grad(func, argnums, has_aux)


def grad_and_value(
    func: Callable, argnums: argnums_t = 0, has_aux: bool = False
) -> Callable:
    warn_deprecated("grad_and_value")
    return apis.grad_and_value(func, argnums, has_aux)


def vjp(func: Callable, *primals, has_aux: bool = False):
    warn_deprecated("vjp")
    return _impl.vjp(func, *primals, has_aux=has_aux)


def jvp(
    func: Callable,
    primals: Any,
    tangents: Any,
    *,
    strict: bool = False,
    has_aux: bool = False,
):
    warn_deprecated("jvp")
    return _impl.jvp(func, primals, tangents, strict=strict, has_aux=has_aux)


def jacrev(
    func: Callable,
    argnums: Union[int, Tuple[int]] = 0,
    *,
    has_aux=False,
    chunk_size: Optional[int] = None,
    _preallocate_and_copy=False,
):
    warn_deprecated("jacrev")
    return _impl.jacrev(
        func,
        argnums,
        has_aux=has_aux,
        chunk_size=chunk_size,
        _preallocate_and_copy=_preallocate_and_copy,
    )


def jacfwd(
    func: Callable,
    argnums: argnums_t = 0,
    has_aux: bool = False,
    *,
    randomness: str = "error",
):
    warn_deprecated("jacfwd")
    return _impl.jacfwd(func, argnums, has_aux, randomness=randomness)


def hessian(func, argnums=0):
    warn_deprecated("hessian")
    return _impl.hessian(func, argnums=argnums)


def functionalize(func: Callable, *, remove: str = "mutations") -> Callable:
    warn_deprecated("functionalize")
    return _impl.functionalize(func, remove=remove)


def make_functional(model: nn.Module, disable_autograd_tracking: bool = False):
    warn_deprecated("make_functional", "torch.func.functional_call")
    return _nn_impl.make_functional(model, disable_autograd_tracking)


def make_functional_with_buffers(
    model: nn.Module, disable_autograd_tracking: bool = False
):
    warn_deprecated("make_functional_with_buffers", "torch.func.functional_call")
    return _nn_impl.make_functional_with_buffers(model, disable_autograd_tracking)


def combine_state_for_ensemble(models):
    warn_deprecated("combine_state_for_ensemble", "torch.func.stack_module_state")
    return _nn_impl.combine_state_for_ensemble(models)


setup_docs(vmap, apis.vmap, "torch.vmap")
setup_docs(grad, apis.grad)
setup_docs(grad_and_value, apis.grad_and_value)
setup_docs(vjp)
setup_docs(jvp)
setup_docs(jacrev)
setup_docs(jacfwd)
setup_docs(hessian)
setup_docs(functionalize)
setup_docs(make_functional, _nn_impl.make_functional, "torch.func.functional_call")
setup_docs(
    make_functional_with_buffers, _nn_impl.make_functional, "torch.func.functional_call"
)
setup_docs(
    combine_state_for_ensemble,
    _nn_impl.combine_state_for_ensemble,
    "torch.func.stack_module_state",
)