File size: 66,841 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 |
# mypy: allow-untyped-defs
import copy
import functools
import heapq
import itertools
import logging
import math
import operator
import os
from collections import defaultdict
from dataclasses import dataclass, replace
from typing import Callable, Dict, List, Optional, Set, Tuple, TYPE_CHECKING, Union
import torch
import torch._inductor.inductor_prims
import torch.fx as fx
import torch.utils._pytree as pytree
from torch.fx.experimental._backward_state import BackwardState
from torch.fx.experimental.proxy_tensor import is_sym_node, py_sym_types
from torch.fx.experimental.sym_node import magic_methods, method_to_operator
from torch.fx.experimental.symbolic_shapes import (
find_symbol_binding_fx_nodes,
free_symbols,
hint_int,
is_symbol_binding_fx_node,
)
from torch.fx.passes import graph_drawer
from . import config
from ._aot_autograd.logging_utils import get_aot_graph_name
from .compile_utils import fx_graph_cse, get_aten_target
if TYPE_CHECKING:
import sympy
AOT_PARTITIONER_DEBUG = config.debug_partitioner
log = logging.getLogger(__name__)
aten = torch.ops.aten
prims = torch.ops.prims
@dataclass
class OpTypes:
"""Class for keeping track of different operator categories"""
fusible_ops: Set[Callable]
compute_intensive_ops: Set[Callable]
random_ops: Set[Callable]
view_ops: Set[Callable]
recomputable_ops: Set[Callable]
def is_fusible(self, node: fx.Node):
return get_aten_target(node) in self.fusible_ops
def is_compute_intensive(self, node: fx.Node):
return get_aten_target(node) in self.compute_intensive_ops
def is_random(self, node: fx.Node):
return get_aten_target(node) in self.random_ops
def is_view(self, node: fx.Node):
return get_aten_target(node) in self.view_ops
def is_recomputable(self, node: fx.Node):
return get_aten_target(node) in self.recomputable_ops
@dataclass
class NodeInfo:
# Be careful about iterating over these explicitly, as their order may not
# be deterministic
inputs: List[fx.Node]
_required_fw_nodes: Set[fx.Node]
required_bw_nodes: Set[fx.Node]
unclaimed_nodes: Set[fx.Node]
fw_order: Dict[fx.Node, int]
@functools.cached_property
def required_fw_nodes(self) -> List[fx.Node]:
return sorted(
(n for n in self._required_fw_nodes), key=lambda n: self.fw_order[n]
)
def is_required_fw(self, n: fx.Node) -> bool:
return n in self._required_fw_nodes
def is_required_bw(self, n: fx.Node) -> bool:
return n in self.required_bw_nodes
def is_unclaimed(self, n: fx.Node) -> bool:
return n in self.unclaimed_nodes
def get_fw_order(self, n: fx.Node) -> int:
assert n in self._required_fw_nodes, f"Node {n} not in fw nodes!"
return self.fw_order[n]
@dataclass
class MinCutOptions:
ban_if_used_far_apart: bool
ban_if_long_fusible_chains: bool
ban_if_materialized_backward: bool
ban_if_not_in_allowlist: bool
ban_if_reduction: bool
def must_recompute(node: fx.Node) -> bool:
return node.meta.get("recompute", False)
def has_recomputable_ops(fx_g: fx.GraphModule) -> bool:
found = False
for node in fx_g.graph.nodes:
if must_recompute(node):
return True
return False
def has_recomputable_rng_ops(fx_g: fx.GraphModule) -> bool:
for node in fx_g.graph.nodes:
if (
must_recompute(node)
and hasattr(node.target, "tags")
and torch.Tag.nondeterministic_seeded in node.target.tags
):
return True
return False
def sym_node_size(node: fx.Node) -> int:
if isinstance(node.meta["val"], (torch.SymInt, torch.SymBool)):
return 1
assert isinstance(node.meta["val"], torch.SymFloat)
return 4
class InvalidNodeBase:
def __repr__(self):
return "Invalid Node"
InvalidNode = InvalidNodeBase()
def _extract_graph_with_inputs_outputs(
joint_graph: fx.Graph, inputs: List[fx.Node], outputs: List[fx.Node]
) -> fx.Graph:
"""
Given a graph, extracts out a subgraph that takes the specified nodes as
inputs and returns the specified outputs.
This includes specifying non-placeholder nodes as inputs.
The general strategy is to initialize all inputs with proxies as we
encounter them, and trace through the graph, only keeping values which take
in valid proxies. Then, all dead code is eliminated.
"""
new_graph = fx.Graph()
env = {}
# Add new placeholder nodes in the order specified by the inputs
for node in inputs:
new_node = new_graph.placeholder(node.name)
# Can't use node_copy here as we may be turning previous call_function into placeholders
new_node.meta = node.meta
env[node] = new_node
for node in joint_graph.nodes:
if node in env:
# Node must be one of our inputs. (Any member of env which wasn't an
# input to start must have been created by this loop and won't be in
# joint_graph.nodes).
continue
elif node.op == "placeholder":
env[node] = InvalidNode
elif node.op == "call_function":
all_args = pytree.arg_tree_leaves(*node.args, **node.kwargs)
all_args = [
isinstance(env[x], InvalidNodeBase)
for x in all_args
if isinstance(x, fx.Node)
]
if any(all_args):
env[node] = InvalidNode
continue
env[node] = new_graph.node_copy(node, lambda x: env[x])
elif node.op == "get_attr":
env[node] = new_graph.node_copy(node, lambda x: env[x])
elif node.op == "output":
pass
output_values = []
for x in outputs:
if isinstance(x, fx.Node):
if x not in env:
raise RuntimeError(f"Node {x} couldn't be found in env")
assert not isinstance(
env[x], InvalidNodeBase
), f"Node {x} was invalid, but is output"
output_values.append(env[x])
else:
output_values.append(x)
new_graph.output(output_values)
new_graph.eliminate_dead_code()
new_graph.lint()
return new_graph
def _is_primal(node: fx.Node) -> bool:
return (
node.op == "placeholder"
and "tangents" not in str(node.target)
and not _is_bwd_seed_offset(node)
and not _is_fwd_seed_offset(node)
)
def _is_tangent(node: fx.Node) -> bool:
return node.op == "placeholder" and "tangents" in str(node.target)
def _is_bwd_seed_offset(node: fx.Node) -> bool:
return node.op == "placeholder" and (
"bwd_seed" in str(node.target) or "bwd_base_offset" in str(node.target)
)
def _is_fwd_seed_offset(node: fx.Node) -> bool:
return node.op == "placeholder" and (
"fwd_seed" in str(node.target) or "fwd_base_offset" in str(node.target)
)
def _is_backward_state(node: fx.Node) -> bool:
return node.op == "placeholder" and isinstance(node.meta.get("val"), BackwardState)
def _extract_fwd_bwd_outputs(
joint_module: fx.GraphModule, *, num_fwd_outputs
) -> Tuple[List[fx.Node], List[fx.Node]]:
outputs = pytree.arg_tree_leaves(
*(node.args for node in joint_module.graph.find_nodes(op="output"))
)
fwd_outputs = outputs[:num_fwd_outputs]
bwd_outputs = outputs[num_fwd_outputs:]
return fwd_outputs, bwd_outputs
def _remove_by_name(saved_values: List[fx.Node], name: str):
for saved_value in saved_values:
if saved_value.name == name:
saved_values.remove(saved_value)
break
def _extract_fwd_bwd_modules(
joint_module: fx.GraphModule,
saved_values: List[fx.Node],
saved_sym_nodes: List[fx.Node],
*,
num_fwd_outputs: int,
) -> Tuple[fx.GraphModule, fx.GraphModule]:
fwd_outputs, bwd_outputs = _extract_fwd_bwd_outputs(
joint_module, num_fwd_outputs=num_fwd_outputs
)
placeholders = joint_module.graph.find_nodes(op="placeholder")
primal_inputs = [*filter(_is_primal, placeholders)]
tangent_inputs = [*filter(_is_tangent, placeholders)]
fwd_seed_offset_inputs = [*filter(_is_fwd_seed_offset, placeholders)]
bwd_seed_offset_inputs = [*filter(_is_bwd_seed_offset, placeholders)]
backward_state_inputs = [*filter(_is_backward_state, placeholders)]
bwd_graph = _extract_graph_with_inputs_outputs(
joint_module.graph,
saved_sym_nodes + saved_values + tangent_inputs + bwd_seed_offset_inputs,
bwd_outputs,
)
for node in bwd_graph.find_nodes(op="placeholder"):
# This is to filter out saved values that don't actually end up being used by the backwards pass
if not node.users:
_remove_by_name(saved_values, node.name)
_remove_by_name(saved_sym_nodes, node.name)
elif _is_backward_state(node):
# BackwardState is saved directly
_remove_by_name(saved_values, node.name)
assert backward_state_inputs
# Now that we have the finalized list of saved values, we need to ensure
# we propagate all symbols which are referenced by backwards inputs.
# These are not directly used in the graph but are required for downstream
# sizevar assignment
saved_symbols: Set[sympy.Symbol] = set()
saved_sym_nodes_binding = []
saved_sym_nodes_derived = []
# Some symbols may already be bound in the directly saved_sym_nodes,
# keep track of them so we don't re-bind them
for node in saved_sym_nodes:
symbol = is_symbol_binding_fx_node(node)
if symbol:
saved_symbols.add(symbol)
saved_sym_nodes_binding.append(node)
else:
saved_sym_nodes_derived.append(node)
# Now go through all of the prospective backward inputs and track any
# other symbols we need to bind
symbol_bindings = find_symbol_binding_fx_nodes(joint_module.graph)
for node in itertools.chain(saved_sym_nodes_derived, saved_values, tangent_inputs):
if "val" not in node.meta:
continue
new_symbols = free_symbols(node.meta["val"]) - saved_symbols
# NB: Deterministic order please!
for s in sorted(new_symbols, key=lambda s: s.name):
# NB: For well formed graphs, the symbol should always be present,
# but we also have ways to produce ill-formed graphs, e.g., direct
# make_fx usages, so don't choke in this case
if s not in symbol_bindings:
continue
saved_sym_nodes_binding.append(symbol_bindings[s])
saved_symbols |= new_symbols
# Update saved_sym_nodes that are now reordered to have all bindings at
# front. This can also be used later on to figure out the position of saved
# sym nodes in the output of fwd graph.
saved_sym_nodes.clear()
saved_sym_nodes.extend(saved_sym_nodes_binding + saved_sym_nodes_derived)
# Now, we re-generate the fwd/bwd graphs.
# NB: This might increase compilation time, but I doubt it matters
fwd_graph = _extract_graph_with_inputs_outputs(
joint_module.graph,
primal_inputs + fwd_seed_offset_inputs,
fwd_outputs + saved_values + saved_sym_nodes,
)
bwd_graph = _extract_graph_with_inputs_outputs(
joint_module.graph,
saved_sym_nodes
+ saved_values
+ tangent_inputs
+ bwd_seed_offset_inputs
+ backward_state_inputs,
bwd_outputs,
)
fwd_module = fx._lazy_graph_module._make_graph_module(joint_module, fwd_graph)
bwd_module = fx._lazy_graph_module._make_graph_module(joint_module, bwd_graph)
return fwd_module, bwd_module
def default_partition(
joint_module: fx.GraphModule, _joint_inputs, *, num_fwd_outputs
) -> Tuple[fx.GraphModule, fx.GraphModule]:
"""
Partitions the :attr:`joint_module` in a manner that closely resembles the
behavior observed in the original ``.forward()`` and ``.backward()`` of the
callable, i.e., the resulting forward graph contains those operators that
are executed in the original ``.forward()`` callable passed to
:func:`aot_function`.
The default partitioner collects the operators that are between the forward
inputs and the forward outputs. This helps in finding the tensors which have
to be stashed for the backward pass. These stashed tensors become the output
of the generated forward graph. The remaining operators are then placed in
the backward graph.
.. warning::
This API is experimental and likely to change.
Args:
joint_module(fx.GraphModule): The joint forward and backward graph. This
is the result of AOT Autograd tracing.
Returns:
Returns the generated forward and backward Fx graph modules.
"""
if has_recomputable_ops(joint_module):
return min_cut_rematerialization_partition(
joint_module, _joint_inputs, num_fwd_outputs=num_fwd_outputs
)
primal_inputs = list(filter(_is_primal, joint_module.graph.nodes))
fwd_seed_offset_inputs = list(filter(_is_fwd_seed_offset, joint_module.graph.nodes))
inputs = primal_inputs + fwd_seed_offset_inputs
fwd_outputs, bwd_outputs = _extract_fwd_bwd_outputs(
joint_module, num_fwd_outputs=num_fwd_outputs
)
forward_only_graph = _extract_graph_with_inputs_outputs(
joint_module.graph, inputs, fwd_outputs
)
forward_node_names = {
node.name for node in forward_only_graph.nodes if node.op != "output"
}
saved_values = []
saved_sym_nodes = []
for node in joint_module.graph.nodes:
if node.name not in forward_node_names:
continue
if is_sym_node(node):
# Symints must be kept separate from tensors so that PythonFunction only calls
# save_for_backward on tensors and stashes symints in autograd .ctx
saved_sym_nodes.append(node)
elif "tensor_meta" not in node.meta and node.op == "call_function":
# Since we can't save tuple of tensor values, we need to flatten out what we're saving
users = node.users
assert all(user.target == operator.getitem for user in users)
saved_values.extend(users)
else:
backward_usages = [
n for n in node.users if n.name not in forward_node_names
]
if "tensor_meta" in node.meta and all(
is_sym_node(n) for n in backward_usages
):
# If we have a tensor in the forward, where only its sizes/strides are needed in the backward,
# and not the actual tensor data,
# then it will be a lot cheaper to save only the sizes/strides, and not the actual tensor.
#
# Note that saving the tensor could also cause compilation problems:
# If the user mutated an input in the forward and uses its sizes/strides in the backward,
# then we would be obligated to clone the input before saving it to appease autograd.
# (This is how we originally found this bug).
saved_sym_nodes.extend(backward_usages)
else:
saved_values.append(node)
saved_values = list(dict.fromkeys(saved_values).keys())
saved_sym_nodes = list(dict.fromkeys(saved_sym_nodes).keys())
return _extract_fwd_bwd_modules(
joint_module,
saved_values,
saved_sym_nodes=saved_sym_nodes,
num_fwd_outputs=num_fwd_outputs,
)
INT_INF = int(1e6)
def _tensor_nbytes(numel: int, dtype) -> int:
return numel * dtype.itemsize
def _size_of(node: fx.Node) -> int:
if "val" in node.meta:
val = node.meta["val"]
if isinstance(val, py_sym_types):
return 1
# NB: The fallback values here are meaningless, maybe we should respect
# torch._inductor.config.unbacked_symint_fallback (but this is a
# layering violation)
elif isinstance(val, (list, tuple)):
return sum(
_tensor_nbytes(hint_int(n.numel(), fallback=4096), n.dtype)
for n in val
if isinstance(n, torch.Tensor)
)
elif isinstance(val, torch.Tensor):
return _tensor_nbytes(hint_int(val.numel(), fallback=4096), val.dtype)
raise RuntimeError(f"Unknown metadata type {type(val)}")
if node.op == "get_attr":
return 0
raise RuntimeError("We should always have `val` metadata on the nodes")
# Used for some investigative purposes
def _count_ops(graph: fx.Graph):
from collections import defaultdict
cnt: Dict[str, int] = defaultdict(int)
for node in graph.nodes:
if node.op == "call_function":
cnt[node.target.__name__] += 1
print(sorted(cnt.items(), key=lambda x: x[1], reverse=True))
@functools.lru_cache(None)
def pointwise_ops():
ops = []
for attr_name in dir(torch.ops.aten):
opoverloadpacket = getattr(torch.ops.aten, attr_name)
if not isinstance(opoverloadpacket, torch._ops.OpOverloadPacket):
continue
for overload in opoverloadpacket.overloads():
op_overload = getattr(opoverloadpacket, overload)
if torch.Tag.pointwise in op_overload.tags:
# currently aot autograd uses packet not overload
ops.append(opoverloadpacket)
break
return ops
def sort_depths(args, depth_map: Dict[fx.Node, int]) -> List[Tuple[fx.Node, int]]:
arg_depths = {
arg: depth_map[arg] for arg in args if isinstance(arg, torch.fx.node.Node)
}
return sorted(arg_depths.items(), key=lambda x: x[1], reverse=True)
def reordering_to_mimic_autograd_engine(gm: fx.GraphModule) -> fx.GraphModule:
"""
This pass finds the first bwd node in the graph (by looking at users of
tangents) and then reorders the graph by walking from this node to all the
way to the end of the graph. At each op in this traveral, we insert this op
in a new graph and try to bring only the relevant subgraph from the other
non-bwd edges relevant for this op. This closely mimics the behavior of
autograd engine.
Why is this pass required in the first place?
This is an artifact of how partitioners work today. The starting point of
partitioner is a joint graph, which is fwd and then bwd graph. In the case
of checkpointing, we keep portions of fwd graph in their original place in
the joint graph, while obtaining a bwd graph. As a result, the resulting bwd
graph has copies of recomputed fwd subgraphs followed by the original bwd
graph. If we run this naively, this leads to bad memory footprint, because
the fwd subgraphs are live for way longer duration than necessary. This pass
reorders the operations such that we prioritize the ops for the original bwd
graph while only realizing those ops from the fwd graph that are necessary
at any given point in the graph.
"""
new_graph = fx.Graph()
env: Dict[fx.Node, fx.Node] = {}
# Add new placeholder nodes in the order specified by the inputs
for node in gm.graph.find_nodes(op="placeholder"):
env[node] = new_graph.node_copy(node, lambda x: env[x])
order = {}
for idx, node in enumerate(gm.graph.nodes):
order[node] = idx
def insert_node_in_graph(node):
cur_nodes = [node]
insertable_nodes = set()
while len(cur_nodes) > 0:
node = cur_nodes.pop()
if node in insertable_nodes or node in env:
continue
insertable_nodes.add(node)
# Bias traversal towards the nodes that have higher depth - prioritizes
# critical path first.
cur_nodes += node.all_input_nodes
insertable_nodes = sorted(insertable_nodes, key=lambda n: order[n])
for node in insertable_nodes:
env[node] = new_graph.node_copy(node, lambda x: env[x])
# Find first bwd node in the graph
tangent_inputs = list(filter(_is_tangent, gm.graph.nodes))
first_node_in_bwd = None
minimum_order = math.inf
for tangent in tangent_inputs:
for user in tangent.users:
if order[user] < minimum_order:
minimum_order = order[user]
first_node_in_bwd = user
# If gradInp does not depend upon gradOut, we may not find any nodes in the "backwards pass"
if first_node_in_bwd is None:
return gm
# Build the graph op-by-op by starting from the node all the way to the end
for node in list(gm.graph.nodes)[order[first_node_in_bwd] :]:
insert_node_in_graph(node)
# The output node is already built by the traversal.
new_gm = torch.fx.GraphModule(gm, new_graph)
return new_gm
def functionalize_rng_ops(
joint_module: fx.GraphModule,
fw_module: fx.GraphModule,
bw_module: fx.GraphModule,
num_sym_nodes: int,
) -> Tuple[fx.GraphModule, fx.GraphModule]:
# During user-driven activation checkpointing, we have to ensure that a rng
# op in fwd yields the same output as the recomputed rng op in the bwd. To
# do this, we use functionalize wrappers to wrap the random ops and share
# rng state between the fwd and bwd graphs.
# There are 3 main steps to do this
# Step 1 - Construct a mapping of rng node between the fwd and its counterpart in bwd.
# Step 2 - Modify the fwd pass such that
# 1) Replace rand with run_and_save_rng_state wrapper
# 2) Replace the users of the original op with the output[1] of this op.
# 3) Collect all the rng_state - output[0] of each op, and make them
# output nodes. Special care needs to be taken here because fwd outputs
# has symints at the very end.
# Step 3 - Modify the bwd pass such that
# 1) Add the input nodes just before the tangents for the stashed rng states
# 2) Replace rand with run_with_save_rng_state wrappers
# 3) Use the stashed states as inputs to these ops
# Unique id to generate name
uid = itertools.count()
def get_rng_ops(gmod):
random_nodes = {}
for node in gmod.graph.nodes:
if (
node.op == "call_function"
and hasattr(node.target, "tags")
and torch.Tag.nondeterministic_seeded in node.target.tags
):
random_nodes[node.name] = node
return random_nodes
def get_device(node):
"""
Check the example value of the node outputs to find the device type.
"""
if "val" not in node.meta:
return None
candidates = node.meta["val"]
if not isinstance(candidates, tuple):
candidates = (candidates,)
for candidate in candidates:
if isinstance(candidate, torch.Tensor):
if candidate.device.type == "cuda":
return "cuda"
return "cpu"
def get_sample_rng_state(device):
if device == "cuda":
return torch.cuda.get_rng_state()
return torch.get_rng_state()
# Step 1 - Construct a mapping of rng node between the fwd and its counterpart in bwd.
joint_graph_rng_ops = get_rng_ops(joint_module)
fw_graph_rng_ops = get_rng_ops(fw_module)
bw_graph_rng_ops = get_rng_ops(bw_module)
recomputable_rng_ops_map = dict()
for node in joint_module.graph.nodes:
if (
must_recompute(node)
and hasattr(node.target, "tags")
and torch.Tag.nondeterministic_seeded in node.target.tags
):
base_node = joint_graph_rng_ops[node.name]
fw_node = fw_graph_rng_ops[node.name]
bw_node = bw_graph_rng_ops[node.name]
recomputable_rng_ops_map[base_node] = {"fwd": fw_node, "bwd": bw_node}
run_and_save_rng = torch._prims.rng_prims.run_and_save_rng_state
run_with_rng_state = torch._prims.rng_prims.run_with_rng_state
bw_tangent_start_node = None
for node in bw_module.graph.find_nodes(op="placeholder"):
if "tangent" in node.name:
bw_tangent_start_node = node
break
if bw_tangent_start_node is None:
raise RuntimeError(
"Couldn't find tangent node in graph inputs. This is unexpected, please file a bug if you see this"
)
fw_rng_state_outputs = []
for base_node, node_pair in recomputable_rng_ops_map.items():
# Step 2 - Modify the fwd pass such that
fw_node = node_pair["fwd"]
bw_node = node_pair["bwd"]
fw_graph = fw_module.graph
with fw_graph.inserting_before(fw_node):
functional_fw_node = fw_graph.create_node(
"call_function",
run_and_save_rng,
args=(fw_node.target, *fw_node.args),
kwargs=fw_node.kwargs,
)
state = fw_graph.create_node(
"call_function",
operator.getitem,
args=(functional_fw_node, 0),
kwargs={},
)
rng_output = fw_graph.create_node(
"call_function",
operator.getitem,
args=(
functional_fw_node,
1,
),
kwargs={},
)
fw_node.replace_all_uses_with(rng_output)
fw_graph.erase_node(fw_node)
fw_rng_state_outputs.append(state)
# Step 3 - Modify the bwd pass such that
bw_graph = bw_module.graph
with bw_graph.inserting_before(bw_tangent_start_node):
state_name = f"rng_state_output_{next(uid)}"
bw_rng_state_node = bw_graph.placeholder(state_name)
bw_rng_state_node.meta["val"] = get_sample_rng_state(get_device(fw_node))
with bw_graph.inserting_before(bw_node):
rng_output = bw_graph.create_node(
"call_function",
run_with_rng_state,
args=(bw_rng_state_node, bw_node.target, *bw_node.args),
kwargs=bw_node.kwargs,
)
bw_node.replace_all_uses_with(rng_output)
bw_graph.erase_node(bw_node)
# Add the rng states in the output of the fwd graph. AOT Autograd assumes
# that symints are at the end of forward graph outputs. So, insert the new
# rng states accordingly.
fw_output_node = next(iter(fw_module.graph.find_nodes(op="output")))
fw_outputs = fw_output_node.args[0]
sym_node_start_idx = len(fw_outputs) - num_sym_nodes
outputs = (
fw_outputs[:sym_node_start_idx]
+ fw_rng_state_outputs
+ fw_outputs[sym_node_start_idx:]
)
fw_module.graph.output(outputs)
fw_module.graph.erase_node(fw_output_node)
fw_module.recompile()
bw_module.recompile()
return fw_module, bw_module
def cleanup_recompute_tags(joint_module: fx.GraphModule) -> fx.GraphModule:
"""
If there are two consecutive checkpointed blocks with no operator in
between, we would still want to stash the tensor at the boundary of
checkpointed blocks. The following pass makes the last output node
non-recomputable to allow for that.
"""
for node in joint_module.graph.nodes:
if must_recompute(node):
for user in node.users:
if (
must_recompute(user)
and user.meta["recompute"] > node.meta["recompute"]
):
node.meta["recompute"] = 0
return joint_module
def solve_min_cut(
joint_graph: fx.Graph,
node_info: NodeInfo,
min_cut_options: MinCutOptions,
dont_ban=None,
):
if dont_ban is None:
dont_ban = set()
op_types = get_default_op_list()
if AOT_PARTITIONER_DEBUG:
joint_module_ops = {
str(node.target._overloadpacket)
for node in joint_graph.nodes
if node.op == "call_function" and hasattr(node.target, "_overloadpacket")
}
ops_ignored = joint_module_ops - {str(i) for i in op_types.recomputable_ops}
print("Ops banned from rematerialization: ", ops_ignored)
print()
def is_fusible(a, b):
# We can perform "memory fusion" into a cat, but cat cannot be a
# producer to a fusion
if get_aten_target(b) == aten.cat:
return True
return op_types.is_fusible(a) and op_types.is_fusible(b)
try:
import networkx as nx
except ImportError as e:
raise RuntimeError(
"Need networkx installed to perform smart recomputation " "heuristics"
) from e
def is_materialized_backwards(node):
if op_types.is_view(node):
return False
cur_nodes = {node}
while len(cur_nodes) > 0:
cur = cur_nodes.pop()
for user in cur.users:
if not node_info.is_required_fw(user) and not is_fusible(cur, user):
return True
if op_types.is_view(user):
cur_nodes.add(user)
return False
def should_ban_recomputation(node):
if node.op != "call_function":
return False
if node.target == operator.getitem:
return False
if node.target in [aten.lift_fresh_copy.default, aten.lift_fresh.default]:
return False
# NB: "recompute" == 0 means that must save this node.
if node.meta.get("recompute", None) == 0:
return True
if min_cut_options.ban_if_not_in_allowlist:
if not op_types.is_recomputable(node):
return True
else:
if op_types.is_random(node) or op_types.is_compute_intensive(node):
return True
# If a node *must* be materialized in the backwards pass, then we
# should never recompute it. This is a pretty subtle point. In
# general, the assumption we make is that recomputing a node in the
# backwards pass is "free". However, if a node must be materialized
# in the backwards pass, then recomputing it is never free.
if min_cut_options.ban_if_materialized_backward and is_materialized_backwards(
node
):
log.info("materialized backwards: %s %s", node, tuple(node.users))
return True
# Arbitrary hack that sometimes seems to help things. The above
# modification appears to have made this heuristic a lot less critical
# for performance.
# NB: As of PR #121692, this hack no longer seems necessary.
if node.dist_from_bw < 1000 and node.dist_from_bw > config.max_dist_from_bw:
return True
# If the output of an op is 4x smaller (arbitrary choice),
# then we don't allow recomputation. The idea here is that for
# things like reductions, saving the output of the reduction is very
# cheap/small, and it makes sure we don't do things like recompute
# normalizations in the backwards.
if min_cut_options.ban_if_reduction:
input_tensors_size = sum(
_size_of(i) for i in node.args if isinstance(i, fx.Node)
)
output_size = _size_of(node)
return output_size * 4 < input_tensors_size
return False
def is_materialized(node):
if node.op == "placeholder":
return True
return not all(is_fusible(node, user) for user in node.users)
def get_node_weight(node) -> float:
mem_sz = _size_of(node)
if isinstance(node.meta["val"], py_sym_types):
# We never want to save symfloats
if not isinstance(node.meta["val"], torch.SymInt):
return INT_INF
# Heuristic to bias towards nodes closer to the backwards pass
# Complete guess about current value
mem_sz = int(mem_sz * (1.1 ** max(min(node.dist_from_bw, 100), 1)))
if is_materialized(node):
return mem_sz
else:
return mem_sz * 2
nx_graph = nx.DiGraph()
banned_nodes = set()
def ban_recomputation_if_allowed(node):
if op_types.is_view(node):
return False
if node in dont_ban:
return False
# This bans recomputation of the node unless we've been forced not to by
# user annotation
# NB: "recompute" > 0 means that user annotation has asked us to
# recompute it
if node.meta.get("recompute", 0) > 0:
return False
if "val" in node.meta and isinstance(node.meta["val"], torch.SymFloat):
return False
banned_nodes.add(node)
# A node will only ever be recomputed if there is a path from an
# ancestor of this node to the backwards path through this node that
# doesn't go through any saved value. If this node is saved, then that
# condition is not possible.
nx_graph.add_edge("source", node.name + "_in", capacity=math.inf)
return True
for node in joint_graph.nodes:
if node.op == "output":
continue
if node in node_info.required_bw_nodes:
if node not in node_info.inputs:
nx_graph.add_edge(node.name + "_in", "sink", capacity=math.inf)
continue
# If someone saves a input for backward as-is and backward
# returns that tensor as-is as a grad input, then the node x would
# be both a required_bw_node and an input. In this case we
# (1) connect x_in to to the source, (2) x_out to the sink, and
# (3) assign the proper weight to the x_in-x_out edge, so that
# x would be part of cut nodes. A case where this happens is if
# NestedTensor saves a offset tensor as part of the singleton int
# in sizes.
nx_graph.add_edge(node.name + "_out", "sink", capacity=math.inf)
if _is_primal(node) or _is_fwd_seed_offset(node):
ban_recomputation_if_allowed(node)
# If a node can't be recomputed (too expensive or involves randomness),
# we prevent it from being recomputed by adding an inf edge to the source
# We only need to ban nodes in the fw pass, as those are the only ones that would be recomputed.
if node_info.is_required_fw(node) and should_ban_recomputation(node):
ban_recomputation_if_allowed(node)
# Checks if a node is actually a tuple. Can be simplified to just an isinstance check if we always use faketensors.
is_non_tensor_node = (
"val" not in node.meta and "tensor_meta" not in node.meta
) or ("val" in node.meta and not isinstance(node.meta["val"], torch.Tensor))
if is_sym_node(node):
weight = float(sym_node_size(node))
elif is_non_tensor_node:
weight = (
0.0 if isinstance(node.meta.get("val"), BackwardState) else math.inf
)
else:
weight = get_node_weight(node)
# Creates the weights on the "node" edge
nx_graph.add_edge(node.name + "_in", node.name + "_out", capacity=weight)
for user in node.users:
nx_graph.add_edge(node.name + "_out", user.name + "_in", capacity=math.inf)
# todo(chilli): This is the most questionable of the 3 heuristics for banning recompute.
# Some example models to look at where this helps perf: poolformer_m36,
# mixer_b16_224, cait_m36_384
# The "rough" idea here is that if you have some node that is used by both a
# node nearby downstream as well as a node far downstream, if we recompute
# both of the downstream nodes, we're unlikely to be able to fuse both
# downstream nodes together.
# Thus, we shouldn't aim to recompute far downstream nodes that depend on
# this node. That intuition of "far downstream" is captured by whether
# there's an unfusible op along the chain somewhere
# It could probably be improved by properly analyzing what's going on in the
# backwards pass instead of only relying on whether it's unfusible in the
# forwards.
def find_first_unfusible(start_nodes: List[fx.Node], max_range: int) -> int:
"""
Finds the first unfusible node in the chain of nodes starting from
`start_nodes` and returns its position.
"""
sorted_nodes: List[Tuple[int, fx.Node, bool]] = []
for n in start_nodes:
heapq.heappush(sorted_nodes, (node_info.get_fw_order(n), n, True))
while len(sorted_nodes) > 0:
_, node, node_is_fusible = heapq.heappop(sorted_nodes)
if not node_is_fusible:
return node_info.get_fw_order(node)
for user in node.users:
if node_info.is_required_fw(user):
if node_info.get_fw_order(user) > max_range:
continue
heapq.heappush(
sorted_nodes,
(node_info.get_fw_order(user), user, is_fusible(node, user)),
)
return max_range
if min_cut_options.ban_if_used_far_apart:
for used_node in node_info.required_fw_nodes:
orders = [
node_info.get_fw_order(user)
for user in used_node.users
if node_info.is_required_fw(user)
]
fw_users = [
user for user in used_node.users if node_info.is_required_fw(user)
]
if len(orders) > 0:
first_unfusible_use = find_first_unfusible(fw_users, max(orders))
for user in tuple(used_node.users):
if (
node_info.is_required_fw(user)
and node_info.get_fw_order(user) > first_unfusible_use
and is_fusible(used_node, user)
):
if user in banned_nodes:
continue
log.info(
"used above/below fusible %s:(%s) -> %s -> %s:(%s)",
used_node,
node_info.get_fw_order(used_node),
first_unfusible_use,
user,
node_info.get_fw_order(user),
)
ban_recomputation_if_allowed(user)
# This heuristic is fairly straightforward. The idea is that although it is
# cheap to recompute bandwidth-bound ops, we don't want to end up in a situation
# where we have a long chain of pointwise ops from the beginning to the end
# of the model (like say, residual connections)
# todo: I'm not totally sure why this heuristic matters. It's possible that this is
# working around Inductor fusion decisions, or that it's a patch over
# suboptimal partitioning decisions
# Some models it improves perf on are cait_m36_384, mixer_b16_224, poolformer_m36
if min_cut_options.ban_if_long_fusible_chains:
visited = set()
for start_node in joint_graph.nodes:
if not node_info.is_required_fw(start_node):
continue
fusible = [(node_info.get_fw_order(start_node), start_node)]
start_order = node_info.get_fw_order(start_node)
while len(fusible) > 0:
_, cur = heapq.heappop(fusible)
if cur in visited:
continue
visited.add(cur)
# 100 is arbitrary choice to try and prevent degenerate cases
if (
node_info.get_fw_order(cur) > start_order + 100
and len(fusible) == 0
):
log.info(
"too long %s %s %s %s",
cur,
start_node,
node_info.get_fw_order(cur),
node_info.get_fw_order(start_node),
)
ban_recomputation_if_allowed(cur)
break
for user in cur.users:
if (
node_info.is_required_fw(user)
and is_fusible(cur, user)
and user not in banned_nodes
):
heapq.heappush(fusible, (node_info.get_fw_order(user), user))
try:
cut_value, partition = nx.minimum_cut(nx_graph, "source", "sink")
except Exception:
print("Failed to compute min-cut on following graph:")
print("\n".join(nx.readwrite.edgelist.generate_edgelist(nx_graph)))
visualize_min_cut_graph(nx_graph)
raise
reachable, non_reachable = partition
cutset: Set[Tuple[str, str]] = set()
for u, nbrs in ((n, nx_graph[n]) for n in reachable):
cutset.update((u, v) for v in nbrs if v in non_reachable)
cut_nodes = set()
for node_in, node_out in cutset:
assert node_in[:-3] == node_out[:-4]
node_name = node_in[:-3]
cut_nodes.add(node_name)
name_to_node = get_name_to_node(joint_graph)
# To make this stuff deterministic
node_idx = {node: idx for idx, node in enumerate(joint_graph.nodes)}
saved_values = sorted(
(name_to_node[node] for node in cut_nodes), key=lambda x: node_idx[x]
)
return saved_values, banned_nodes
def visualize_min_cut_graph(nx_graph):
import networkx as nx
import pydot
dot_format = nx.nx_pydot.to_pydot(nx_graph).to_string()
dot_graph = pydot.graph_from_dot_data(dot_format)[0]
for edge in dot_graph.get_edges():
weight = nx_graph[edge.get_source()][edge.get_destination()]["capacity"]
# Set edge label to weight
edge.set_label(str(weight))
# Color edges with weight 'inf' as red
if weight == float("inf"):
edge.set_color("red")
print("Visualizing the failed graph to min_cut_failed.svg")
dot_graph.write_svg("min_cut_failed.svg")
def get_default_op_list() -> OpTypes:
default_recomputable_ops: List[Callable] = [
aten.add,
aten.sub,
aten.div,
aten.atan2,
aten.mul,
aten.max,
aten.min,
aten.pow,
aten.remainder,
aten.fmod,
aten.__and__,
aten.__or__,
aten.__xor__,
aten.__lshift__,
aten.__rshift__,
aten.eq,
aten.ne,
aten.ge,
aten.gt,
aten.le,
aten.lt,
aten.abs,
aten.bitwise_not,
aten.ceil,
aten.floor,
aten.frac,
aten.neg,
aten.relu,
aten.round,
aten.silu,
aten.trunc,
aten.log,
aten.log10,
aten.log1p,
aten.log2,
aten.lgamma,
aten.exp,
aten.expm1,
aten.erf,
aten.erfc,
aten.cos,
aten.acos,
aten.cosh,
aten.sin,
aten.asin,
aten.sinh,
aten.tan,
aten.atan,
aten.tanh,
aten.atanh,
aten.sqrt,
aten.rsqrt,
aten.reciprocal,
aten.sigmoid,
aten.softplus,
aten.threshold,
aten.threshold_backward,
aten.clamp,
aten.where,
aten.lerp,
aten.addcmul,
aten.gelu,
aten.gelu_backward,
aten.sum,
aten.mean,
aten._grad_sum_to_size,
aten.sum_to_size,
aten.amax,
aten.to,
aten.type_as,
operator.getitem,
aten.squeeze,
aten.unsqueeze,
aten.rsub,
aten._to_copy,
] # noqa: E501,B950
recomputable_view_ops = [aten.squeeze, aten.unsqueeze, aten.alias]
recomputable_view_ops += [
aten.view,
aten.slice,
aten.t,
prims.broadcast_in_dim,
aten.expand,
aten.as_strided,
aten.permute,
]
view_ops = recomputable_view_ops
default_recomputable_ops += [
prims.div,
prims.convert_element_type,
aten.clone,
aten._to_copy,
aten.full_like,
prims.var,
prims.sum,
aten.var,
aten.std,
prims.broadcast_in_dim,
aten.select,
aten._unsafe_view,
aten.view,
aten.expand,
aten.slice,
aten.reshape,
aten.broadcast_tensors,
aten.scalar_tensor,
aten.ones,
aten.new_zeros,
aten.lift_fresh_copy,
aten.arange,
aten.triu,
aten.var_mean,
aten.isinf,
aten.any,
aten.full,
aten.as_strided,
aten.zeros,
aten.argmax,
aten.maximum,
prims.iota,
prims._low_memory_max_pool2d_offsets_to_indices,
] # noqa: E501,B950
# Natalia said that we should allow recomputing indexing :)
default_recomputable_ops += [aten.index, aten.gather]
default_recomputable_ops += view_ops
default_recomputable_ops += pointwise_ops()
default_recomputable_ops += [
aten.zeros_like,
]
default_recomputable_ops += [method_to_operator(m) for m in magic_methods]
recomputable_ops = set(default_recomputable_ops)
random_ops = [aten.native_dropout, aten.rand_like, aten.randn_like]
compute_intensive_ops = [
aten.mm,
aten.convolution,
aten.convolution_backward,
aten.bmm,
aten.addmm,
aten._scaled_dot_product_flash_attention,
aten._scaled_dot_product_efficient_attention,
aten.upsample_bilinear2d,
] # noqa: E501,B950
fusible_ops = recomputable_ops | set(random_ops)
return OpTypes(
set(fusible_ops),
set(compute_intensive_ops),
set(random_ops),
set(view_ops),
set(recomputable_ops),
)
def get_name_to_node(graph: fx.Graph):
name_to_node = {}
for node in graph.nodes:
name_to_node[node.name] = node
return name_to_node
def greedy_knapsack(
memory: List[float], runtimes: List[float], max_memory: float
) -> Tuple[float, List[int], List[int]]:
n = len(runtimes)
items = list(range(n))
# Sort items based on the ratio of runtime to memory in descending order
items = sorted(items, key=lambda i: runtimes[i] / memory[i], reverse=True)
total_memory = 0.0
total_runtime = 0.0
items_to_save = []
items_to_allow_recomputing = []
for i in items:
if total_memory + memory[i] <= max_memory:
total_memory += memory[i]
total_runtime += runtimes[i]
items_to_save.append(i)
else:
items_to_allow_recomputing.append(i)
return total_runtime, items_to_save, items_to_allow_recomputing
def ilp_knapsack(
memory: List[float], runtimes: List[float], max_memory: float
) -> Tuple[float, List[int], List[int]]:
import numpy as np
try:
from scipy.optimize import Bounds, LinearConstraint, milp
except ImportError:
raise RuntimeError(
"To use the ILP for memory budget checkpointing you need to install scipy"
) from None
np_memory = np.array(memory)
np_runtimes = np.array(runtimes)
c = -np_runtimes # type: ignore[operator]
memory_constraint = LinearConstraint(A=np_memory, ub=np.array(max_memory))
constraints = [memory_constraint]
integrality = np.ones_like(c)
res = milp(
c=c, constraints=constraints, integrality=integrality, bounds=Bounds(0, 1)
)
if not res.success:
raise RuntimeError("Somehow scipy solving failed")
items_to_save = []
items_to_allow_recomputing = []
for idx, i in enumerate(res.x):
if i == 1:
items_to_save.append(idx)
else:
items_to_allow_recomputing.append(idx)
return -res.fun, items_to_save, items_to_allow_recomputing
def dp_knapsack(
memory: List[float], runtimes: List[float], max_memory: float
) -> Tuple[float, List[int], List[int]]:
# Scaling factor to convert floating point weights to integers
S = 10000
# Quantize the memory weights
quantized_memory = torch.tensor(
[int(round(m * S)) for m in memory], dtype=torch.long, device="cpu"
)
runtimes = torch.tensor(runtimes, dtype=torch.float32, device="cpu")
# Quantized pseudopolynomial DP for 0-1 Knapsack
quantized_max_memory = int(round(max_memory * S))
n = len(memory)
# Initialize the DP table
# TODO(chilli): I think if needed, this memory can be optimized with sliding
# window trick + Hirschberg trick:
# https://codeforces.com/blog/entry/47247?#comment-316200
dp = torch.zeros(
(n + 1, quantized_max_memory + 1), dtype=torch.float32, device="cpu"
)
for i in range(1, n + 1):
current_memory = quantized_memory[i - 1]
current_runtime = runtimes[i - 1]
# Copy the previous row
dp[i, :] = dp[i - 1, :]
# Update dp[i, j] for all j >= current_memory
if current_memory == 0:
dp[i, :] = dp[i - 1, :] + current_runtime
else:
dp[i, current_memory:] = torch.maximum(
dp[i - 1, current_memory:],
dp[i - 1, :-current_memory] + current_runtime,
)
# Backtrack to find the items included in the knapsack
saved_items = []
recomputable_items = []
j: int = quantized_max_memory
for i in range(n, 0, -1):
if dp[i][j] != dp[i - 1][j]:
saved_items.append(i - 1) # Include this item (indexing from 0)
j -= int(quantized_memory[i - 1].item())
else:
recomputable_items.append(i - 1)
saved_items.reverse() # To get items in the order they were added
# The maximum runtime that can be achieved within the max_memory constraint
max_runtime = dp[n][quantized_max_memory].item()
return max_runtime, saved_items, recomputable_items
def _optimize_runtime_with_given_memory(
memory: List[float],
runtimes: List[float],
max_memory: float,
) -> Tuple[float, List[int], List[int]]:
SOLVER = config.activation_memory_budget_solver
if SOLVER == "greedy":
return greedy_knapsack(memory, runtimes, max_memory)
elif SOLVER == "ilp":
return ilp_knapsack(memory, runtimes, max_memory)
elif SOLVER == "dp":
return dp_knapsack(memory, runtimes, max_memory)
else:
raise RuntimeError(f"Not aware of memory budget knapsack solver: {SOLVER}")
from torch.utils._mode_utils import no_dispatch
def estimate_runtime(node):
RUNTIME_MODE = config.activation_memory_budget_runtime_estimator
def materialize_arg(x):
if isinstance(x, fx.Node) and isinstance(x.meta["val"], torch.Tensor):
shape = list(x.meta["val"].shape)
def realize_symbol(d):
return hint_int(d, fallback=4096)
shape = [realize_symbol(s) for s in shape]
return x.meta["val"].new_zeros(shape)
elif isinstance(x, fx.Node) and isinstance(x.meta["val"], torch.SymInt):
return hint_int(x.meta["val"], fallback=4096)
elif isinstance(x, fx.Node) and isinstance(x.meta["val"], torch.SymFloat):
return 1.0
elif isinstance(x, fx.Node) and isinstance(x.meta["val"], torch.SymBool):
return True
else:
return x
if RUNTIME_MODE == "testing":
return 1
elif RUNTIME_MODE == "profile":
from triton.testing import do_bench
with no_dispatch():
args, kwargs = pytree.tree_map(materialize_arg, (node.args, node.kwargs))
ms = do_bench(lambda: node.target(*args, **kwargs))
return ms
elif RUNTIME_MODE == "flops":
# todo(chilli): Normalize this to also return ms
from torch.utils.flop_counter import FlopCounterMode
args, kwargs = pytree.tree_map(materialize_arg, (node.args, node.kwargs))
with FlopCounterMode(display=False) as mode:
node.target(*args, **kwargs)
counted_flops = mode.get_total_flops()
return max(counted_flops, 1)
else:
raise RuntimeError(f"Not aware of runtime estimator: {RUNTIME_MODE}")
def choose_saved_values_set(
joint_graph: fx.Graph, node_info: NodeInfo, memory_budget=1
) -> List[fx.Node]:
if memory_budget > 1 or memory_budget < 0:
raise RuntimeError(
f"The valid ranges for memory budget are 0 <= m <= 1. The provided value is {memory_budget}"
)
min_cut_options = MinCutOptions(
ban_if_used_far_apart=config.ban_recompute_used_far_apart,
ban_if_long_fusible_chains=config.ban_recompute_long_fusible_chains,
ban_if_materialized_backward=config.ban_recompute_materialized_backward,
ban_if_not_in_allowlist=config.ban_recompute_not_in_allowlist,
ban_if_reduction=config.ban_recompute_reductions,
)
if config.aggressive_recomputation:
min_cut_options = replace(
min_cut_options,
ban_if_used_far_apart=False,
ban_if_long_fusible_chains=False,
ban_if_materialized_backward=False,
ban_if_not_in_allowlist=False,
)
if memory_budget == 0:
return node_info.inputs
runtime_optimized_saved_values, _ = solve_min_cut(
joint_graph,
node_info,
min_cut_options,
)
# return runtime_optimized_saved_values
if memory_budget == 1:
return runtime_optimized_saved_values
def estimate_activations_size(saved_values: List[fx.Node]) -> float:
return sum([_size_of(i) for i in saved_values]) / 1e9
min_act_size = estimate_activations_size(node_info.inputs)
max_act_size = estimate_activations_size(runtime_optimized_saved_values)
# The optimized choice is smaller than the inputs anyways
if max_act_size <= min_act_size:
return runtime_optimized_saved_values
def get_normalized_size(sz):
return (sz / 1e9) / (max_act_size - min_act_size)
def get_mem_ratio(activations: List[fx.Node]):
return (estimate_activations_size(activations) - min_act_size) / (
max_act_size - min_act_size
)
more_aggressive_options = replace(
min_cut_options,
ban_if_used_far_apart=False,
ban_if_long_fusible_chains=False,
ban_if_materialized_backward=False,
)
more_aggressive_saved_values, _ = solve_min_cut(
joint_graph, node_info, more_aggressive_options
)
if get_mem_ratio(more_aggressive_saved_values) < memory_budget:
return more_aggressive_saved_values
aggressive_options = replace(
more_aggressive_options,
ban_if_not_in_allowlist=False,
)
aggressive_recomputation_saved_values, banned_nodes = solve_min_cut(
joint_graph, node_info, aggressive_options
)
if get_mem_ratio(aggressive_recomputation_saved_values) < memory_budget:
return aggressive_recomputation_saved_values
from torch._inductor.fx_utils import get_node_storage
input_storages = {get_node_storage(node) for node in node_info.inputs}
def get_recomputable_banned_nodes(banned_nodes: List[fx.Node]) -> List[fx.Node]:
return [
i
for i in banned_nodes
if (
# Only allow recomputing nodes that are actually required for BW
i.dist_from_bw < int(1e9) # type: ignore[attr-defined]
and get_node_storage(i) not in input_storages
)
]
recomputable_banned_nodes = get_recomputable_banned_nodes(banned_nodes)
# default: runtime_optimized_saved_values
# more aggressive: more_aggressive_saved_values
# full aggressive: aggressive_recomputation_saved_values
all_recomputable_banned_nodes = sorted(
recomputable_banned_nodes, key=_size_of, reverse=True
)
if len(all_recomputable_banned_nodes) == 0:
return node_info.inputs
memories_banned_nodes = [
get_normalized_size(_size_of(i)) for i in all_recomputable_banned_nodes
]
runtimes_banned_nodes = [
estimate_runtime(node) for node in all_recomputable_banned_nodes
]
from torch.utils._mode_utils import no_dispatch
def get_saved_values_knapsack(memory_budget):
with no_dispatch():
(
expected_runtime,
saved_node_idxs,
recomputable_node_idxs,
) = _optimize_runtime_with_given_memory(
memories_banned_nodes, runtimes_banned_nodes, max(memory_budget, 0)
)
dont_ban = set()
for idx in recomputable_node_idxs:
dont_ban.add(all_recomputable_banned_nodes[idx])
assert dont_ban.issubset(all_recomputable_banned_nodes)
saved_values, _ = solve_min_cut(
joint_graph,
node_info,
aggressive_options,
dont_ban,
)
return saved_values, expected_runtime
if config.visualize_memory_budget_pareto:
options = []
for sweep_memory_budget in range(100, -1, -5):
saved_values, expected_runtime = get_saved_values_knapsack(
sweep_memory_budget / 100
)
options.append(
(
sweep_memory_budget,
sum(runtimes_banned_nodes) - expected_runtime,
get_mem_ratio(saved_values),
)
)
import matplotlib.pyplot as plt
x_values = [item[2] for item in options]
y_values = [item[1] for item in options]
# Plotting the values with updated axis labels and chart title
plt.figure(figsize=(10, 6))
plt.plot(x_values, y_values, marker="o")
# Adding labels for each point
for i, txt in enumerate(x_values):
plt.annotate(
f"{txt:.2f}",
(x_values[i], y_values[i]),
textcoords="offset points",
xytext=(0, 10),
ha="center",
)
plt.xlabel("Memory Budget")
plt.ylabel("Runtime of Recomputed Components")
plt.title("Pareto Frontier of Memory Budget vs. Recomputation Runtime")
plt.grid(True)
fig = plt.gcf()
plt.show()
fig_name = f"memory_budget_pareto_{get_aot_graph_name()}.png"
fig.savefig(fig_name)
log.warning("Generated Pareto frontier curve at %s", fig_name)
# todo(chilli): Estimated doesn't align exactly with actual - actual is
# usually less memory than estimated. i'm guessing (actually quite
# unsure about this) that's because estimated is just only including
# tensors we actually banned from recompute, but there may be other
# tensors that we choose to save.
return get_saved_values_knapsack(memory_budget=memory_budget)[0]
def min_cut_rematerialization_partition(
joint_module: fx.GraphModule,
_joint_inputs,
compiler="inductor",
*,
num_fwd_outputs,
) -> Tuple[fx.GraphModule, fx.GraphModule]:
"""
Partitions the joint graph such that the backward recomputes the forward.
Recomputing helps in trading off memory bandwidth with computation.
To create the fwd and bwd graph, we copy the joint graph, manually set the
outputs to just original forward or backward outputs. And then we run the
resulting graphs through dead code elimination.
.. warning::
This API is experimental and likely to change.
Args:
joint_module(fx.GraphModule): The joint forward and backward graph. This
is the result of AOT Autograd tracing.
_joint_inputs: The inputs to the joint graph. This is unused.
compiler: This option determines the default set of recomputable ops.
Currently, there are two options: ``nvfuser`` and ``inductor``.
recomputable_ops: This is an optional set of recomputable ops. If this
is not None, then this set of ops will be used instead of the
default set of ops.
num_fwd_outputs: The number of outputs from the forward graph.
Returns:
Returns the generated forward and backward Fx graph modules.
"""
joint_module.graph.eliminate_dead_code()
joint_module.recompile()
fx_g = joint_module.graph
# add the CSE pass
if config.cse:
cse_graph = fx_graph_cse(fx_g)
joint_module.graph = cse_graph
joint_graph = joint_module.graph
graph_has_recomputable_ops = has_recomputable_ops(joint_module)
graph_has_recomputable_rng_ops = has_recomputable_rng_ops(joint_module)
if graph_has_recomputable_ops:
joint_module = cleanup_recompute_tags(joint_module)
def classify_nodes(joint_module):
name_to_node = get_name_to_node(joint_module.graph)
required_bw_nodes = set()
for node in joint_module.graph.nodes:
if node.op == "placeholder" and "tangents" in node.target:
required_bw_nodes.add(node)
if node in required_bw_nodes:
for user in node.users:
required_bw_nodes.add(user)
primal_inputs = list(filter(_is_primal, joint_module.graph.nodes))
fwd_seed_offset_inputs = list(
filter(_is_fwd_seed_offset, joint_module.graph.nodes)
)
inputs = primal_inputs + fwd_seed_offset_inputs
fwd_outputs, bwd_outputs = _extract_fwd_bwd_outputs(
joint_module, num_fwd_outputs=num_fwd_outputs
)
required_bw_nodes.update(
o for o in bwd_outputs if o is not None and o.op != "output"
)
forward_only_graph = _extract_graph_with_inputs_outputs(
joint_module.graph, inputs, fwd_outputs
)
required_fw_nodes: Set[fx.Node] = {
name_to_node[node.name]
for node in forward_only_graph.nodes
if node.op != "output"
}
unclaimed_nodes = {
node
for node in joint_module.graph.nodes
if node not in required_fw_nodes and node not in required_bw_nodes
}
fw_cnt = 0
fw_order = {}
for node in joint_module.graph.nodes:
if node in required_fw_nodes:
fw_order[node] = fw_cnt
fw_cnt += 1
return NodeInfo(
inputs, required_fw_nodes, required_bw_nodes, unclaimed_nodes, fw_order
)
node_info = classify_nodes(joint_module)
# networkx blows up on graphs with no required backward nodes
# Since there's nothing to partition anyway, and the default partitioner can "handle"
# this case, send our graph over to the default partitioner.
if len(node_info.required_bw_nodes) == 0:
return default_partition(
joint_module, _joint_inputs, num_fwd_outputs=num_fwd_outputs
)
for node in reversed(joint_module.graph.nodes):
if node.op == "output":
node.dist_from_bw = int(1e9)
elif not node_info.is_required_fw(node):
node.dist_from_bw = 0
else:
node.dist_from_bw = int(1e9)
for user in node.users:
node.dist_from_bw = min(node.dist_from_bw, user.dist_from_bw + 1)
memory_budget = config.activation_memory_budget
for node in joint_graph.nodes:
if isinstance(node.meta.get("memory_budget", None), float):
memory_budget = node.meta["memory_budget"]
break
# print("Memory Budget: ", memory_budget)
saved_values = choose_saved_values_set(
joint_graph, node_info, memory_budget=memory_budget
)
# save_for_backward on tensors and stashes symints in autograd .ctx
saved_sym_nodes = list(filter(is_sym_node, saved_values))
saved_values = list(filter(lambda n: not is_sym_node(n), saved_values))
# NB: saved_sym_nodes will be mutated to reflect the actual saved symbols
fw_module, bw_module = _extract_fwd_bwd_modules(
joint_module,
saved_values,
saved_sym_nodes=saved_sym_nodes,
num_fwd_outputs=num_fwd_outputs,
)
if graph_has_recomputable_ops:
if graph_has_recomputable_rng_ops:
fw_module, bw_module = functionalize_rng_ops(
joint_module, fw_module, bw_module, len(saved_sym_nodes)
)
bw_module = reordering_to_mimic_autograd_engine(bw_module)
if AOT_PARTITIONER_DEBUG:
from torch._inductor.fx_utils import get_node_storage
storages = {get_node_storage(node) for node in saved_values}
print(
"Theoretical Activations Stored: ",
sum(_size_of(i) for i in saved_values) / 1e9,
)
sorted_sizes = sorted([(_size_of(i), str(i)) for i in saved_values])
fw_module_nodes = {
node.name for node in fw_module.graph.nodes if node.op == "call_function"
}
bw_module_nodes = {
node.name for node in bw_module.graph.nodes if node.op == "call_function"
}
remat_nodes = fw_module_nodes & bw_module_nodes
counts: Dict[str, int] = defaultdict(int)
for node in fw_module.graph.nodes:
if node.name in remat_nodes and hasattr(node.target, "_overloadpacket"):
counts[str(node.target._overloadpacket)] += 1
print(
f"# remat/fw/bw: {len(remat_nodes)}/{len(fw_module_nodes)}/{len(bw_module_nodes)}"
)
print(
"Count of Ops Rematerialized: ",
sorted(counts.items(), key=lambda x: x[1], reverse=True),
)
return fw_module, bw_module
def draw_graph(
traced: torch.fx.GraphModule,
fname: str,
figname: str = "fx_graph",
clear_meta: bool = True,
prog: Optional[Union[str, List[str]]] = None,
parse_stack_trace: bool = False,
dot_graph_shape: Optional[str] = None,
) -> None:
if clear_meta:
new_graph = copy.deepcopy(traced.graph)
traced = fx.GraphModule(traced, new_graph)
for node in traced.graph.nodes:
node.meta = {}
base, ext = os.path.splitext(fname)
if not ext:
ext = "." + config.torch_compile_graph_format
print(f"Writing FX graph to file: {base}{ext}")
g = graph_drawer.FxGraphDrawer(
traced,
figname,
parse_stack_trace=parse_stack_trace,
dot_graph_shape=dot_graph_shape,
)
x = g.get_main_dot_graph()
write_method = getattr(x, "write_" + ext.lstrip("."))
fname = f"{base}{ext}"
if prog is None:
write_method(fname)
else:
write_method(fname, prog=prog)
|