File size: 124,658 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
# mypy: allow-untyped-defs
from __future__ import annotations

import base64
import copyreg
import dataclasses
import functools
import hashlib
import importlib
import io
import json
import logging
import os
import pickle
import pkgutil
import platform
import re
import shlex
import shutil
import struct
import subprocess
import sys
import sysconfig
import tempfile
import textwrap
import threading
import warnings
from bisect import bisect_right
from copy import copy
from ctypes import c_void_p, cdll, CDLL
from functools import partial
from pathlib import Path
from time import time, time_ns
from types import ModuleType
from typing import (
    Any,
    Callable,
    cast,
    Dict,
    Generator,
    List,
    Optional,
    Sequence,
    Set,
    Tuple,
    TYPE_CHECKING,
    Union,
)

import torch
from torch._dynamo.utils import counters, dynamo_timed
from torch._inductor import config, exc, metrics
from torch._inductor.codegen.cuda import cuda_env
from torch._inductor.runtime.compile_tasks import (
    _module_to_triton_kernel,
    _reload_python_module,
    _reload_python_module_in_subproc,
)
from torch._inductor.runtime.runtime_utils import cache_dir
from torch._inductor.utils import ALIGN_BYTES, clear_on_fresh_inductor_cache, is_linux

from torch._logging import trace_structured
from torch._subclasses.fake_tensor import (
    extract_tensor_metadata,
    FakeTensor,
    TensorMetadata,
)
from torch.fx.experimental.symbolic_shapes import has_hint, hint_int, ShapeEnv

if TYPE_CHECKING:
    from concurrent.futures import Future

    from torch._inductor.graph import GraphLowering
    from torch._inductor.ir import ChoiceCaller
    from torch._inductor.runtime.hints import HalideMeta


_HERE = os.path.abspath(__file__)
_TORCH_PATH = os.path.dirname(os.path.dirname(_HERE))
_LINKER_SCRIPT = os.path.join(_TORCH_PATH, "_inductor/script.ld")

_IS_WINDOWS = sys.platform == "win32"

if config.is_fbcode():
    from triton.fb import build_paths
    from triton.fb.build import _run_build_command

    from torch._inductor.fb.utils import (
        log_global_cache_errors,
        log_global_cache_stats,
        log_global_cache_vals,
        use_global_cache,
    )
else:

    def log_global_cache_errors(*args, **kwargs):
        pass

    def log_global_cache_stats(*args, **kwargs):
        pass

    def log_global_cache_vals(*args, **kwargs):
        pass

    def use_global_cache() -> bool:
        return False


output_code_log = torch._logging.getArtifactLogger(__name__, "output_code")

LOCK_TIMEOUT = 600

_IS_WINDOWS = sys.platform == "win32"


log = logging.getLogger(__name__)


def cpp_wrapper_cache_dir(name: str) -> str:
    cu_str = (
        "cpu"
        if torch.version.cuda is None
        else f'cu{torch.version.cuda.replace(".", "")}'
    )
    python_version = f"py{sys.version_info.major}{sys.version_info.minor}"
    build_folder = f"{python_version}_{cu_str}"

    cpp_wrapper_dir = os.path.join(cache_dir(), build_folder)
    cpp_wrapper_build_directory = os.path.join(cpp_wrapper_dir, name)
    os.makedirs(cpp_wrapper_build_directory, exist_ok=True)
    return cpp_wrapper_build_directory


def get_cpp_wrapper_cubin_path_name():
    return "cubin_path" if torch.version.hip is None else "hsaco_path"


class CacheBase:
    @staticmethod
    @functools.lru_cache(None)
    def get_system() -> Dict[str, Any]:
        try:
            from triton.compiler.compiler import triton_key

            # Use triton_key instead of triton.__version__ as the version
            # is not updated with each code change
            triton_version = triton_key()
        except ModuleNotFoundError:
            triton_version = None

        try:
            system: Dict[str, Any] = {
                "device": {
                    "name": torch.cuda.get_device_properties(
                        torch.cuda.current_device()
                    ).name,
                },
                "version": {
                    "cuda": torch.version.cuda,
                    "triton": triton_version,
                },
            }
        except (AssertionError, RuntimeError):
            # If cuda is not installed, none of the above config is relevant.
            system = {}

        system["hash"] = hashlib.sha256(
            json.dumps(system, sort_keys=True).encode("utf-8")
        ).hexdigest()

        return system

    @staticmethod
    @clear_on_fresh_inductor_cache
    @functools.lru_cache(None)
    def get_local_cache_path() -> Path:
        return Path(os.path.join(cache_dir(), "cache", CacheBase.get_system()["hash"]))

    @staticmethod
    @functools.lru_cache(None)
    def get_global_cache_path() -> Optional[Path]:
        return (
            Path(os.path.join(config.global_cache_dir, CacheBase.get_system()["hash"]))
            if config.global_cache_dir is not None
            else None
        )

    def __init__(self) -> None:
        self.system = CacheBase.get_system()

    def get_local_cache(self) -> Dict[str, Any]:
        local_cache_path = self.get_local_cache_path()
        if not local_cache_path.is_file():
            return {}
        with open(local_cache_path) as local_cache_fp:
            local_cache = json.load(local_cache_fp)
        return local_cache["cache"]

    def update_local_cache(self, local_cache: Dict[str, Any]) -> None:
        local_cache_path = self.get_local_cache_path()
        write_atomic(
            str(local_cache_path),
            json.dumps({"system": self.system, "cache": local_cache}, indent=4),
            make_dirs=True,
        )


class LocalCache(CacheBase):
    def lookup(self, *keys: str) -> Optional[Dict[str, Any]]:
        cache = self.get_local_cache()

        sub_cache = cache
        for key in keys:
            if key in cache:
                sub_cache = cache[key]
            else:
                return None

        return sub_cache

    def set_value(self, *keys: str, value: Any) -> None:
        cache = self.get_local_cache()

        sub_cache = cache
        for key in keys[0:-1]:
            sub_cache.setdefault(key, {})
            sub_cache = sub_cache[key]
        sub_cache[keys[-1]] = value

        self.update_local_cache(cache)


class PersistentCache(CacheBase):
    @functools.lru_cache(None)  # noqa: B019
    def get_global_cache(self):
        global_cache_path = self.get_global_cache_path()
        if global_cache_path is None or not global_cache_path.is_file():
            return {}
        with open(global_cache_path) as global_cache_fp:
            global_cache = json.load(global_cache_fp)
        return global_cache["cache"]

    def lookup(
        self,
        choices: List[ChoiceCaller],
        op: str,
        inputs: str,
        benchmark: Optional[Callable[[Any], Dict[ChoiceCaller, float]]],
    ) -> Dict[ChoiceCaller, float]:
        """
        Check to see if we have benchmarked the given choice callers. For each
        choice caller:

            1. Check global_cache[op][inputs][choice][precision], return benchmark if cached.
            2. Check local_cache[op][inputs][choice][precision], return benchmark if cached.
            3. If benchmark is not None:
                a. `max_autotune_gemm=True`: benchmark the choice, update
                    local_cache[op][inputs][choice], and return the benchmark.
                b. `max_autotune_gemm=False`: don't benchmark the choice, return nothing.
        """
        precision = torch.get_float32_matmul_precision()

        log_stats = partial(log_global_cache_stats, self.system, op, inputs, precision)
        log_vals = partial(log_global_cache_vals, self.system, op, inputs, precision)
        log_errors = partial(
            log_global_cache_errors, self.system, op, inputs, precision
        )
        timings = {}

        def check_cache(cache, callback=None) -> bool:
            """Check if `cache` contains data for all the choices"""
            hit = True
            for choice in choices:
                choice_hash = choice.hash_key()
                if choice_hash in cache.get(op, {}).get(inputs, {}).get(precision, {}):
                    # cache hit
                    timings[choice] = cache[op][inputs][precision][choice_hash]
                else:
                    # cache miss
                    hit = False
                    break
            if callback:
                callback(cached=hit)
            return hit

        if config.max_autotune or config.max_autotune_gemm:
            local_cache = self.get_local_cache() if config.autotune_local_cache else {}
            # check local cache first since it is data specific to the current machine
            if (
                not check_cache(local_cache)
                and not (
                    use_global_cache()
                    and check_cache(self.get_global_cache(), callback=log_stats)
                )
                and benchmark is not None
            ):
                try:
                    # re-benchmark everything to try to get consistent numbers from the same machine
                    timings = benchmark(choices)
                    assert all(choice in timings for choice in choices)
                    local_cache.setdefault(op, {})
                    local_cache[op].setdefault(inputs, {}).setdefault(precision, {})
                    for choice, timing in timings.items():
                        local_cache[op][inputs][precision][choice.hash_key()] = timing
                except RuntimeError as e:
                    # catch and log autotuning failures
                    log_errors(e)
                    raise e

                self.update_local_cache(local_cache)

                timings_to_log = {
                    choice.hash_key(): timings[choice] for choice in choices
                }
                log_vals(timings_to_log)
        elif use_global_cache():
            # only check global cache, not local one
            check_cache(self.get_global_cache(), callback=log_stats)
            # may have a partial cache hit, where not everything is benchmarked

        return timings


def get_lock_dir() -> str:
    lock_dir = os.path.join(cache_dir(), "locks")
    if not os.path.exists(lock_dir):
        os.makedirs(lock_dir, exist_ok=True)
    return lock_dir


def sha256_hash(data: bytes) -> str:
    # [:51] to strip off the "Q====" suffix common to every hash value.
    return base64.b32encode(hashlib.sha256(data).digest())[:51].decode("utf-8").lower()


def code_hash(code: Union[str, bytes], extra: str = ""):
    hashing_str = code if isinstance(code, bytes) else code.encode("utf-8")
    if extra != "":
        hashing_str = hashing_str + b"||" + extra.encode("utf-8")
    return "c" + sha256_hash(hashing_str)


def get_path(
    basename: str, extension: str, specified_dir: str = ""
) -> Tuple[str, str, str]:
    if specified_dir:
        if os.path.isabs(specified_dir):
            subdir = specified_dir
        else:
            subdir = os.path.join(cache_dir(), specified_dir)
    else:
        subdir = os.path.join(cache_dir(), basename[1:3])
    path = os.path.join(subdir, f"{basename}.{extension}")
    return basename, subdir, path


def get_hash(content: Union[str, bytes], extra: str = "", hash_type: str = "code"):
    if hash_type == "code":
        return code_hash(content, extra)
    if hash_type in ["cubin", "hsaco"]:
        return code_hash(repr(content))
    raise AssertionError(f"Unknown hash type {hash_type}")


def write(
    content: Union[str, bytes],
    extension: str,
    extra: str = "",
    hash_type: str = "code",
    specified_dir: str = "",
) -> Tuple[str, str]:
    # use striped content to compute hash so we don't end up with different
    # hashes just because the content begins/ends with different number of
    # spaces.
    key: str = get_hash(content.strip(), extra, hash_type)
    basename, subdir, path = get_path(key, extension, specified_dir)
    if not os.path.exists(path):
        write_atomic(path, content, make_dirs=True)
    return basename, path


def write_text(text: str) -> str:
    """
    Write the `text` to a file and return the path computed based on the hash.
    """
    return write(text, "txt")[1]


def write_atomic(
    path: str, content: Union[str, bytes], make_dirs: bool = False
) -> None:
    # Write into temporary file first to avoid conflicts between threads
    # Avoid using a named temporary file, as those have restricted permissions
    assert isinstance(
        content, (str, bytes)
    ), "Only strings and byte arrays can be saved in the cache"
    path = Path(path)
    if make_dirs:
        path.parent.mkdir(parents=True, exist_ok=True)
    tmp_path = path.parent / f".{os.getpid()}.{threading.get_ident()}.tmp"
    write_mode = "w" if isinstance(content, str) else "wb"
    with tmp_path.open(write_mode) as f:
        f.write(content)
    tmp_path.rename(path)


@dataclasses.dataclass
class TensorMetadataAndValues:
    """
    TensorMetadata plus the elements as a list of raw values.
    Used for hashing inlined constants.
    """

    tensor_metadata: TensorMetadata
    values: List[Any]


def _ident(x: Any) -> Any:
    return x


def extract_tensor_metadata_for_cache_key(t):
    """
    Extracts the tensor metadata and removes fields of the TensorMetadata
    that are not needed for caching
    """
    meta = extract_tensor_metadata(t)
    if not hasattr(t, "_is_inductor_static"):
        meta = dataclasses.replace(meta, storage_offset=0, storage_bytes=None)
    return meta


def _reduce_fake_tensor(t):
    """
    See FxGraphCachePickler. Custom reducer to pickle FakeTensors.
    """
    metadata = extract_tensor_metadata_for_cache_key(t)
    return (_ident, (metadata,))


def _reduce_tensor(t):
    """
    See FxGraphCachePickler. Custom reducer to pickle Tensors.
    If we see tensors, we know they're constants stored as attributes on
    the GraphModule. Include the values in the key calculation. Small
    tensors will be inlined, so we can't serve the same cache entry for
    different values anyway. Large constants are treated as parameters,
    so we could conceivably reuse a cache entry. To do that, however,
    PyCodeCache would need more complexity to create a new module from its
    cache, but with the right constants attached as attributes.
    """
    if t.is_mkldnn:
        # TODO: These tensors don't currently pickle, so we can't cache a
        # compiled graph containing them. Just fail now. If mkldnn tensors
        # get pickling support, we can remove this.
        raise BypassFxGraphCache

    # Very large tensors could be expensive to copy to cpu and hash. Let's
    # at least report if we find slowness.
    start = time()
    values = t.tolist()
    elapsed = time() - start
    if elapsed > 1.0:
        warnings.warn(
            f"FX graph cache handling of a large constant took {elapsed:.1}s. Please file an issue."
        )

    metadata = extract_tensor_metadata_for_cache_key(t)
    return (_ident, (TensorMetadataAndValues(metadata, values),))


def _reduce_symint(s):
    """
    See FxGraphCachePickler. Custom reducer to pickle SymInts.
    """
    # For hashing purposes, we only care about the name of the symbol and
    # not the backed value. We evaluate guards stored with a cached graph
    # to ensure a cached entity with SymInt args is safe to reuse.
    return (_ident, (str(s),))


def _reduce_unsupported(s):
    """
    See FxGraphCachePickler. Custom reducer to handle any objects that we don't
    support and therefore raise to bypass caching.
    """
    raise BypassFxGraphCache


class FxGraphCachePickler(pickle.Pickler):
    """
    Custom pickler to customize the pickling of some objects (Tensors), only for the
    purpose of computing a hash for keying into the FxGraphCache. Tensors contain
    objects that don't pickle and/or vary between runs, and we want to capture the
    data that allow us to compute a stable, but safe hash.
    """

    dispatch_table = copyreg.dispatch_table.copy()
    dispatch_table[FakeTensor] = _reduce_fake_tensor
    dispatch_table[torch.Tensor] = _reduce_tensor
    dispatch_table[torch.SymInt] = _reduce_symint
    dispatch_table[
        torch.fx.experimental._backward_state.BackwardState
    ] = _reduce_unsupported

    @classmethod
    def dumps(cls, obj) -> bytes:
        """
        Pickle an object using the FxGraphCachePickler.
        """
        with io.BytesIO() as stream:
            pickler = cls(stream)
            try:
                pickler.dump(obj)
            except (TypeError, AttributeError) as e:
                # Some configs options are callables, e.g., post_grad_custom_pre_pass,
                # and may not pickle.
                log.warning("Can't pickle", exc_info=True)
                raise BypassFxGraphCache from e
            return stream.getvalue()

    @classmethod
    def get_hash(cls, obj: Any) -> str:
        """
        Serialize an object using the FxGraphCachePickler and return a hash
        of the pickled object.
        """
        serialized_data = cls.dumps(obj)
        return sha256_hash(serialized_data)

    @classmethod
    def debug_str(cls, inp: Any) -> str:
        """
        Get a printable string describing in more detail all the attributes
        comprising an object. Useful for debugging when one graph hashes
        to a different value than another.
        """

        def get_str(obj) -> str:
            if isinstance(obj, torch.Tensor):
                return str(extract_tensor_metadata_for_cache_key(obj))
            elif isinstance(obj, bytes):
                return "<bytes>"
            else:
                return str(obj)

        lines = []
        for attr, obj in vars(inp).items():
            if isinstance(obj, list):
                for ii in range(len(obj)):
                    h = cls.get_hash(obj[ii])
                    lines.append(f"[{h}] {attr}[{ii}]: {get_str(obj[ii])}")
            elif isinstance(obj, dict):
                for k, v in obj.items():
                    h = cls.get_hash(v)
                    lines.append(f"[{h}] {attr}[{k}]: {get_str(v)}")
            else:
                h = cls.get_hash(obj)
                lines.append(f"[{h}] {attr}: {get_str(obj)}")
        return "\n".join(lines)


def build_code_hash(roots, prefix, hasher):
    for lib in sorted(pkgutil.iter_modules(roots, prefix), key=lambda x: x.name):
        spec = lib.module_finder.find_spec(lib.name, None)
        assert spec is not None
        module = spec.origin
        assert module is not None
        with open(module, "rb") as f:
            hasher.update(spec.name.encode("utf-8"))
            hasher.update(f.read())
        if lib.ispkg:
            # need to also hash submodules
            build_code_hash(spec.submodule_search_locations, f"{spec.name}.", hasher)


def get_code_hash(roots, extra_files=()):
    hasher = hashlib.sha256()
    hasher.update(torch.__version__.encode("utf-8"))
    build_code_hash(roots, "", hasher)
    for path in extra_files:
        if os.path.exists(path):
            with open(path, "rb") as f:
                hasher.update(f.read())
    return hasher.digest()


@functools.lru_cache(None)
def torch_key():
    """
    Compute a key that contains relevant information about torch source files
    """
    if not config.is_fbcode():
        inductor_root = os.path.dirname(__file__)
        extra_files = (
            "codegen/aoti_runtime/interface.cpp",
            "codegen/aoti_runtime/implementation.cpp",
            "codegen/cpp_prefix.h",
            "script.ld",
        )
        return get_code_hash(
            [inductor_root], [os.path.join(inductor_root, x) for x in extra_files]
        )

    from libfb.py import parutil

    return parutil.get_file_contents("torch/src_hash.txt").rstrip()


def get_inductor_root():
    return os.path.dirname(__file__)


@dataclasses.dataclass
class OrderedSetHolder:
    """
    See FxGraphHashDetails. Holds a sorted list to support stable hashing
    of set kwargs.
    """

    items: List[Any]


class BypassFxGraphCache(Exception):
    """
    Exception to indicate that the FxGraphCache should be bypassed.
    """

    pass


class FxGraphHashDetails:
    """
    Object to capture all the details for a compiled FX graph relevant to computing
    a safe and stable cache key.
    """

    # Excluded kwargs param that are not stable between runs
    EXCLUDED_KWARGS = ["graph_id"]

    def __init__(
        self,
        gm: torch.fx.GraphModule,
        example_inputs: List[torch.Tensor],
        fx_kwargs: Dict[str, Any],
        inputs_to_check: Sequence[int],
    ):
        self.gm = gm
        self.example_inputs = example_inputs

        # Order kwargs so hashing is stable to changes in kwarg order.
        self.fx_kwargs = {}
        for k in sorted(fx_kwargs):
            if k not in self.EXCLUDED_KWARGS:
                if type(fx_kwargs[k]) is set:
                    # Special case to handle set params. Python sets can't be
                    # ordered, so sort the elements and store them in a proxy.
                    self.fx_kwargs[k] = OrderedSetHolder(sorted(fx_kwargs[k]))
                else:
                    self.fx_kwargs[k] = fx_kwargs[k]

        # Alignment checks
        self.inputs_to_check = inputs_to_check

        # 'Deterministic algorithms' can affect codegen via lowering to cuda kernels.
        self.deterministic_algorithms_settings = (
            torch.are_deterministic_algorithms_enabled(),
            torch.is_deterministic_algorithms_warn_only_enabled(),
            torch.utils.deterministic.fill_uninitialized_memory,  # type: ignore[attr-defined]
        )

        # Global settings affecting matmul codegen.
        self.cuda_matmul_settings = (
            torch.backends.cuda.matmul.allow_tf32,
            torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction,
            torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction,
        )

        # Also hash on various system info (including the triton compiler version).
        self.torch_version = torch_key()
        self.system_info = CacheBase.get_system()
        self.inductor_config = config.save_config_portable()

    def debug_str(self) -> str:
        """
        Get a printable string describing in more detail all the attributes
        comprising this object. Useful for debugging when one graph hashes
        to a different value than another.
        """
        return FxGraphCachePickler.debug_str(self)


def compiled_fx_graph_hash(
    gm: torch.fx.GraphModule,
    example_inputs: List[torch.Tensor],
    fx_kwargs: Dict[str, Any],
    inputs_to_check: Sequence[int],
) -> str:
    """
    Generate a unique hash of the FX graph for caching.
    """
    details = FxGraphHashDetails(gm, example_inputs, fx_kwargs, inputs_to_check)
    # The prefix distinguishes among the other kinds of objects we
    # cache in this module.
    key = "f" + FxGraphCachePickler.get_hash(details)
    debug_str = details.debug_str()
    log.debug(f"FX graph cache hash details for key {key}:\n{debug_str}")  # noqa: G004
    torch._logging.trace_structured(
        "artifact",
        metadata_fn=lambda: {
            "name": "fx_graph_cache_hash",
            "encoding": "json",
        },
        payload_fn=lambda: json.dumps(
            {"key": key, "components": debug_str.split("\n")}
        ),
    )

    return key


class FxGraphCache:
    """
    Supports caching and reusing compiled Fx graphs.

    The overall strategy is as follows:
    - This cache stores entries on disk. When saving an entry, we can't
      serialize callables (that could be C++, Triton, etc.), so we serialize
      their own disk cache location. We then recreate the compiled artifact
      after fetching from disk.
    - For indexing the cache, we gather the fields relevant to identifying an
      FxGraph (the graph module, graph inputs, system settings etc.) into an
      FxGraphCacheDetails object, pickle it, and compute a hash for the key.
      See FxGraphCachePickler.
    - Among the metadata we store, we also include a guards expression that's
      appropriate for validating any symbols for Tensor arguments that have
      symbolic bounds. On cache lookup then, we evaluate those guards in the
      current context to validate that a cached entry can be served.
    - A given graph could have multiple compiled versions, corresponding to
      different sets of guards. Therefore, we store cache entries in the form:
          <temp dir>/<fx graph hash>/<serialized metatdata>
    - On lookup, we compute the key from the graph details, iterate over all
      leaf files in the corresponding subdirectory, deserialize the entry, and
      evaluate its guards expression. If the evaluation succeeds, we have a
      cache hit. If it fails, we compile the graph and store a new entry.
    - Finally, on a cache hit, we need to make sure any guards that would
      have been created during compilation are added to the current context.
    """

    # TODO(masnesral): Investigate whether it's beneficial to store compiled graphs
    # in an in-memory cache after loading from disk.
    @staticmethod
    def _get_tmp_dir() -> str:
        """
        Get the toplevel temporary directory for storing compiled graphs.
        """
        return os.path.join(cache_dir(), "fxgraph")

    @staticmethod
    def _get_tmp_dir_for_key(key: str) -> str:
        """
        Return the disk location for a given cache key.
        """
        return os.path.join(FxGraphCache._get_tmp_dir(), key[1:3], key)

    @staticmethod
    def _filter_backed_symints(inputs: List[Any]) -> List[torch.SymInt]:
        """
        Get the backed SymInt objects from the input list. Note that we can never
        have guards that depend on unbacked symint.
        """
        return [s for s in inputs if isinstance(s, torch.SymInt) and has_hint(s)]

    @staticmethod
    def _get_shape_env() -> Optional[ShapeEnv]:
        """
        Helper to get the shape env from the tracing context.
        """
        ctx = torch._guards.TracingContext.try_get()
        if not ctx:
            return None
        return ctx.fake_mode.shape_env

    @staticmethod
    def _lookup_graph(
        key: str,
        example_inputs: List[torch.Tensor],
        local,
        remote_cache,
    ) -> Optional[CompiledFxGraph]:
        """
        Lookup a compiled graph in the cache by key. On a hit, return the
        deserialized CompiledFxGraph object. On a miss, return None.
        """
        shape_env = FxGraphCache._get_shape_env()
        assert shape_env is not None

        symints = FxGraphCache._filter_backed_symints(example_inputs)
        hints = [hint_int(s) for s in symints]

        def iterate_over_candidates() -> Generator[CompiledFxGraph, None, None]:
            if local:
                subdir = FxGraphCache._get_tmp_dir_for_key(key)
                if os.path.exists(subdir):
                    for path in sorted(os.listdir(subdir)):
                        try:
                            with open(os.path.join(subdir, path), "rb") as f:
                                yield pickle.load(f)
                        except Exception:
                            log.warning(
                                "fx graph cache unable to load compiled graph",
                                exc_info=True,
                            )

            if remote_cache:
                try:
                    if (data := remote_cache.get(key)) is not None:
                        yield pickle.loads(data)
                except Exception:
                    log.warning(
                        "fx graph cache unable to load compiled graph", exc_info=True
                    )

        # Iterate over any entries in the subdir for this key and evaluate
        # their guards to determine whether there's a hit.
        graph = None

        for candidate in iterate_over_candidates():
            if not candidate.guards_expr:
                # No guards to evaluate, so this is a hit.
                graph = candidate
                break

            # Evaluate the guard expression in the current context.
            # If there's not a cache hit, we don't want the evaluation to
            # affect the current env, e.g., cause the creation of new guards,
            # so we evaluate with the hints instead of the symbols.
            hit = bool(
                shape_env.evaluate_guards_expression(candidate.guards_expr, hints)
            )
            log.debug(
                "fx graph cache key %s evaluating guards [%s] with values %s => hit=%s",
                key,
                candidate.guards_expr,
                hints,
                hit,
            )
            if hit:
                graph = candidate
                break

        if graph is None:
            return None

        # See _save_graph(); we don't store the callable in the cache entry so
        # recreate it here from the PyCodeCache disk cache.
        artifact_path = get_path(graph.cache_key, "py")[2]
        if not os.path.exists(artifact_path):
            counters["inductor"]["fxgraph_lookup_write_file"] += 1
            Path(os.path.dirname(artifact_path)).mkdir(parents=True, exist_ok=True)
            code = graph.source_code
            cpp_pp = cpp_prefix_path()
            if os.path.basename(cpp_pp) in code:
                if cpp_pp in code:
                    # Great the name is correct
                    pass
                else:
                    # Old dir name is included, replace it
                    pattern = rf'#include\s*"[^"]+{os.path.basename(cpp_pp)}"'
                    code = re.sub(pattern, f'#include "{cpp_pp}"', code)

            write_atomic(artifact_path, code, make_dirs=True)

        try:
            graph.current_callable = PyCodeCache.load_by_key_path(
                graph.cache_key,
                artifact_path,
                graph.cache_linemap,
                graph.constants,
            ).call
        except OSError:
            # Not expected, but in case the PyCodeCache entry is removed from
            # underneath us, treat it as a cache miss and recompile.
            log.error("Failed to load cached artifact: %s", artifact_path)
            return None

        # Now re-evaluate with the symints to add any guards to the current env.
        if graph.guards_expr:
            check = bool(
                shape_env.evaluate_guards_expression(graph.guards_expr, symints)
            )
            assert check is True
            log.debug(
                "fx graph cache key %s post-load guards: %s", key, shape_env.guards
            )

        # Increment the cached metrics by the amounts recorded when the FX
        # graph was compiled for this cache entry. Pretending these counters
        # were incremented normally is useful for testing with the cache enabled.
        metrics.CachedMetricsHelper.apply_deltas(graph.metrics_deltas)

        return graph

    @staticmethod
    def _save_graph(
        key: str,
        compiled_graph: CompiledFxGraph,
        example_inputs: List[torch.Tensor],
        time_taken_ns,
        local,
        remote_cache,
    ):
        """
        Store a serialized CompiledFxGraph on disk.
        """
        disk_compiled_graph = copy(compiled_graph)
        # We can't really serialize callables that may be C++/Triton/etc.,
        # so we serialize their PyCodeCache disk cache location instead.
        # TODO: This could be better if we're ever able to serialize compiled
        # models to disk.
        disk_compiled_graph.current_callable = None

        # Before serializing, compute the guard expression that will be used to
        # ensure that a CompiledFxGraph is valid when loaded from the cache. It's
        # sufficient to consider only the SymInt args to the fx graph since the
        # Tensor shapes are already captured in the hash for the cache key. Any
        # Tensor arg with a symbolic shape will have a SymInt arg for the graph.
        shape_env = FxGraphCache._get_shape_env()
        assert shape_env is not None
        symints = FxGraphCache._filter_backed_symints(example_inputs)
        guards = shape_env.get_pruned_guards(symints)
        disk_compiled_graph.guards_expr = shape_env.produce_guards_expression(
            placeholders=symints, guards=guards
        )

        try:
            content = pickle.dumps(disk_compiled_graph)
        except Exception:
            log.warning(
                "fx graph cache unable to serialize compiled graph", exc_info=True
            )
            counters["inductor"]["fxgraph_cache_pickle_error"] += 1
            return

        try:
            if local:
                subdir = FxGraphCache._get_tmp_dir_for_key(key)
                if not os.path.exists(subdir):
                    os.makedirs(subdir, exist_ok=True)

                # Use a hash of the serialized CompiledFxGraph to get a unique file
                # name. The specific name doesn't matter since a lookup involves
                # iterating over all entries in the parent subdir.
                path = os.path.join(subdir, sha256_hash(content))
                write_atomic(path, content, make_dirs=True)

            if remote_cache:
                cache_data = (
                    {
                        "data": content,
                        "time_taken_ms": time_taken_ns
                        // 1000000,  # Convert from NS to MS
                    }
                    if config.is_fbcode()
                    else content
                )
                remote_cache.put(key, cache_data)
        except Exception:
            log.warning("fx graph unable to write to cache", exc_info=True)
            counters["inductor"]["fxgraph_cache_write_error"] += 1

    @staticmethod
    def _check_can_cache(gm: torch.fx.GraphModule):
        """
        Check some conditions that would preclude caching and raise BypassFxGraphCache
        to bypass in case caching is not possible.
        """
        # Freezing can embed constants that wouldn't be static across runs.
        if config.freezing or config.aot_inductor.use_runtime_constant_folding:
            raise BypassFxGraphCache

        # The treatment of guards in the caching implementation requires that
        # we have a shape env.
        if FxGraphCache._get_shape_env() is None:
            log.debug("fx graph cache no shape env")
            raise BypassFxGraphCache

        # HigherOrderOperators should be handled on a case-by-case basis.
        # Currently, we just skip caching if we have any.
        # We also skip if there are any torchbind objects.
        for node in gm.graph.nodes:
            if isinstance(node.target, torch._ops.HigherOrderOperator):
                raise BypassFxGraphCache
            if node.op == "getattr" and isinstance(
                getattr(gm, node.target), torch._C.ScriptObject
            ):
                raise BypassFxGraphCache

    @staticmethod
    def load(
        compile_fx_fn: Callable[..., Any],
        gm: torch.fx.GraphModule,
        example_inputs: List[torch.Tensor],
        fx_kwargs: Dict[str, Any],
        inputs_to_check: Sequence[int],
        local: bool,
        remote: bool,
    ):
        """
        Load a compiled graph from the cache. If a cached entry does not exist,
        compile the graph and save it to the cache.
        """
        assert local or remote, "at least one of them needs to be enabled"
        compiled_graph = None
        try:
            FxGraphCache._check_can_cache(gm)
            key = compiled_fx_graph_hash(gm, example_inputs, fx_kwargs, inputs_to_check)

            remote_cache = None
            if remote:
                cache_id = "fx-graph-v1"
                try:
                    if config.is_fbcode():
                        from triton.runtime.fb_memcache import (
                            FbMemcacheRemoteFxGraphCacheBackend,
                        )

                        remote_cache = FbMemcacheRemoteFxGraphCacheBackend(cache_id)
                    else:
                        from torch._inductor.remote_cache import RedisRemoteCacheBackend

                        remote_cache = RedisRemoteCacheBackend(cache_id)
                except Exception:
                    remote_cache = None
                    log.warning("Unable to create a remote cache", exc_info=True)

            compiled_graph = FxGraphCache._lookup_graph(
                key, example_inputs, local, remote_cache
            )
            if compiled_graph is None:
                log.debug("fx graph cache miss for key %s", key)
                counters["inductor"]["fxgraph_cache_miss"] += 1
                start_time = time_ns()
                compiled_graph = compile_fx_fn(gm, example_inputs, **fx_kwargs)
                time_taken_ns = time_ns() - start_time
                FxGraphCache._save_graph(
                    key,
                    compiled_graph,
                    example_inputs,
                    time_taken_ns,
                    local,
                    remote_cache,
                )
            else:
                log.debug("fx graph cache hit for key %s", key)
                counters["inductor"]["fxgraph_cache_hit"] += 1
        except BypassFxGraphCache:
            counters["inductor"]["fxgraph_cache_bypass"] += 1
            if not compiled_graph:
                compiled_graph = compile_fx_fn(gm, example_inputs, **fx_kwargs)

        return compiled_graph

    @staticmethod
    def clear():
        """
        Clear out the on-disk cache.
        """
        try:
            shutil.rmtree(FxGraphCache._get_tmp_dir())
        except FileNotFoundError:
            pass


@dataclasses.dataclass
class CompiledFxGraph:
    """
    Class holding a compiled FX graph. This is the object serialized on disk
    to support FxGraph caching.
    """

    current_callable: Optional[Callable[..., Any]]
    cache_key: str
    source_code: str = dataclasses.field(repr=False)  # Do not display source_code
    cache_linemap: Optional[List[Tuple[int, str]]]
    device_types: Set[str]
    device_idxs: Set[int]
    mutated_inputs: Set[str]
    mutated_input_idxs: Set[int]
    constants: Dict[str, torch.Tensor]
    torchbind_constants: Dict[str, torch._C.ScriptObject]
    output_strides: Optional[List[Optional[Tuple[int, ...]]]]
    disabled_cudagraphs_reason: Optional[str]
    metrics_deltas: metrics.CachedMetricsDeltas
    # This is a string representation of an expression we serialize
    # with the object so the guards can be evaluated in a different
    # context in order to verify the validity of serving a cached
    # fx graph. The expression must be generated by:
    # ShapeEnv.produce_guards_expression()
    guards_expr: Optional[str]

    _boxed_call: Optional[bool] = None

    def __init__(
        self,
        current_callable: Optional[Callable[..., Any]],
        graph: GraphLowering,
        output_strides: List[Optional[Tuple[int, ...]]],
        disabled_cudagraphs_reason: Optional[str],
        metrics_deltas: metrics.CachedMetricsDeltas,
    ):
        self.current_callable = current_callable
        self.cache_key = graph.cache_key
        if graph.cache_path:
            with open(graph.cache_path) as f:
                self.source_code = f.read()
        self.cache_linemap = graph.cache_linemap
        self.device_types = graph.device_types
        self.device_idxs = graph.device_idxs
        self.mutated_inputs = graph.mutated_inputs
        self.mutated_input_idxs = set(graph.mutated_input_idxs)
        self.constants = graph.constants
        self.torchbind_constants = graph.torchbind_constants
        self.output_strides = output_strides
        self.disabled_cudagraphs_reason = disabled_cudagraphs_reason
        self.metrics_deltas = metrics_deltas
        self.guards_expr = None

    def __call__(self, inputs: List[Any]) -> Any:
        assert self.current_callable is not None
        return self.current_callable(inputs)


def cpp_compiler() -> str:
    if config.is_fbcode():
        return build_paths.cc() if torch.version.hip is None else build_paths.clang()
    if isinstance(config.cpp.cxx, (list, tuple)):
        search = tuple(config.cpp.cxx)
    else:
        search = (config.cpp.cxx,)
    return cpp_compiler_search(search)


@functools.lru_cache(1)
def cpp_compiler_search(search: str) -> str:
    for cxx in search:
        try:
            if cxx is None:
                # gxx package is only available for Linux
                # according to https://anaconda.org/conda-forge/gxx/
                if sys.platform != "linux":
                    continue
                # Do not install GXX by default
                if not os.getenv("TORCH_INDUCTOR_INSTALL_GXX"):
                    continue
                from filelock import FileLock

                lock_dir = get_lock_dir()
                lock = FileLock(
                    os.path.join(lock_dir, "g++.lock"), timeout=LOCK_TIMEOUT
                )
                with lock:
                    cxx = install_gcc_via_conda()
            subprocess.check_output([cxx, "--version"])
            return cxx
        except (subprocess.SubprocessError, FileNotFoundError, ImportError):
            continue
    raise exc.InvalidCxxCompiler


def install_gcc_via_conda() -> str:
    """On older systems, this is a quick way to get a modern compiler"""
    prefix = os.path.join(cache_dir(), "gcc")
    cxx_path = os.path.join(prefix, "bin", "g++")
    if not os.path.exists(cxx_path):
        log.info("Downloading GCC via conda")
        conda = os.environ.get("CONDA_EXE", "conda")
        if conda is None:
            conda = shutil.which("conda")
        if conda is not None:
            subprocess.check_call(
                [
                    conda,
                    "create",
                    f"--prefix={prefix}",
                    "--channel=conda-forge",
                    "--quiet",
                    "-y",
                    "python=3.8",
                    "gxx",
                ],
                stdout=subprocess.PIPE,
            )
    return cxx_path


def is_gcc() -> bool:
    if sys.platform == "darwin" and is_apple_clang():
        return False
    return bool(re.search(r"(gcc|g\+\+)", cpp_compiler()))


@functools.lru_cache(None)
def is_apple_clang() -> bool:
    cxx = cpp_compiler()
    version_string = subprocess.check_output([cxx, "--version"]).decode("utf8")
    return "Apple" in version_string.splitlines()[0]


def is_clang() -> bool:
    # Mac OS apple clang maybe named as gcc, need check compiler info.
    if sys.platform == "darwin":
        return is_apple_clang()
    return bool(re.search(r"(clang|clang\+\+)", cpp_compiler()))


def get_compiler_version_info(compiler):
    SUBPROCESS_DECODE_ARGS = ("oem",) if _IS_WINDOWS else ()
    env = os.environ.copy()
    env["LC_ALL"] = "C"  # Don't localize output
    try:
        version_string = subprocess.check_output(
            [compiler, "-v"], stderr=subprocess.STDOUT, env=env
        ).decode(*SUBPROCESS_DECODE_ARGS)
    except Exception as e:
        try:
            version_string = subprocess.check_output(
                [compiler, "--version"], stderr=subprocess.STDOUT, env=env
            ).decode(*SUBPROCESS_DECODE_ARGS)
        except Exception as e:
            return ""
    # Mutiple lines to one line string.
    version_string = version_string.replace("\r", "_")
    version_string = version_string.replace("\n", "_")
    return version_string


def _get_isa_dry_compile_fingerprint(isa_flags: str) -> str:
    # ISA dry compile will cost about 1 sec time each startup time.
    # Please check the issue: https://github.com/pytorch/pytorch/issues/100378
    # Actually, dry compile is checking compile capability for ISA.
    # We just record the compiler version, isa options and pytorch version info,
    # and generated them to output binary hash path.
    # It would optimize and skip compile existing binary.
    compiler_info = get_compiler_version_info(cpp_compiler())
    torch_version = torch.__version__
    fingerprint = f"{compiler_info}={isa_flags}={torch_version}"
    return fingerprint


class VecISA:
    _bit_width: int
    _macro: List[str]
    _arch_flags: str
    _dtype_nelements: Dict[torch.dtype, int]

    # Note [Checking for Vectorized Support in Inductor]
    # TorchInductor CPU vectorization reuses PyTorch vectorization utility functions
    # Hence, TorchInductor would depend on Sleef* to accelerate mathematical functions
    # like exp, pow, sin, cos and etc.
    # But PyTorch and TorchInductor might use different compilers to build code. If
    # PyTorch uses gcc-7/g++-7 to build the release package, the libtorch_cpu.so
    # will not expose the Sleef* AVX512 symbols since gcc-7/g++-7 cannot pass
    # avx512 check in CMake - FindAVX.cmake. But TorchInductor install the latest
    # gcc/g++ compiler by default while it could support the AVX512 compilation.
    # Therefore, there would be a conflict sleef version between PyTorch and
    # TorchInductor. Hence, we dry-compile the following code to check whether current
    # HW platform and PyTorch both could support AVX512 or AVX2. And suppose ARM
    # also needs the logic
    # In fbcode however, we are using the same compiler for pytorch and for inductor codegen,
    # making the runtime check unnecessary.
    _avx_code = """
#if defined(CPU_CAPABILITY_AVX512) || defined(CPU_CAPABILITY_AVX2) || defined(CPU_CAPABILITY_ZVECTOR) || defined(CPU_CAPABILITY_NEON)
#include <ATen/cpu/vec/functional.h>
#include <ATen/cpu/vec/vec.h>
#endif

__attribute__((aligned(64))) float in_out_ptr0[16] = {0.0};

extern "C" void __avx_chk_kernel() {
    auto tmp0 = at::vec::Vectorized<float>(1);
    auto tmp1 = tmp0.exp();
    tmp1.store(in_out_ptr0);
}
"""  # noqa: B950

    _avx_py_load = """
import torch
from ctypes import cdll
cdll.LoadLibrary("__lib_path__")
"""

    def bit_width(self) -> int:
        return self._bit_width

    def nelements(self, dtype: torch.dtype = torch.float) -> int:
        return self._dtype_nelements[dtype]

    def build_macro(self) -> List[str]:
        return self._macro

    def build_arch_flags(self) -> str:
        return self._arch_flags

    def __hash__(self) -> int:
        return hash(str(self))

    @functools.lru_cache(None)  # noqa: B019
    def __bool__(self) -> bool:
        from torch._inductor.cpp_builder import CppBuilder, CppTorchOptions

        if config.cpp.vec_isa_ok is not None:
            return config.cpp.vec_isa_ok

        if config.is_fbcode():
            return True

        key, input_path = write(
            VecISA._avx_code,
            "cpp",
            extra=_get_isa_dry_compile_fingerprint(self._arch_flags),
        )
        from filelock import FileLock

        lock_dir = get_lock_dir()
        lock = FileLock(os.path.join(lock_dir, key + ".lock"), timeout=LOCK_TIMEOUT)
        with lock:
            output_dir = os.path.dirname(input_path)
            buid_options = CppTorchOptions(vec_isa=self, warning_all=False)
            x86_isa_help_builder = CppBuilder(
                key,
                [input_path],
                buid_options,
                output_dir,
            )
            try:
                # Check if the output file exist, and compile when not.
                output_path = x86_isa_help_builder.get_target_file_path()
                if not os.path.isfile(output_path):
                    status, target_file = x86_isa_help_builder.build()
                    if status:
                        return False

                # Check build result
                subprocess.check_call(
                    [
                        sys.executable,
                        "-c",
                        VecISA._avx_py_load.replace("__lib_path__", output_path),
                    ],
                    stderr=subprocess.DEVNULL,
                    env={**os.environ, "PYTHONPATH": ":".join(sys.path)},
                )
            except Exception as e:
                return False

            return True


@dataclasses.dataclass
class VecNEON(VecISA):
    _bit_width = 256  # This is required to leverage the compute implemented in aten/src/ATen/cpu/vec/vec256/vec256_float_neon.h
    _macro = ["CPU_CAPABILITY_NEON"]
    if sys.platform == "darwin" and platform.processor() == "arm":
        _macro.append("AT_BUILD_ARM_VEC256_WITH_SLEEF")
    _arch_flags = ""  # Unused
    _dtype_nelements = {torch.float: 8, torch.bfloat16: 16, torch.float16: 16}

    def __str__(self) -> str:
        return "asimd"  # detects the presence of advanced SIMD on armv8-a kernels

    __hash__: Callable[[VecISA], Any] = VecISA.__hash__


@dataclasses.dataclass
class VecAVX512(VecISA):
    _bit_width = 512
    _macro = ["CPU_CAPABILITY_AVX512"]
    _arch_flags = (
        "-mavx512f -mavx512dq -mavx512vl -mavx512bw -mfma"
        if not _IS_WINDOWS
        else "/arch:AVX512"
    )  # TODO: use cflags
    _dtype_nelements = {torch.float: 16, torch.bfloat16: 32, torch.float16: 32}

    def __str__(self) -> str:
        return "avx512"

    __hash__: Callable[[VecISA], Any] = VecISA.__hash__


@dataclasses.dataclass
class VecAVX2(VecISA):
    _bit_width = 256
    _macro = ["CPU_CAPABILITY_AVX2"]
    _arch_flags = (
        "-mavx2 -mfma" if not _IS_WINDOWS else "/arch:AVX2"
    )  # TODO: use cflags
    _dtype_nelements = {torch.float: 8, torch.bfloat16: 16, torch.float16: 16}

    def __str__(self) -> str:
        return "avx2"

    __hash__: Callable[[VecISA], Any] = VecISA.__hash__


@dataclasses.dataclass
class VecZVECTOR(VecISA):
    _bit_width = 256
    _macro = [
        "CPU_CAPABILITY_ZVECTOR",
        "CPU_CAPABILITY=ZVECTOR",
        "HAVE_ZVECTOR_CPU_DEFINITION",
    ]
    _arch_flags = "-mvx -mzvector"
    _dtype_nelements = {torch.float: 8, torch.bfloat16: 16, torch.float16: 16}

    def __str__(self) -> str:
        return "zvector"

    __hash__: Callable[[VecISA], Any] = VecISA.__hash__


class InvalidVecISA(VecISA):
    _bit_width = 0
    _macro = [""]
    _arch_flags = ""
    _dtype_nelements = {}

    def __str__(self) -> str:
        return "INVALID_VEC_ISA"

    def __bool__(self) -> bool:  # type: ignore[override]
        return False

    __hash__: Callable[[VecISA], Any] = VecISA.__hash__


def x86_isa_checker() -> List[str]:
    supported_isa: List[str] = []

    def _check_and_append_supported_isa(
        dest: List[str], isa_supported: bool, isa_name: str
    ):
        if isa_supported:
            dest.append(isa_name)

    Arch = platform.machine()
    """
    Arch value is x86_64 on Linux, and the value is AMD64 on Windows.
    """
    if Arch != "x86_64" and Arch != "AMD64":
        return supported_isa

    avx2 = torch.cpu._is_cpu_support_avx2()
    avx512 = torch.cpu._is_cpu_support_avx512()

    _check_and_append_supported_isa(supported_isa, avx2, "avx2")
    _check_and_append_supported_isa(supported_isa, avx512, "avx512")

    return supported_isa


invalid_vec_isa = InvalidVecISA()
supported_vec_isa_list = [VecAVX512(), VecAVX2(), VecNEON()]


# Cache the cpuinfo to avoid I/O overhead. Meanwhile, the cpuinfo content
# might have too much redundant content that is useless for ISA check. Hence,
# we only cache some key isa information.
@functools.lru_cache(None)
def valid_vec_isa_list() -> List[VecISA]:
    if sys.platform == "darwin" and platform.processor() == "arm":
        return [VecNEON()]

    cur_os = sys.platform
    if cur_os != "linux" and cur_os != "win32":
        return []

    if platform.machine() == "s390x":
        with open("/proc/cpuinfo") as _cpu_info:
            while True:
                line = _cpu_info.readline()
                if not line:
                    break
                # process line
                featuresmatch = re.match(r"^features\s*:\s*(.*)$", line)
                if featuresmatch:
                    for group in featuresmatch.groups():
                        if re.search(r"[\^ ]+vxe[\$ ]+", group):
                            return [VecZVECTOR()]
        return []

    isa_list = []
    _cpu_supported_isa = x86_isa_checker()
    for isa in supported_vec_isa_list:
        if str(isa) in _cpu_supported_isa and isa:
            isa_list.append(isa)
    return isa_list


def pick_vec_isa() -> VecISA:
    if config.is_fbcode():
        return VecAVX2()

    _valid_vec_isa_list: List[VecISA] = valid_vec_isa_list()
    if not _valid_vec_isa_list:
        return invalid_vec_isa

    # If the simdlen is None, it indicates determine the vectorization length automatically
    if config.cpp.simdlen is None:
        assert _valid_vec_isa_list
        return _valid_vec_isa_list[0]

    for isa in _valid_vec_isa_list:
        if config.cpp.simdlen == isa.bit_width():
            return isa

    return invalid_vec_isa


def get_compile_only(compile_only: bool = True) -> str:
    return "-c" if compile_only else ""


def get_shared(shared: bool = True, compile_only: bool = False) -> str:
    if not shared:
        return ""
    if compile_only:
        return "-fPIC"
    if platform.system() == "Darwin" and "clang" in cpp_compiler():
        # This causes undefined symbols to behave the same as linux
        return "-shared -fPIC -undefined dynamic_lookup"
    else:
        return "-shared -fPIC"


def get_warning_all_flag(warning_all: bool = True) -> str:
    return "-Wall" if warning_all else ""


def get_glibcxx_abi_build_flags() -> str:
    return "-D_GLIBCXX_USE_CXX11_ABI=" + str(int(torch._C._GLIBCXX_USE_CXX11_ABI))


def cpp_flags() -> str:
    flags = ["-std=c++17", "-Wno-unused-variable", "-Wno-unknown-pragmas"]
    if is_clang():
        flags.append("-Werror=ignored-optimization-argument")
    return " ".join(flags)


def cpp_wrapper_flags() -> str:
    return "-D TORCH_INDUCTOR_CPP_WRAPPER"


def optimization_flags() -> str:
    base_flags = "-O0 -g" if config.aot_inductor.debug_compile else "-O3 -DNDEBUG"
    base_flags += " -ffast-math -fno-finite-math-only"
    if not config.cpp.enable_unsafe_math_opt_flag:
        base_flags += " -fno-unsafe-math-optimizations"
    if not config.cpp.enable_floating_point_contract_flag:
        base_flags += " -ffp-contract=off"

    if config.is_fbcode():
        # FIXME: passing `-fopenmp` adds libgomp.so to the generated shared library's dependencies.
        # This causes `ldopen` to fail in fbcode, because libgomp does not exist in the default paths.
        # We will fix it later by exposing the lib path.
        return base_flags

    if sys.platform == "darwin":
        # Per https://mac.r-project.org/openmp/ right way to pass `openmp` flags to MacOS is via `-Xclang`
        # Also, `-march=native` is unrecognized option on M1
        base_flags += " -Xclang"
    else:
        if platform.machine() == "ppc64le":
            base_flags += " -mcpu=native"
        else:
            base_flags += " -march=native"

    # Internal cannot find libgomp.so
    if not config.is_fbcode():
        base_flags += " -fopenmp"
    return base_flags


def use_custom_generated_macros() -> str:
    return "-D C10_USING_CUSTOM_GENERATED_MACROS"


def use_fb_internal_macros() -> str:
    if config.is_fbcode():
        # TODO: this is to avoid FC breakage for fbcode. When using newly
        # generated model.so on an older verion of PyTorch, need to use
        # the v1 version for aoti_torch_create_tensor_from_blob
        create_tensor_from_blob_v1 = "-D AOTI_USE_CREATE_TENSOR_FROM_BLOB_V1"
        openmp_lib = build_paths.openmp_lib()
        preprocessor_flags = " ".join(
            (
                "-D C10_USE_GLOG",
                "-D C10_USE_MINIMAL_GLOG",
                "-D C10_DISABLE_TENSORIMPL_EXTENSIBILITY",
            )
        )
        return f"-Wp,-fopenmp {openmp_lib} {preprocessor_flags} {create_tensor_from_blob_v1}"
    else:
        return ""


def use_standard_sys_dir_headers() -> str:
    if config.is_fbcode():
        return "-nostdinc"
    else:
        return ""


@functools.lru_cache(None)
def is_conda_llvm_openmp_installed() -> bool:
    try:
        command = "conda list llvm-openmp --json"
        output = subprocess.check_output(command.split()).decode("utf8")
        return len(json.loads(output)) > 0
    except subprocess.SubprocessError:
        return False


@functools.lru_cache(None)
def homebrew_libomp() -> Tuple[bool, str]:
    try:
        # check if `brew` is installed
        subprocess.check_output(["which", "brew"])
        # get the location of `libomp` if it is installed
        # this is the location that `libomp` **would** be installed
        # see https://github.com/Homebrew/brew/issues/10261#issuecomment-756563567 for details
        libomp_path = (
            subprocess.check_output(["brew", "--prefix", "libomp"])
            .decode("utf8")
            .strip()
        )
        # check if `libomp` is installed
        omp_available = os.path.exists(libomp_path)
        return omp_available, libomp_path
    except subprocess.SubprocessError:
        return False, ""


def _set_gpu_runtime_env() -> None:
    if (
        config.is_fbcode()
        and torch.version.hip is None
        and "CUDA_HOME" not in os.environ
        and "CUDA_PATH" not in os.environ
    ):
        os.environ["CUDA_HOME"] = build_paths.cuda()


def _get_python_include_dirs():
    include_dir = Path(sysconfig.get_path("include"))
    # On Darwin Python executable from a framework can return
    # non-existing /Library/Python/... include path, in which case
    # one should use Headers folder from the framework
    if not include_dir.exists() and platform.system() == "Darwin":
        std_lib = Path(sysconfig.get_path("stdlib"))
        include_dir = (std_lib.parent.parent / "Headers").absolute()
    if not (include_dir / "Python.h").exists():
        warnings.warn(f"Can't find Python.h in {str(include_dir)}")
    return [str(include_dir)]


def _transform_cuda_paths(lpaths):
    # This handles two cases:
    # 1. Meta internal cuda-12 where libs are in lib/cuda-12 and lib/cuda-12/stubs
    # 2. Linux machines may have CUDA installed under either lib64/ or lib/
    for i, path in enumerate(lpaths):
        if (
            "CUDA_HOME" in os.environ
            and path.startswith(os.environ["CUDA_HOME"])
            and not os.path.exists(f"{path}/libcudart_static.a")
        ):
            for root, dirs, files in os.walk(path):
                if "libcudart_static.a" in files:
                    lpaths[i] = os.path.join(path, root)
                    lpaths.append(os.path.join(lpaths[i], "stubs"))
                    break


def get_include_and_linking_paths(
    include_pytorch: bool = False,
    vec_isa: VecISA = invalid_vec_isa,
    cuda: bool = False,
    aot_mode: bool = False,
) -> Tuple[List[str], str, str, str, str]:
    _set_gpu_runtime_env()
    from torch.utils import cpp_extension

    # Remove below in the further
    # macros = "-D {}".format(vec_isa.build_macro()) if vec_isa != invalid_vec_isa else ""
    macros = ""
    if vec_isa != invalid_vec_isa:
        for x in vec_isa.build_macro():
            macros_def = f"-D {x} "
            macros += macros_def

    build_arch_flags = ""
    if sys.platform == "linux" and (
        include_pytorch
        or vec_isa != invalid_vec_isa
        or cuda
        or config.cpp.enable_kernel_profile
    ):
        # Note - We include pytorch only on linux right now. There is more work
        # to do to enable OMP build on darwin where PyTorch is built with IOMP
        # and we need a way to link to what PyTorch links.
        ipaths = cpp_extension.include_paths(cuda) + _get_python_include_dirs()
        lpaths = cpp_extension.library_paths(cuda) + [
            sysconfig.get_config_var("LIBDIR")
        ]

        libs = []

        # No need to manually specify libraries in fbcode.
        if not config.is_fbcode():
            libs += ["torch", "torch_cpu"]
            libs += ["gomp"]
            if not aot_mode:
                libs += ["torch_python"]
        else:
            # internal remote execution is able to find omp, but not gomp
            libs += ["omp"]
            if aot_mode:
                ipaths += [os.path.dirname(cpp_prefix_path())]
                if cuda and torch.version.hip is None:
                    _transform_cuda_paths(lpaths)
        if macros:
            if config.is_fbcode() and vec_isa != invalid_vec_isa:
                cap = str(vec_isa).upper()
                macros = " ".join(
                    [
                        vec_isa.build_arch_flags(),
                        f"-D CPU_CAPABILITY={cap}",
                        f"-D CPU_CAPABILITY_{cap}",
                        f"-D HAVE_{cap}_CPU_DEFINITION",
                    ]
                )

        if cuda:
            if macros is None:
                macros = ""
            macros += " -D USE_ROCM" if torch.version.hip else " -D USE_CUDA"

        if cuda:
            if torch.version.hip is not None:
                if config.is_fbcode():
                    libs += ["amdhip64"]
                else:
                    libs += ["c10_hip", "torch_hip"]
                macros += " -D __HIP_PLATFORM_AMD__"
            else:
                if config.is_fbcode():
                    libs += ["cuda"]
                else:
                    libs += ["c10_cuda", "cuda", "torch_cuda"]
        build_arch_flags = vec_isa.build_arch_flags()
    else:
        # Note - this is effectively a header only inclusion. Usage of some header files may result in
        # symbol not found, if those header files require a library.
        # For those cases, include the lpath and libs command as we do for pytorch above.
        # This approach allows us to only pay for what we use.
        ipaths = cpp_extension.include_paths(cuda) + _get_python_include_dirs()
        if aot_mode:
            ipaths += [os.path.dirname(cpp_prefix_path())]
        lpaths = []
        if sys.platform == "darwin":
            # only Apple builtin compilers (Apple Clang++) require openmp
            omp_available = not is_apple_clang()

            # check the `OMP_PREFIX` environment first
            if os.getenv("OMP_PREFIX") is not None:
                header_path = os.path.join(os.getenv("OMP_PREFIX"), "include", "omp.h")  # type: ignore[arg-type]
                valid_env = os.path.exists(header_path)
                if valid_env:
                    ipaths.append(os.path.join(os.getenv("OMP_PREFIX"), "include"))  # type: ignore[arg-type]
                    lpaths.append(os.path.join(os.getenv("OMP_PREFIX"), "lib"))  # type: ignore[arg-type]
                else:
                    warnings.warn("environment variable `OMP_PREFIX` is invalid.")
                omp_available = omp_available or valid_env

            libs = [] if omp_available else ["omp"]

            # prefer to use openmp from `conda install llvm-openmp`
            if not omp_available and os.getenv("CONDA_PREFIX") is not None:
                omp_available = is_conda_llvm_openmp_installed()
                if omp_available:
                    conda_lib_path = os.path.join(os.getenv("CONDA_PREFIX"), "lib")  # type: ignore[arg-type]
                    ipaths.append(os.path.join(os.getenv("CONDA_PREFIX"), "include"))  # type: ignore[arg-type]
                    lpaths.append(conda_lib_path)
                    # Prefer Intel OpenMP on x86 machine
                    if os.uname().machine == "x86_64" and os.path.exists(
                        os.path.join(conda_lib_path, "libiomp5.dylib")
                    ):
                        libs = ["iomp5"]

            # next, try to use openmp from `brew install libomp`
            if not omp_available:
                omp_available, libomp_path = homebrew_libomp()
                if omp_available:
                    ipaths.append(os.path.join(libomp_path, "include"))
                    lpaths.append(os.path.join(libomp_path, "lib"))

            # if openmp is still not available, we let the compiler to have a try,
            # and raise error together with instructions at compilation error later
        else:
            libs = ["omp"] if config.is_fbcode() else ["gomp"]

        # For AOT mode, the produced library relies on torch cpu to set grad mode
        # like aoti_torch_grad_mode_set_enabled
        if aot_mode and sys.platform == "linux" and not config.is_fbcode():
            libs += ["torch", "torch_cpu"]

    # Unconditionally import c10 for non-abi-compatible mode to use TORCH_CHECK - See PyTorch #108690
    if not config.abi_compatible:
        libs += ["c10"]
        lpaths += [cpp_extension.TORCH_LIB_PATH]

    # third party libs
    if config.is_fbcode():
        # Note that the order of include paths do matter, as a result
        # we need to have several branches interleaved here
        if torch.version.hip is None:
            ipaths.append(build_paths.sleef())
        ipaths.append(build_paths.openmp())
        ipaths.append(build_paths.python())
        if torch.version.hip is not None:
            ipaths.append(build_paths.clang_include())
            ipaths.append(build_paths.gcc_include())
            ipaths.append(build_paths.gcc_install_tools_include())
        else:
            ipaths.append(build_paths.cc_include())
            ipaths.append(build_paths.libgcc())
            ipaths.append(build_paths.libgcc_arch())
        ipaths.append(build_paths.libgcc_backward())
        ipaths.append(build_paths.glibc())
        ipaths.append(build_paths.linux_kernel())
        if torch.version.hip is not None:
            ipaths.append(build_paths.rocm())
        else:
            ipaths.append(os.path.join(build_paths.cuda(), "include"))
        # We also need to bundle includes with absolute paths into a remote directory
        # (later on, we copy the include paths from cpp_extensions into our remote dir)
        ipaths.append("include")

    static_link_libs = []
    if aot_mode and cuda and config.is_fbcode():
        # For Meta internal cuda-12, it is recommended to static link cudart
        if torch.version.hip is None:
            static_link_libs = ["-Wl,-Bstatic", "-lcudart_static", "-Wl,-Bdynamic"]

    lpaths_str = " ".join(["-L" + p for p in lpaths])
    libs_str = " ".join(static_link_libs + ["-l" + p for p in libs])
    return ipaths, lpaths_str, libs_str, macros, build_arch_flags


def cpp_compile_command(
    input: Union[str, List[str]],
    output: str,
    warning_all: bool = True,
    shared: bool = True,
    include_pytorch: bool = False,
    vec_isa: VecISA = invalid_vec_isa,
    cuda: bool = False,
    aot_mode: bool = False,
    compile_only: bool = False,
    use_absolute_path: bool = False,
    use_mmap_weights: bool = False,
    extra_flags: Sequence[str] = (),
) -> str:
    ipaths, lpaths, libs, macros, build_arch_flags = get_include_and_linking_paths(
        include_pytorch, vec_isa, cuda, aot_mode
    )
    if isinstance(input, str):
        input = [input]
    ipaths_str = " ".join(["-I" + p for p in ipaths])
    clang_flags = ""
    if config.is_fbcode():
        if aot_mode and not use_absolute_path:
            inp_name = input
            out_name = output
            linker_script = _LINKER_SCRIPT
        else:
            # We need to copy any absolute-path torch includes
            inp_name = [os.path.basename(i) for i in input]
            out_name = os.path.basename(output)
            linker_script = os.path.basename(_LINKER_SCRIPT)
        assert is_clang()
        # Use clang runtime instead of libgcc
        clang_flags += " --rtlib=compiler-rt"
        clang_flags += " -fuse-ld=lld"
        clang_flags += f" -Wl,--script={linker_script}"
        linker_paths = "-B" + build_paths.glibc_lib()
        linker_paths += " -L" + build_paths.glibc_lib()
    else:
        inp_name = input
        out_name = output
        linker_paths = ""  # let the compiler pick
    if compile_only:
        libs, lpaths = "", ""
    inp_name_str = " ".join(inp_name)
    if use_mmap_weights:
        macros += " -D USE_MMAP_SELF"

    return re.sub(
        r"[ \n]+",
        " ",
        f"""
            {cpp_compiler()} {inp_name_str} {get_shared(shared, compile_only)}
            {get_warning_all_flag(warning_all)} {cpp_flags()}
            {get_glibcxx_abi_build_flags()}
            {ipaths_str} {lpaths} {libs} {build_arch_flags}
            {macros} {linker_paths} {clang_flags}
            {optimization_flags()} {cpp_wrapper_flags()}
            {use_custom_generated_macros()}
            {use_fb_internal_macros()}
            {use_standard_sys_dir_headers()}
            {get_compile_only(compile_only)}
            {' '.join(extra_flags)}
            -o {out_name}
        """,
    ).strip()


def run_command_and_check(cmd: str):
    cmd = shlex.split(cmd)
    try:
        subprocess.check_call(cmd)
    except subprocess.CalledProcessError as e:
        raise exc.CppCompileError(cmd, e.output) from e


@functools.lru_cache(None)
def split_aot_inductor_output_path(path: str) -> Tuple[str, str]:
    """Returns the path where the AOT Inductor compiled kernels are stored."""
    if path.endswith(".so"):
        return os.path.split(path)
    else:
        return path, ""


@clear_on_fresh_inductor_cache
class CudaKernelParamCache:
    cache: Dict[str, Dict[str, str]] = dict()
    cache_clear = staticmethod(cache.clear)

    @classmethod
    def set(cls, key: str, params: Dict[str, str], cubin: str) -> None:
        bin_type = "cubin" if torch.version.hip is None else "hsaco"
        _, path = write(
            cubin,
            bin_type,
            hash_type=bin_type,
            specified_dir=split_aot_inductor_output_path(
                config.aot_inductor.output_path
            )[0],
        )

        params[get_cpp_wrapper_cubin_path_name()] = path

        cls.cache[key] = params

    @classmethod
    def get(cls, key: str) -> Optional[Dict[str, str]]:
        return cls.cache.get(key, None)

    @classmethod
    def get_keys(cls):
        return cls.cache.keys()


class AotCodeCompiler:
    @classmethod
    def compile(
        cls,
        graph: GraphLowering,
        source_code: str,
        serialized_extern_kernel_nodes: Optional[str],
        cuda: bool,
    ) -> str:
        picked_vec_isa = pick_vec_isa()
        cpp_command = repr(
            cpp_compile_command(
                "i",
                "o",
                vec_isa=picked_vec_isa,
                cuda=cuda,
                aot_mode=graph.aot_mode,
            )
        )
        fbcode_aot_cpu_re = False
        use_absolute_path = False
        if config.is_fbcode():
            ld_command = build_paths.ld()
            if not cuda and graph.aot_mode:  # Meta internal AOTInductor CPU
                objcopy_command = build_paths.objcopy_fallback()
                fbcode_aot_cpu_re = True
                use_absolute_path = True
            else:
                objcopy_command = build_paths.objcopy()
        else:
            ld_command = "ld"
            objcopy_command = "objcopy"

        (
            specified_output_path,
            specified_so_name,
        ) = split_aot_inductor_output_path(config.aot_inductor.output_path)
        key, input_path = write(
            source_code,
            "cpp",
            extra=cpp_command,
            specified_dir=specified_output_path,
        )
        output_code_log.info("Output code written to: %s", input_path)
        trace_structured(
            "graph_dump",
            lambda: {
                "name": "inductor_aot_code",
                "type": "cpp",
                "filename": input_path,
            },
            payload_fn=lambda: source_code,
        )

        def _compile_consts_linux(consts: bytes) -> str:
            _, consts_path = write(
                consts,
                "bin",
                specified_dir=specified_output_path,
            )

            consts_o = os.path.splitext(consts_path)[0] + ".o"
            if fbcode_aot_cpu_re:
                cmd = f"{ld_command} -r -b binary -o {os.path.basename(consts_o)} {os.path.basename(consts_path)}"
                compile_file(consts_path, consts_o, cmd.split())
                os.chmod(consts_o, 0o644)
            else:
                cmd = f"{ld_command} -r -b binary -o {consts_o} {consts_path}"
                run_command_and_check(cmd)
            log.debug("aot constant binary command: %s", cmd)

            if graph.mutated_buffers & set(graph.constants.keys()):
                # .data section is between .text and .bss. When the size of .data is large,
                # during the linking, the relocation of .text against .bss may overflow.
                # Rename it to .ldata so that it won't be in between the .text and .bss section
                if len(consts) > 2_000_000_000:
                    raise ValueError(
                        "Models with buffer mutation included doesn't support constants greater than 2GB!"
                    )
                rename_data = " .data=.ldata"
            else:
                # if no buffer mutation is needed, we could instead set the data region
                # as read-only (i.e. .lrodata) which could accomodate larger size of data
                # to be linked.
                rename_data = " .data=.lrodata,alloc,load,readonly,data,contents"

            assert (
                ALIGN_BYTES & (ALIGN_BYTES - 1)
            ) == 0 and ALIGN_BYTES >= 64, "must be power of 2 and >= 64"
            cmd = (
                f"{objcopy_command} --rename-section"
                f"{rename_data}"
                f" --set-section-alignment .data={ALIGN_BYTES}"  # following the gAlignment of CPU in c10/core/alignment.h
                f" {consts_o} {consts_o}"
            )
            log.debug("aot constant rename section command: %s", cmd)
            run_command_and_check(cmd)

            cmd = f"rm {consts_path}"
            log.debug("aot constant bin removal command: %s", cmd)
            run_command_and_check(cmd)

            if fbcode_aot_cpu_re:
                body = re.sub(r"[\W]", "_", os.path.basename(consts_path))
            else:
                body = re.sub(r"[\W]", "_", consts_path)

            symbol_list = []
            symbol_list.append(
                f"{objcopy_command} --redefine-sym _binary_{body}_start=_binary_constants_bin_start {consts_o}"
            )
            symbol_list.append(
                f"{objcopy_command} --redefine-sym _binary_{body}_size=_binary_constants_bin_size {consts_o}"
            )
            symbol_list.append(
                f"{objcopy_command} --redefine-sym _binary_{body}_end=_binary_constants_bin_end {consts_o}"
            )
            log.debug("aot constant binary redefine symbol: %s", " ".join(symbol_list))
            for cmd in symbol_list:
                run_command_and_check(cmd)
            return consts_o

        def _compile_consts_darwin(consts: bytes) -> str:
            if config.aot_inductor.debug_dump_consts_bin:
                _, _binary_constants_path = write(
                    consts,
                    "bin",
                    specified_dir=specified_output_path,
                )
                log.debug("binary constants path: %s", _binary_constants_path)

            is_large_consts = len(consts) > 1024
            consts_asm = "\t.section\t__DATA,__data\n"
            consts_asm += "\t.globl\t__binary_constants_bin_start\n"
            consts_asm += "__binary_constants_bin_start:\n"
            if not is_large_consts:
                for c in consts:
                    consts_asm += f"\t.byte {c}\n"
                # Add one element even if constants are empty
                # Otherwise assembler will not put them in data section
                if not consts:
                    consts_asm += "\t.space 1\n"
            else:
                consts_asm += "\t.quad 0x1234567899abcdef\n"
                consts_asm += f"\t.space {len(consts) - 8}\n"
            consts_asm += ".globl\t__binary_constants_bin_end\n"
            consts_asm += "__binary_constants_bin_end:\n"
            _, consts_path = write(
                consts_asm,
                "S",
                specified_dir=specified_output_path,
            )
            consts_o = os.path.splitext(consts_path)[0] + ".o"
            cmd = f"{cpp_compiler()} -c -o {consts_o} {consts_path}"
            run_command_and_check(cmd)
            if is_large_consts:
                with open(consts_o, "r+b") as f:
                    f.seek(0)
                    hdr = f.read(1024)
                    # Search for magic number and write the actual data over it
                    start_idx = hdr.find(b"\xef\xcd\xab\x99\x78\x56\x34\x12")
                    assert start_idx != -1
                    f.seek(start_idx)
                    pos = 0
                    while pos < len(consts):
                        rc = f.write(consts[pos:])
                        pos += rc
            return consts_o

        from filelock import FileLock

        lock_dir = get_lock_dir()
        lock = FileLock(os.path.join(lock_dir, key + ".lock"), timeout=LOCK_TIMEOUT)
        with lock:
            # Currently, this only support serializing extern nodes in fbcode
            # Eventually, we should also have a serializer for OSS.
            if config.is_fbcode() and serialized_extern_kernel_nodes:
                output_json = os.path.splitext(input_path)[0] + ".json"
                with open(output_json, "w") as f:
                    f.write(serialized_extern_kernel_nodes)

            output_so = (
                config.aot_inductor.output_path
                if specified_so_name
                else os.path.splitext(input_path)[0] + ".so"
            )

            output_o = os.path.splitext(input_path)[0] + ".o"
            consts_size = sum(
                torch.ops.mkldnn._nbytes(tensor)
                if tensor.is_mkldnn
                else tensor.untyped_storage().nbytes()
                for (name, tensor) in graph.constants.items()
                if name not in graph.folded_constants
            )
            # TODO: Fix mmap weights with cuda
            use_mmap_weights = not config.is_fbcode() and consts_size > 2_000_000_000
            if config.aot_inductor.force_mmap_weights:
                use_mmap_weights = True
            compile_cmd = cpp_compile_command(
                input=input_path,
                output=output_o,
                vec_isa=picked_vec_isa,
                cuda=cuda,
                aot_mode=graph.aot_mode,
                compile_only=True,
                use_absolute_path=use_absolute_path,
                use_mmap_weights=use_mmap_weights,
            )
            log.debug("aot compilation command: %s", compile_cmd)
            if fbcode_aot_cpu_re:
                compile_file(input_path, output_o, compile_cmd.split())
                os.chmod(output_o, 0o644)
            else:
                run_command_and_check(compile_cmd)

            def _to_bytes(t: torch.Tensor, all_cuda: bool) -> bytes:
                def _pad_to_alignment(raw_bytes):
                    padded_bytes = raw_bytes.ljust(
                        (len(raw_bytes) + ALIGN_BYTES - 1) // ALIGN_BYTES * ALIGN_BYTES,
                        b"\x00",
                    )
                    return padded_bytes

                # This serializes the tensor's untyped_storage to bytes by accessing
                # the raw data of the underlying structure.
                import ctypes

                if t.numel() == 0:
                    return b""

                if t.is_mkldnn:
                    data_ptr = torch.ops.mkldnn.data_ptr(t)
                    nbytes = torch.ops.mkldnn._nbytes(t)
                else:
                    t_cpu = t.untyped_storage().cpu()
                    data_ptr = t_cpu.data_ptr()
                    nbytes = t_cpu.nbytes()

                raw_array = ctypes.cast(
                    data_ptr,
                    ctypes.POINTER(ctypes.c_ubyte * nbytes),
                )
                raw_bytes = bytes(raw_array.contents)
                return raw_bytes if all_cuda else _pad_to_alignment(raw_bytes)

            all_cuda = all(
                graph.get_original_value_of_constant(name).is_cuda
                for name in graph.constants.keys()
                if name not in graph.folded_constants
            )
            serialized_weights = b"".join(
                _to_bytes(graph.get_original_value_of_constant(name), all_cuda)
                for name in graph.constants.keys()
                if name not in graph.folded_constants
            )
            if not use_mmap_weights:
                aot_constants = serialized_weights
                magic_number = 0
            else:
                magic_number = cast(
                    int, torch.randint(0, torch.iinfo(torch.int64).max, (1,)).item()
                )
                aot_constants = struct.pack("qq", consts_size + 8, magic_number)
            consts_o = {
                "linux": _compile_consts_linux,
                "darwin": _compile_consts_darwin,
            }[sys.platform](aot_constants)

            link_cmd = cpp_compile_command(
                input=[output_o, consts_o],
                output=output_so,
                vec_isa=picked_vec_isa,
                cuda=cuda,
                aot_mode=graph.aot_mode,
                use_absolute_path=use_absolute_path,
            )
            log.debug("aot linkage command: %s", link_cmd)
            if fbcode_aot_cpu_re:
                compile_file([output_o, consts_o], output_so, link_cmd.split())
                os.chmod(output_so, 0o755)
            else:
                run_command_and_check(link_cmd)

            if use_mmap_weights:
                with open(output_so, "a+b") as f_so:
                    so_size = f_so.tell()
                    # Page align the weights
                    f_so.write(b" " * (16384 - so_size % 16384))
                    f_so.write(serialized_weights)
                    f_so.write(struct.pack("q", magic_number))

            # Append cmds to the end of codegen-ed wrapper file
            with open(input_path, "a") as f:
                f.write("\n")
                f.write(f"// Compile cmd\n// {compile_cmd}\n")
                f.write(f"// Link cmd\n// {link_cmd}\n")

        return output_so


# Putting this fn in cpp.py (unfortunately) causes a deadlock, which is why it's in codecache.py.
# Why? importing from cpp.py invokes codecache.pick_vec_isa(), which takes out a lock.
# Cycle goes:
# - CppCodeCache.load()
# - pick_vec_isa()
# - valid_vec_isa_list()
# - VecISA.__bool__() <-- takes out a lock
# - compile_file() <-- imports cpp_prefix_path from cpp, which causes us to try to take out the same lock.
@clear_on_fresh_inductor_cache
@functools.lru_cache
def cpp_prefix_path() -> str:
    path = Path(__file__).parent / "codegen/cpp_prefix.h"
    with path.open() as f:
        content = f.read()
        _, filename = write(
            content,
            "h",
        )
    return filename


def cpp_prefix() -> str:
    filename = cpp_prefix_path()
    if config.is_fbcode():
        # We need relative paths, since we bundle up
        # everything that we compile into a folder for remote compilation.
        return f'#include "{os.path.basename(filename)}"'
    else:
        return f'#include "{filename}"'


# Given a path to an input cpp file and an output path,
# Attempts to compile the file, storing the output in "output_path"
@dynamo_timed
def compile_file(
    input_path: Union[str, List[str]], output_path: str, cmd: List[str]
) -> None:
    input_paths = [input_path] if isinstance(input_path, str) else input_path
    input_files = [
        os.path.basename(ip) if config.is_fbcode() else ip for ip in input_paths
    ]
    try:
        if config.is_fbcode():
            # Need to copy our header into the same folder as the sourcecode.
            header_path = cpp_prefix_path()
            header_name = os.path.basename(header_path)
            output_name = os.path.basename(output_path)
            # When we build remotely, we need to make sure to carefully copy any files
            # that are required during the compilation process into our build directly.
            # This is where all of the ATen/c10/Torch includes come from.
            torch_includes_path = os.path.join(_TORCH_PATH, "include")
            with tempfile.TemporaryDirectory() as tmp_dir:
                # Copy everything to tmp compilation folder
                shutil.copy(header_path, os.path.join(tmp_dir, header_name))
                shutil.copy(_LINKER_SCRIPT, os.path.join(tmp_dir, "script.ld"))
                for p, f in zip(input_paths, input_files):
                    shutil.copy(p, os.path.join(tmp_dir, f))
                dest_include_path = os.path.join(tmp_dir, "include")
                shutil.copytree(torch_includes_path, dest_include_path)
                # Run the build
                output_file_path = _run_build_command(cmd, tmp_dir, output_name)
                # Copy output from the build
                if os.path.exists(output_path):
                    os.remove(output_path)
                shutil.copy(output_file_path, output_path)
        else:
            subprocess.check_output(cmd, stderr=subprocess.STDOUT)
    except subprocess.CalledProcessError as e:
        output = e.output.decode("utf-8")
        openmp_problem = "'omp.h' file not found" in output or "libomp" in output
        if openmp_problem and sys.platform == "darwin":
            instruction = (
                "\n\nOpenMP support not found. Please try one of the following solutions:\n"
                "(1) Set the `CXX` environment variable to a compiler other than Apple clang++/g++ "
                "that has builtin OpenMP support;\n"
                "(2) install OpenMP via conda: `conda install llvm-openmp`;\n"
                "(3) install libomp via brew: `brew install libomp`;\n"
                "(4) manually setup OpenMP and set the `OMP_PREFIX` environment variable to point to a path"
                " with `include/omp.h` under it."
            )
            output += instruction
        raise exc.CppCompileError(cmd, output) from e


_libgomp: Optional[CDLL] = None


def custom_op_wrapper(op: str, *args):
    # This function will be called from generated cpp wrapper code in the JIT mode.
    # Because tensors will be passed in as AtenTensorHandle, we need to explicitly convert them.
    def convert_arg(arg):
        if str(type(arg)) == "<class 'PyCapsule'>":
            # No easy way to do isinstance check on PyCapsule
            return torch._C._aoti.alloc_tensor_by_stealing_from_void_ptr(arg)
        elif isinstance(arg, (list, tuple)):
            return type(arg)(convert_arg(a) for a in arg)
        else:
            return arg

    converted_args = [convert_arg(arg) for arg in args]

    assert op.startswith("torch.ops."), (
        op + " can not be called through custom_op_wrapper"
    )
    func = None
    for i, s in enumerate(op.split(".")):
        if i == 0:
            func = importlib.import_module(s)
        func = getattr(func, s)

    assert callable(func), op + " can not be loaded through custom_op_wrapper"
    result = func(*converted_args)
    if isinstance(result, (list, tuple)):
        for r in result:
            assert isinstance(r, torch.Tensor), op + " returns a list of non-tensors"
        return torch._C._aoti.unsafe_alloc_void_ptrs_from_tensors(result)  # type: ignore[arg-type]
    else:
        assert isinstance(result, torch.Tensor), op + " returns a non-tensor"
        return torch._C._aoti.unsafe_alloc_void_ptr_from_tensor(result)


@clear_on_fresh_inductor_cache
class CppCodeCache:
    cache: Dict[str, Callable[[], Union[CDLL, ModuleType]]] = {}
    cache_clear = staticmethod(cache.clear)
    cpp_compile_command_flags: Dict[str, Any] = {}

    @staticmethod
    def _load_library_inner(path: str, key: str) -> Union[CDLL, ModuleType]:
        return cdll.LoadLibrary(path)

    @classmethod
    def _load_library(cls, path: str, key: str) -> Union[CDLL, ModuleType]:
        try:
            result = cls._load_library_inner(path, key)
            result.key = key  # type: ignore[union-attr]
            return result
        except (ImportError, OSError) as e:
            if "gomp" in str(e) and os.path.exists("/usr/lib64/libgomp.so.1"):
                # hacky workaround for fbcode/buck
                global _libgomp
                _libgomp = cdll.LoadLibrary("/usr/lib64/libgomp.so.1")
                result = cls._load_library_inner(path, key)
                result.key = key  # type: ignore[union-attr]
                return result
            if "failed to map segment from shared object" in str(e):
                raise OSError(
                    f"{e}.  The most common reason this may occur is if the {tempfile.gettempdir()} folder "
                    "is mounted with noexec (e.g., by default Docker mounts tmp file systems "
                    f"as noexec).  Please remount {tempfile.gettempdir()} with exec enabled, or set another "
                    "temporary directory with TORCHINDUCTOR_CACHE_DIR environment variable."
                ) from e
            raise

    @classmethod
    def load_async(cls, source_code: str, cuda=False, submit_fn=None, extra_flags=()):
        compile_command = {
            **cls.cpp_compile_command_flags,
            "cuda": cuda,
            "vec_isa": pick_vec_isa(),
            "extra_flags": extra_flags,
        }

        _set_gpu_runtime_env()  # cpp_extension consults the env

        from torch._inductor.cpp_builder import CppBuilder, CppTorchCudaOptions

        dummy_builder = CppBuilder(
            name="o", sources="i", BuildOption=CppTorchCudaOptions(**compile_command)
        )
        # write function will calc source_code hash, the same source code with different
        # ISA level should be generate different hash.
        # So we need get a command_line which contains isa related parameter as a part of hash key.
        # And then pass the command_line to below write function as extra parameter to
        # guarantee the source code hash contains ISA difference.
        dummy_cmd = repr(dummy_builder.get_command_line())
        key, input_path = write(source_code, "cpp", extra=dummy_cmd)

        if key not in cls.cache:
            from filelock import FileLock

            lock_path = os.path.join(get_lock_dir(), key + ".lock")
            output_path = input_path[:-3] + "so"
            future: Optional[Future[Any]] = None
            lib = None
            worker_fn = functools.partial(
                _worker_compile_cpp,
                lock_path,
                input_path,
                output_path,
                cpp_compile_command(
                    input=input_path, output=output_path, **compile_command
                ),
            )

            def load_fn():
                nonlocal lib
                if lib is None:
                    if future is not None:
                        future.result()
                    result = worker_fn()
                    assert result is None
                    lib = cls._load_library(output_path, key)
                    assert lib is not None
                return lib

            if submit_fn is not None:
                with FileLock(lock_path, timeout=LOCK_TIMEOUT):
                    if not os.path.exists(output_path):
                        future = submit_fn(worker_fn)

            cls.cache[key] = load_fn

        return cls.cache[key]

    @classmethod
    def load(cls, source_code: str, cuda: bool = False):
        return cls.load_async(source_code, cuda)()


def _worker_compile_cpp(lock_path, input_path, output_path, cmd):
    from filelock import FileLock

    with FileLock(lock_path, timeout=LOCK_TIMEOUT):
        if not os.path.exists(output_path):
            compile_file(input_path, output_path, shlex.split(cmd))


# Customized Python binding for cpp kernels
@clear_on_fresh_inductor_cache
class CppPythonBindingsCodeCache(CppCodeCache):
    cache: Dict[str, Callable[[], Union[CDLL, ModuleType]]] = {}
    cache_clear = staticmethod(cache.clear)
    cpp_compile_command_flags = {
        # kernels have no dependency on libtorch
        "include_pytorch": False,
        "shared": True,
    }
    entry_function = "kernel"
    call_entry_function = "kernel(%s);Py_RETURN_NONE;"
    extra_parse_arg = ""
    suffix_template = textwrap.dedent(
        """
        // Python bindings to call %s():
        #define PY_SSIZE_T_CLEAN
        #include <Python.h>
        #include <sstream>
        #include <cstdlib>

        #ifndef _MSC_VER
        #if __cplusplus < 202002L
        // C++20 earlier code
        // https://en.cppreference.com/w/cpp/language/attributes/likely
        #define likely(x)       __builtin_expect(!!(x), 1)
        #define unlikely(x)     __builtin_expect(!!(x), 0)
        #endif
        #endif

        // This is defined in guards.cpp so we don't need to import PyTorch headers that are slooow.
        // We manually link it below to workaround issues with fbcode build.
        static void* (*_torchinductor_pyobject_tensor_data_ptr)(PyObject* obj);

        template <typename T> static inline T parse_arg(PyObject* args, size_t n) {
            static_assert(std::is_pointer<T>::value, "arg type must be pointer or long");
            return static_cast<T>(_torchinductor_pyobject_tensor_data_ptr(PyTuple_GET_ITEM(args, n)));
        }
        template <> inline long parse_arg<long>(PyObject* args, size_t n) {
            auto result = PyLong_AsSsize_t(PyTuple_GET_ITEM(args, n));
            if(result == -1 && PyErr_Occurred())
                [[unlikely]] throw std::runtime_error("expected int arg");
            return result;
        }

        %s

        static PyObject* %s_py(PyObject* self, PyObject* args) {
            try {
                if(!PyTuple_CheckExact(args))
                    [[unlikely]] throw std::runtime_error("tuple args required");
                if(PyTuple_GET_SIZE(args) != %s)
                    [[unlikely]] throw std::runtime_error("requires %s args");
                %s
            } catch(std::exception const& e) {
                PyErr_SetString(PyExc_RuntimeError, e.what());
                return nullptr;
            } catch(...) {
                PyErr_SetString(PyExc_RuntimeError, "unhandled error");
                return nullptr;
            }
        }

        static PyMethodDef py_methods[] = {
            {"%s", %s_py, METH_VARARGS, ""},
            {NULL, NULL, 0, NULL}};

        static struct PyModuleDef py_module =
            {PyModuleDef_HEAD_INIT, "%s", NULL, -1, py_methods};

        PyMODINIT_FUNC PyInit_%s(void) {
            const char* str_addr = std::getenv("_TORCHINDUCTOR_PYOBJECT_TENSOR_DATA_PTR");
            if(!str_addr) {
                PyErr_SetString(PyExc_RuntimeError, "_TORCHINDUCTOR_PYOBJECT_TENSOR_DATA_PTR must be set");
                return nullptr;
            }
            std::istringstream iss(str_addr);
            uintptr_t addr = 0;
            iss >> addr;
            _torchinductor_pyobject_tensor_data_ptr =
                reinterpret_cast<decltype(_torchinductor_pyobject_tensor_data_ptr)>(addr);
            return PyModule_Create(&py_module);
        }
        """
    )

    @classmethod
    def _load_library_inner(cls, path: str, key: str) -> ModuleType:
        os.environ["_TORCHINDUCTOR_PYOBJECT_TENSOR_DATA_PTR"] = str(
            torch._C._dynamo.guards._torchinductor_pyobject_tensor_data_ptr  # type: ignore[attr-defined]
        )
        module_name = f"{key}.{cls.entry_function}"
        try:
            return sys.modules[module_name]
        except KeyError:
            pass
        spec = importlib.util.spec_from_file_location(module_name, path)
        assert spec is not None
        module = importlib.util.module_from_spec(spec)
        sys.modules[module_name] = module
        spec.loader.exec_module(module)  # type: ignore[union-attr]
        return module

    @classmethod
    def load_pybinding_async(
        cls,
        argtypes: List[str],
        source_code: str,
        cuda: bool = False,
        num_outputs: int = -1,
        submit_fn=None,
        extra_flags=(),
    ) -> Any:
        """
        Wrap a C++ function in fast Python bindings.

        Args:
            argtypes: The types of args to ENTRY_FUNCTION(), e.g. ["float*", "long"]
            source_code: C++ source code containing a ENTRY_FUNCTION() function

        Returns:
            A python version of ENTRY_FUNCTION()
        """
        parseargs = ", ".join(
            f"parse_arg<{argtype.replace('const ', '')}>(args, {n})"
            for n, argtype in enumerate(argtypes)
        )
        suffix = cls.suffix_template % (
            cls.entry_function,
            cls.extra_parse_arg % num_outputs if cls.extra_parse_arg else "",
            cls.entry_function,
            len(argtypes),
            len(argtypes),
            cls.call_entry_function % parseargs,
            cls.entry_function,
            cls.entry_function,
            cls.entry_function,
            cls.entry_function,
        )
        get_result = cls.load_async(
            source_code + suffix, cuda, submit_fn=submit_fn, extra_flags=extra_flags
        )
        result = None

        def future():
            nonlocal result
            if result is None:
                result = get_result()
                assert isinstance(result, ModuleType)
            return getattr(result, cls.entry_function)

        return future

    @classmethod
    def load_pybinding(cls, *args, **kwargs) -> Any:
        return cls.load_pybinding_async(*args, **kwargs)()


@clear_on_fresh_inductor_cache
class CppWrapperCodeCache(CppPythonBindingsCodeCache):
    cache: Dict[str, Callable[[], Union[CDLL, ModuleType]]] = {}
    cache_clear = staticmethod(cache.clear)
    cpp_compile_command_flags = {
        "include_pytorch": True,
        "shared": True,
    }
    entry_function = "inductor_entry_cpp"
    call_entry_function = "return inductor_entry_cpp(%s);"
    extra_parse_arg = textwrap.dedent(
        """
        #include <torch/csrc/inductor/aoti_torch/c/shim.h>

        static inline std::vector<AtenTensorHandle> unpack_tensor_handle_list(PyObject* pyvec) {
            std::vector<AtenTensorHandle> result;
            size_t result_len = PyList_GET_SIZE(pyvec);
            result.reserve(result_len);
            for (size_t i = 0; i < result_len; i++) {
                // AtenTensorHandle is essentially a pointer
                void* elem = PyCapsule_GetPointer(PyList_GET_ITEM(pyvec, i), NULL);
                result.push_back(reinterpret_cast<AtenTensorHandle>(elem));
            }
            return result;
        }

        static inline PyObject* pack_tensor_handle_list(const std::vector<AtenTensorHandle>& cppvec) {
            size_t result_len = cppvec.size();
            PyObject* result = PyList_New(static_cast<Py_ssize_t>(result_len));
            for (size_t i = 0; i < result_len; i++) {
                PyObject *elem =
                    cppvec[i] == nullptr
                        ? Py_None
                        // Store AtenTensorHandle as PyCapsulate
                        : PyCapsule_New(reinterpret_cast<void*>(cppvec[i]), NULL, NULL);
                PyList_SET_ITEM(result, i, elem);
            }
            return result;
        }

        template <> inline std::vector<AtenTensorHandle> parse_arg<std::vector<AtenTensorHandle>>(PyObject* args, size_t n) {
            return unpack_tensor_handle_list(PyTuple_GET_ITEM(args, n));
        }

        PyObject* inductor_entry_cpp(std::vector<AtenTensorHandle>&& input_handles) {
            // For outputs, we only allocate a vector to hold returned tensor handles,
            // not allocating the actual output tensor storage here
            std::vector<AtenTensorHandle> output_handles(%s);
            try {
                inductor_entry_impl(input_handles.data(), output_handles.data());
                return pack_tensor_handle_list(output_handles);
            } catch(std::exception const& e) {
                PyErr_SetString(PyExc_RuntimeError, e.what());
                return {};
            } catch(...) {
                PyErr_SetString(PyExc_RuntimeError, "unhandled error");
                return {};
            }
        }
        """
    )


# TODO: Will remove the temp code after switch to new cpp_builder
def _temp_validate_new_and_old_command(new_cmd: List[str], old_cmd: List[str]):
    new_diff: List[str] = [x for x in new_cmd if x not in old_cmd]
    old_diff: List[str] = [y for y in old_cmd if y not in new_cmd]

    if new_diff or old_diff:
        print("!!! new_cmd: ", new_cmd)
        print("!!! old_cmd: ", old_cmd)
        print("!!! new_diff: ", new_diff)
        print("!!! old_diff: ", old_diff)
        raise RuntimeError("Error in new and old command different.")


def _do_validate_cpp_commands(
    include_pytorch: bool,
    cuda: bool,
    compile_only: bool,
    mmap_weights: bool,
    use_absolute_path: bool,
):
    # PreCI will failed if test machine can't run cuda.
    temp_dir = tempfile.TemporaryDirectory()
    test_dir_path = temp_dir.name
    test_cuda = torch.cuda.is_available() and cuda
    input_path = os.path.join(test_dir_path, "dummy_input.cpp")
    output_path = os.path.join(test_dir_path, "dummy_output.so")
    extra_flags = ["-D TEST_EXTRA_FLAGS"]
    if compile_only:
        output_path = os.path.join(test_dir_path, "dummy_output.o")
    picked_isa = pick_vec_isa()

    old_cmd = cpp_compile_command(
        input=input_path,
        output=output_path,
        include_pytorch=include_pytorch,
        vec_isa=picked_isa,
        cuda=test_cuda,
        aot_mode=False,
        compile_only=compile_only,
        use_absolute_path=use_absolute_path,
        use_mmap_weights=mmap_weights,
        extra_flags=extra_flags,
    ).split(" ")

    from torch._inductor.cpp_builder import CppBuilder, CppTorchCudaOptions

    dummy_build_option = CppTorchCudaOptions(
        vec_isa=picked_isa,
        include_pytorch=include_pytorch,
        cuda=test_cuda,
        compile_only=compile_only,
        use_absolute_path=use_absolute_path,
        use_mmap_weights=mmap_weights,
        extra_flags=extra_flags,
    )

    dummy_builder = CppBuilder(
        name="dummy_output",
        sources=input_path,
        BuildOption=dummy_build_option,
        output_dir=test_dir_path,
    )
    new_cmd = dummy_builder.get_command_line().split(" ")

    _temp_validate_new_and_old_command(new_cmd, old_cmd)

    temp_dir.cleanup()


# TODO: Will remove the temp code after switch to new cpp_builder
# It could help on sync new cpp_builder generate same command line as the old one.
def validate_new_cpp_commands():
    cuda = [True, False]
    use_mmap_weights = [True, False]
    compile_only = [True, False]
    include_pytorch = [True, False]
    use_absolute_path = [True, False]

    for x in cuda:
        for y in use_mmap_weights:
            for z in compile_only:
                for m in include_pytorch:
                    for n in use_absolute_path:
                        print(
                            f"!!! cuda:{x}, use_mmap_weights:{y}, compile_only:{z}, include_pytorch:{m}, use_absolute_path:{n}"
                        )
                        _do_validate_cpp_commands(
                            include_pytorch=m,
                            cuda=x,
                            mmap_weights=y,
                            compile_only=z,
                            use_absolute_path=n,
                        )


@clear_on_fresh_inductor_cache
class HalideCodeCache(CppPythonBindingsCodeCache):
    cache: Dict[str, Callable[[], Union[ModuleType, CDLL]]] = {}
    cache_clear = staticmethod(cache.clear)
    glue_template = textwrap.dedent(
        """
        #include "{halidebuffer_h}"
        #include "{headerfile}"
        #include <stdexcept>
        #include <cmath>
        void kernel({argdefs}) {{
            {buffers}
            int err = halide_kernel({buffer_names});
            if(err != 0) {{
                throw std::runtime_error("halide_kernel failed");
            }}
        }}
        """
    )

    @classmethod
    def _codegen_glue(cls, argtypes, headerfile):
        buffers = []
        buffer_names = []
        for i, arg in enumerate(argtypes):
            if arg.numel:
                buffer_names.append(f"hl_buf_{i}")
                buffers.append(
                    f"    Halide::Runtime::Buffer {buffer_names[-1]}({arg.halide_type()}, {arg.name}, {arg.numel});"
                )
            else:
                assert "*" not in arg.ctype
                buffer_names.append(arg.name)
        glue_code = cls.glue_template.format(
            halidebuffer_h=cls.find_header("HalideBuffer.h"),
            headerfile=headerfile,
            argdefs=", ".join(f"{a.bindings_type()} {a.name}" for a in argtypes),
            buffers="\n".join(buffers).lstrip(),
            buffer_names=", ".join(buffer_names),
        )
        return glue_code

    @classmethod
    @functools.lru_cache(None)
    def config_hash(cls):
        return sha256_hash(
            "\n".join(
                [
                    cls.glue_template,
                    f"{cls.cpu_cache_size()}",
                    cpp_compile_command("I", "O"),
                ]
            ).encode("utf-8")
        )

    @staticmethod
    @functools.lru_cache(None)
    def cpu_cache_size():
        try:
            cpuinfo = open("/proc/cpuinfo").read()
        except OSError:
            return 16777216
        m = re.search(r"cache size\s*: (\d+) KB", cpuinfo)
        if m:
            return int(m.group(1)) * 1024
        m = re.search(r"cache size\s*: (\d+) MB", cpuinfo)
        if m:
            return int(m.group(1)) * 1024 * 1024
        raise RuntimeError("failed to find 'cache size: ... KB' in /proc/cpuinfo")

    @staticmethod
    def _search_for_file(suffix, errmsg):
        try:
            search, *_ = importlib.machinery.PathFinder.find_spec(  # type: ignore[union-attr,misc]
                "halide"
            ).submodule_search_locations
            for file in os.listdir(search):
                if file.endswith(".so"):
                    try:
                        out = subprocess.check_output(
                            ["ldd", os.path.join(search, file)]
                        )
                    except subprocess.SubprocessError:
                        continue
                    m = re.search(r"(/.*)/libHalide.so", out.decode("utf-8"))
                    if m:
                        path = os.path.join(os.path.abspath(m.group(1)), suffix)
                        if os.path.exists(path):
                            return os.path.abspath(path)
        except Exception as e:
            raise RuntimeError(errmsg) from e
        raise RuntimeError(errmsg)

    @staticmethod
    @functools.lru_cache(None)
    def find_libautoschedule(name):
        sofile = f"libautoschedule_{name.lower()}.so"
        if "HALIDE_LIB" in os.environ:
            path = os.path.join(os.environ["HALIDE_LIB"], sofile)
            if os.path.exists(path):
                return path
        errmsg = (
            f"Can't find {sofile}, set env HALIDE_LIB to the directory containing it"
        )
        return HalideCodeCache._search_for_file(sofile, errmsg)

    @staticmethod
    @functools.lru_cache(None)
    def find_header(name):
        if "HALIDE_INCLUDE" in os.environ:
            path = os.path.join(os.environ["HALIDE_INCLUDE"], name)
            if os.path.exists(path):
                return path
        if "HALIDE_LIB" in os.environ:
            path = os.path.abspath(
                os.path.join(os.environ["HALIDE_LIB"], f"../include/{name}")
            )
            if os.path.exists(path):
                return path
        errmsg = (
            f"Can't find {name}, set env HALIDE_INCLUDE to the directory containing it"
        )
        return HalideCodeCache._search_for_file(f"../include/{name}", errmsg)

    @classmethod
    def generate_halide_async(cls, meta: HalideMeta, source_code: str, submit_fn=None):
        dirpath = Path(
            get_path(
                code_hash(
                    source_code,
                    extra=repr((cls.config_hash(), meta)),
                ),
                "halide",
            )[2]
        )
        os.makedirs(dirpath, exist_ok=True)
        wait_for_compile = None
        genfile = str(dirpath / "generate_kernel.py")
        libfile = str(dirpath / "halide_kernel.a")
        headerfile = str(dirpath / "halide_kernel.h")
        donefile = str(dirpath / "done")
        lockfile = str(dirpath / "lock")
        need_compile = not os.path.exists(donefile)
        jobs = []

        if need_compile:
            write_atomic(genfile, source_code)
            jobs.append(
                functools.partial(
                    subprocess.check_call,
                    [
                        sys.executable,
                        genfile,
                        "-g",
                        "kernel",
                        "-o",
                        f"{dirpath}",
                        "-f",
                        "halide_kernel",
                        "-e",
                        "static_library,h,schedule,pytorch_wrapper",
                        "-p",
                        cls.find_libautoschedule(meta.scheduler),
                        *meta.args(),
                    ],
                )
            )

        bindings_future = cls.load_pybinding_async(
            [arg.bindings_type() for arg in meta.argtypes],
            cls._codegen_glue(meta.argtypes, headerfile),
            extra_flags=(libfile,),
            submit_fn=jobs.append if need_compile else None,
        )

        if need_compile:
            jobs.append(functools.partial(touch, donefile))
            task = functools.partial(_worker_task_halide, lockfile, jobs)
            if submit_fn:
                wait_for_compile = submit_fn(task).result
            else:
                task()

        def load():
            if wait_for_compile:
                wait_for_compile()
            return bindings_future()

        return load

    @classmethod
    def generate_halide(cls, *args, **kwargs):
        return cls.generate_halide_async(*args, **kwargs)()


def _worker_task_halide(lockfile, jobs):
    from filelock import FileLock

    with FileLock(lockfile, LOCK_TIMEOUT):
        for job in jobs:
            job()


def touch(filename):
    open(filename, "a").close()


@clear_on_fresh_inductor_cache
class PyCodeCache:
    cache: Dict[str, ModuleType] = dict()
    linemaps: Dict[str, List[Tuple[Any, ...]]] = dict()
    cache_clear = staticmethod(cache.clear)

    @classmethod
    def write(cls, source_code: str, extra: str = "") -> Tuple[str, str]:
        return write(source_code, "py", extra=extra)

    @classmethod
    def load(
        cls,
        source_code: str,
        extra: str = "",
        linemap: Optional[List[Tuple[int, str]]] = None,
        attrs: Optional[Dict[str, Any]] = None,
    ) -> ModuleType:
        key, path = write(source_code, "py", extra=extra)
        return cls.load_by_key_path(key, path, linemap, attrs)

    @classmethod
    def load_by_key_path(
        cls,
        key: str,
        path: str,
        linemap: Optional[List[Tuple[int, str]]] = None,
        attrs: Optional[Dict[str, Any]] = None,
    ) -> ModuleType:
        if linemap is None:
            linemap = []
        if key not in cls.cache:
            mod = _reload_python_module(key, path)

            # another thread might set this first
            cls.cache.setdefault(key, mod)
            # unzip into separate lines/nodes lists
            cls.linemaps[path] = list(zip(*linemap))

            if attrs is not None:
                for k, v in attrs.items():
                    setattr(mod, k, v)

            if not (linemap or attrs):
                mod._reload_in_subproc = functools.partial(  # type: ignore[attr-defined]
                    _reload_python_module_in_subproc, key, path
                )

        return cls.cache[key]

    @classmethod
    @functools.lru_cache(None)
    def stack_frames_for_code(
        cls, path: str, lineno: int
    ) -> Optional[List[Dict[str, Any]]]:
        if path not in cls.linemaps:
            return None
        # [(starting_line, <fx node>), ...]
        lines, nodes = cls.linemaps[path]
        p = bisect_right(lines, lineno)
        if p == 0:
            return None
        entry = nodes[p - 1]
        if not entry:
            return None

        def parse_stack_trace(stack_trace: str) -> List[Dict[str, Any]]:
            # ideally fx stores stack traces as data rather than a string
            # but this is not along a performance critical path
            regex = r'File "(.+)", line (\d+), in (.+)\n'
            matches = re.findall(regex, stack_trace)
            return [
                {"filename": f, "line": int(l), "name": n}
                for f, l, n in reversed(matches)
            ]

        return parse_stack_trace(entry)


class TritonCodeCache:
    @classmethod
    def load(cls, kernel_name: str, source_code: str) -> ModuleType:
        return _module_to_triton_kernel(PyCodeCache.load(source_code), kernel_name)


def _cuda_compiler() -> Optional[str]:
    if cuda_env.nvcc_exist(config.cuda.cuda_cxx):
        return config.cuda.cuda_cxx
    if config.is_fbcode():
        return os.path.join(build_paths.cuda(), "bin", "nvcc")
    if cuda_env.nvcc_exist(os.getenv("CUDACXX")):
        return os.getenv("CUDACXX", "")
    if cuda_env.nvcc_exist(os.getenv("CUDA_HOME")):
        return os.path.realpath(os.path.join(os.getenv("CUDA_HOME", ""), "bin/nvcc"))
    return "nvcc"


def _cutlass_include_paths() -> List[str]:
    if config.is_fbcode():
        from libfb.py import parutil

        cutlass_path = parutil.get_dir_path("cutlass-3-headers")
    else:
        cutlass_path = config.cuda.cutlass_dir
    return [
        # Use realpath to get canonical absolute paths, in order not to mess up cache keys
        os.path.realpath(os.path.join(cutlass_path, "include")),
        os.path.realpath(os.path.join(cutlass_path, "tools/library/include")),
        os.path.realpath(os.path.join(cutlass_path, "tools/library/src")),
        os.path.realpath(os.path.join(cutlass_path, "tools/util/include")),
    ]


def _cuda_lib_options() -> List[str]:
    _set_gpu_runtime_env()  # cpp_extension consults the env
    from torch.utils import cpp_extension

    lpaths = cpp_extension.library_paths(cuda=True) + [
        sysconfig.get_config_var("LIBDIR")
    ]
    extra_ldflags: List[str] = []
    if is_linux():
        _transform_cuda_paths(lpaths)
        for path in lpaths:
            # -rpath ensures the DLL can find its dependencies when loaded, even
            # if the library path is non-standard.
            extra_ldflags.extend([f"-L{path}", "-Xlinker", f"-rpath={path}"])
        extra_ldflags.append("-lcuda")
        extra_ldflags.append("-lcudart")
    else:
        raise NotImplementedError(
            "Unsupported env, failed to find cuda libs! Currently only Linux is supported."
        )
    return extra_ldflags


def _nvcc_host_compiler_options() -> List[str]:
    return [
        "-fPIC",
        "-fno-strict-aliasing",
        "-fvisibility=hidden",
        "-Wconversion",
    ]


def _nvcc_compiler_options() -> List[str]:
    arch = cuda_env.get_cuda_arch()
    if arch == "90":
        # Required by cutlass compilation.
        arch = "90a"
    code = [f"sm_{arch}", f"compute_{arch}"]
    if config.cuda.enable_cuda_lto:
        code += [f"lto_{arch}"]
    options = [
        "-t=0",
        "-DCUTLASS_ENABLE_TENSOR_CORE_MMA=1",
        "-w",
        f"-gencode=arch=compute_{arch},code=[{','.join(code)}]",
        config.cuda.compile_opt_level,
        "-std=c++17",
        "--expt-relaxed-constexpr",
        "-DNDEBUG",
    ]
    if config.is_fbcode():
        options.extend(["-ccbin", os.path.dirname(build_paths.gcc())])
    if config.cuda.enable_debug_info:
        options.extend(["-lineinfo", "-g", "-DCUTLASS_DEBUG_TRACE_LEVEL=1"])
    if config.cuda.enable_ptxas_info:
        options.extend(
            [
                "--keep",  # Keep the intermediate files for debugging (including ptx, sass, cubin etc.)
                "--ptxas-options=--warn-on-local-memory-usage",  # warn us if local memory is used in CUDA Kernels
                "--ptxas-options=--warn-on-spills",  # warn us if register spilling happens in CUDA Kernels
                "--resource-usage",  # Report on CUDA resource usage (shared mem, registers etc.)
                "--source-in-ptx",
            ]
        )  # Annotate the ptx file with source information
    if config.cuda.use_fast_math:
        options.extend(
            [
                "--use_fast_math",
                "-DCUTLASS_USE_TANH_FOR_SIGMOID=1",
            ]
        )
    return options


def cuda_compile_command(
    src_files: List[str],
    dst_file: str,
    dst_file_ext: str,
    extra_args: Optional[List[str]] = None,
) -> str:
    if extra_args is None:
        extra_args = []
    include_paths = _cutlass_include_paths()
    cuda_lib_options = _cuda_lib_options()
    nvcc_host_compiler_options = _nvcc_host_compiler_options()
    nvcc_compiler_options = _nvcc_compiler_options()
    options = (
        nvcc_compiler_options
        + extra_args
        + [
            f"-Xcompiler {opt}" if "=" in opt else f"-Xcompiler={opt}"
            for opt in nvcc_host_compiler_options
        ]
        + ["-I" + path for path in include_paths]
        + cuda_lib_options
    )
    src_file = " ".join(src_files)
    res = ""
    if dst_file_ext == "o":
        res = f"{_cuda_compiler()} {' '.join(options)} -c -o {dst_file} {src_file}"
    elif dst_file_ext == "so":
        options.append("-shared")
        res = f"{_cuda_compiler()} {' '.join(options)} -o {dst_file} {src_file}"
    elif dst_file_ext == "exe":
        res = f"{_cuda_compiler()} {' '.join(options)} -o {dst_file} {src_file}"
    else:
        raise NotImplementedError(f"Unsupported output file suffix {dst_file_ext}!")
    log.debug("CUDA command: %s", res)
    return res


class DLLWrapper:
    """A wrapper for a dynamic library."""

    def __init__(
        self,
        lib_path: str,
    ):
        self.lib_path = lib_path
        self.is_open = False
        self.DLL = cdll.LoadLibrary(lib_path)
        self.is_open = True

    def close(self):
        if self.is_open:
            self._dlclose()
            self.is_open = False

    def _dlclose(self):
        f_dlclose = None

        if is_linux():
            syms = CDLL(None)
            if not hasattr(syms, "dlclose"):
                # Apline Linux
                syms = CDLL("libc.so")

            if hasattr(syms, "dlclose"):
                f_dlclose = syms.dlclose
        else:
            raise NotImplementedError("Unsupported env, failed to do dlclose!")

        if f_dlclose is not None:
            f_dlclose.argtypes = [c_void_p]
            f_dlclose(self.DLL._handle)
        else:
            log.warning(
                "dll unloading function was not found, library may not be unloaded properly!"
            )

    def __getattr__(self, name):
        if not self.is_open:
            raise RuntimeError(f"Cannot use closed DLL library: {self.lib_path}")

        method = getattr(self.DLL, name)

        def _wrapped_func(*args):
            err = method(*args)
            if err:
                raise RuntimeError(f"Error in function: {method.__name__}")

        return _wrapped_func

    def __enter__(self):
        return self

    def __exit__(self, *args):
        self.close()

    def __del__(self):
        self.close()


@clear_on_fresh_inductor_cache
class CUDACodeCache:
    @dataclasses.dataclass
    class CacheEntry:
        input_path: str
        output_path: str

    cache: Dict[str, CacheEntry] = dict()
    cache_clear = staticmethod(cache.clear)
    _SOURCE_CODE_SUFFIX = "cu"

    @classmethod
    def write(cls, source_code, dst_file_ext) -> Tuple[str, str]:
        """
        Writes source code into a file with dst_file_ext as the file extension.
        Returns the hash key of source code, and the path to the file.
        """

        cuda_command = repr(
            cuda_compile_command(["dummy_input"], "dummy_output", dst_file_ext)
        )
        key, input_path = write(
            source_code, cls._SOURCE_CODE_SUFFIX, extra=cuda_command
        )
        return key, input_path

    @classmethod
    def compile(
        cls, source_code, dst_file_ext, extra_args: Optional[List[str]] = None
    ) -> Tuple[str, str, str]:
        """
        Compiles CUDA source_code into a file with dst_file_ext extension.
        Returns a tuple of dst_file_path, hash_key, source_code_path
        """
        key, input_path = cls.write(source_code, dst_file_ext)
        if key not in cls.cache:
            from filelock import FileLock

            lock_dir = get_lock_dir()
            lock = FileLock(os.path.join(lock_dir, key + ".lock"), timeout=LOCK_TIMEOUT)
            with lock:
                output_path = input_path[: -len(cls._SOURCE_CODE_SUFFIX)] + dst_file_ext
                if not os.path.exists(output_path):
                    cmd = cuda_compile_command(
                        [input_path], output_path, dst_file_ext, extra_args
                    )
                    start_time = time()
                    log.debug("CUDA Compilation: %s", cmd)
                    cmd_parts = cmd.split(" ")
                    try:
                        subprocess.check_output(
                            cmd_parts, stderr=subprocess.STDOUT, env=os.environ
                        )
                    except subprocess.CalledProcessError as error:
                        raise exc.CUDACompileError(cmd_parts, error.output) from error
                    end_time = time()
                    log_duration_msg = f"CUDA Compilation took {end_time-start_time} seconds. Compile command: {cmd}"
                    log.info(log_duration_msg)
                else:
                    log.debug(
                        "CUDA Compilation skipped: %s since output already exists",
                        input_path,
                    )
                cls.cache[key] = CUDACodeCache.CacheEntry(input_path, output_path)

        return (cls.cache[key].output_path, key, input_path)

    @classmethod
    def load(cls, source_code, dst_file_ext) -> Tuple[DLLWrapper, str, str]:
        """
        Compiles source code and loads the generated .so file.
        Returns a tuple of DLLWrapper, hash_key, source_code_path
        """

        if dst_file_ext != "so":
            raise RuntimeError(
                f"Only support loading a .so file for now. "
                f"Requested file extension: {dst_file_ext}. Source code: {source_code}"
            )
        dst_file_path, hash_key, source_code_path = cls.compile(
            source_code, dst_file_ext
        )
        return (DLLWrapper(dst_file_path), hash_key, source_code_path)


class CodeCacheFuture:
    def result(self):
        raise NotImplementedError


class TritonFuture(CodeCacheFuture):
    kernel: ModuleType

    def __init__(
        self,
        kernel: Any,
        future: Optional[Future[Any]],
    ) -> None:
        self.kernel = kernel
        self.future = future

    # @dynamo_utils.dynamo_timed
    def result(self) -> ModuleType:
        if self.future is not None:
            # If the worker failed this will throw an exception.
            result = self.future.result()
            assert result is None
            self.future = None
            self.kernel.precompile()
        return self.kernel


class LambdaFuture(CodeCacheFuture):
    def __init__(self, result_fn):
        self.result_fn = result_fn

    def result(self):
        return self.result_fn()