File size: 21,359 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 |
# mypy: allow-untyped-defs
import abc
import collections
import dataclasses
import itertools
import logging
import re
import typing
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
from unittest.mock import patch
import sympy
import torch
from torch.fx.experimental.symbolic_shapes import free_unbacked_symbols
from .codegen.common import index_prevent_reordering
from .utils import (
get_dtype_size,
reduction_num_outputs,
sympy_index_symbol,
sympy_str,
sympy_subs,
VarRanges,
)
from .virtualized import OpsHandler, ReductionType, V
log = logging.getLogger(__name__)
is_indirect = re.compile(r"indirect|tmp").search
class Dep(abc.ABC):
name: str
index: sympy.Expr
@abc.abstractmethod
def rename(self, renames: Dict[str, str]) -> "Dep":
pass
@abc.abstractmethod
def get_numel(self) -> sympy.Expr:
pass
@abc.abstractmethod
def numbytes_hint(self):
pass
@abc.abstractmethod
def has_unbacked_symbols(self) -> bool:
pass
@abc.abstractmethod
def is_contiguous(self) -> bool:
pass
@dataclasses.dataclass(frozen=True)
class MemoryDep(Dep):
name: str
index: sympy.Expr
var_names: Tuple[sympy.Symbol, ...]
size: Tuple[sympy.Expr, ...]
mode: Optional[str] = None
def __repr__(self):
return f"MemoryDep({self.name!r}, {self.index}, {self.ranges}, {self.mode})"
def get_offset(self):
"""
Return the offset by setting every variable to be 0.
"""
return sympy_subs(self.index, {v: 0 for v in self.var_names})
def normalize_with_stride_order(self, prefix="t"):
r"""
Used to decide if two MemoryDep does not equal due to different loop orders.
More specifically, when dep1 and dep2 are not equal, we can normalize
both and check if they are equal after that. If yes, then the mismatch is
caused by different loop orders.
"""
# import here to avoid circular import
from torch._inductor import ir
strides = V.graph.sizevars.stride_hints(self.index, self.var_names)
# pick a loop order with stride ordered decreasingly
order = sorted(range(len(strides)), key=strides.__getitem__, reverse=True)
stride_reorder = ir.same_reorder(order)
sizes = self.size
var_names = self.var_names
new_reordered_sizes = stride_reorder(sizes)
new_reordered_var_names = stride_reorder(var_names)
new_simplified_sizes, reindex, prune = V.graph.sizevars._simplify_loops(
new_reordered_var_names,
new_reordered_sizes,
index_prevent_reordering(
[self.index], new_reordered_var_names, new_reordered_sizes
),
)
# now let's create new symbols with the passed in prefix
var_ranges, add_var = var_builder(prefix)
replacement = dict(
zip(
new_reordered_var_names,
reindex([add_var(x) for x in new_simplified_sizes]),
)
)
new_index = sympy_subs(sympy.expand(self.index), replacement)
out = MemoryDep(self.name, new_index, tuple(var_ranges.keys()), tuple(var_ranges.values())) # type: ignore[arg-type]
return out
@property
def ranges(self) -> Dict[sympy.Symbol, sympy.Expr]:
"""{c0: 128, c1: 512, ...}"""
return dict(zip(self.var_names, self.size))
def get_numel(self) -> sympy.Expr:
if self.is_indirect():
numel = V.graph.get_numel(self.name)
else:
vars = set(self.index.free_symbols)
numel = sympy.Integer(1)
for var, size in zip(self.var_names, self.size):
if var in vars:
numel = numel * size
return numel
def rename(self, renames: Dict[str, str]) -> "MemoryDep":
if self.name in renames:
return MemoryDep(
renames[self.name],
self.index,
var_names=self.var_names,
size=self.size,
mode=self.mode,
)
return self
def numbytes_hint(self):
return V.graph.sizevars.size_hint(self.get_numel()) * get_dtype_size(
V.graph.get_dtype(self.name)
)
def has_unbacked_symbols(self):
return len(free_unbacked_symbols(self.get_numel())) > 0
def is_contiguous(self) -> bool:
return isinstance(self.index, sympy.Symbol) and self.index in self.var_names
def stride1_for_last_dim(self, result_for_complex_expression=True) -> bool:
"""
Whether the stride for the last dimension is 1.
"""
# python test/inductor/test_torchinductor_opinfo.py -k test_comprehensive_masked_scatter_cuda_float16
# will exercise thru this corner case.
if len(self.var_names) == 0:
return True
terms = self.index.args if isinstance(self.index, sympy.Add) else [self.index]
last_sym = self.var_names[-1]
for term in terms:
if term is last_sym:
return True
# Having a >1 stride for the last dimension is bad for perf
# return False.
if (
isinstance(term, sympy.Mul)
and len(term.args) == 2
and term.args[1] is last_sym
and isinstance(term.args[0], (int, sympy.Integer))
and term.args[0] > 1
):
return False
return result_for_complex_expression
def is_scalar(self) -> bool:
if isinstance(self.index, sympy.Symbol):
return self.index not in self.var_names and not self.is_indirect()
return isinstance(self.index, (int, sympy.Integer))
def is_indirect(self) -> bool:
return any(is_indirect(v.name) for v in self.index.free_symbols) # type: ignore[attr-defined]
@dataclasses.dataclass(frozen=True)
class StarDep(Dep):
name: str
mode: Optional[str] = None
# depends on the entire buffer
@property
def index(self):
raise NotImplementedError("StarDep does not have an index")
def get_numel(self) -> sympy.Expr:
return V.graph.get_numel(self.name)
def rename(self, renames: Dict[str, str]) -> "StarDep":
if self.name in renames:
return StarDep(renames[self.name], self.mode)
return self
def numbytes_hint(self):
return V.graph.sizevars.size_hint(self.get_numel()) * get_dtype_size(
V.graph.get_dtype(self.name)
)
def has_unbacked_symbols(self):
return len(free_unbacked_symbols(self.get_numel())) > 0
def is_contiguous(self) -> bool:
return False
def is_scalar(self) -> bool:
return False
def is_indirect(self) -> bool:
return False
# Used for tracking mutation ordering
# if A reads a buffer and B mutates it
# B must be ordered after A
#
# This is useful for a variety of reasons.
# For example, if A's read is never actually used, we can eliminate it.
# Another case is if A's buffer ends up being fused away, we never need to
# materialize that buffer
@dataclasses.dataclass(frozen=True)
class WeakDep(Dep):
name: str
@property
def index(self):
raise NotImplementedError("WeakDep does not have an index")
def get_numel(self) -> sympy.Expr:
return sympy.Integer(1)
def rename(self, renames: Dict[str, str]) -> "WeakDep":
if self.name in renames:
return WeakDep(renames[self.name])
return self
def numbytes_hint(self):
return 1 # Purely inserted for ordering, not an actual dep
def has_unbacked_symbols(self):
return False
def is_contiguous(self) -> bool:
return False
@dataclasses.dataclass(frozen=True)
class IndexExprDep:
index: sympy.Expr # type: ignore[assignment]
var_names: Tuple[sympy.Symbol, ...]
size: Tuple[sympy.Expr, ...]
@dataclasses.dataclass
class ReadWrites:
reads: Set[Dep]
writes: Set[Dep]
index_exprs: Set[IndexExprDep]
range_vars: Optional[List[sympy.Expr]] = None
var_ranges: Optional[VarRanges] = None
op_counts: typing.Counter[str] = dataclasses.field(
default_factory=collections.Counter
)
def rename(self, renames: typing.Dict[str, str]) -> "ReadWrites":
return ReadWrites(
{dep.rename(renames) for dep in self.reads},
{dep.rename(renames) for dep in self.writes},
self.index_exprs,
self.range_vars,
self.var_ranges,
op_counts=self.op_counts,
)
def with_read(self, dep: Dep) -> "ReadWrites":
assert isinstance(dep, (WeakDep, StarDep))
return ReadWrites(
set.union(self.reads, {dep}),
self.writes,
self.index_exprs,
self.range_vars,
self.var_ranges,
op_counts=self.op_counts,
)
def merge(self, other: "ReadWrites"):
reads = set.union(self.reads, other.reads)
writes = set.union(self.writes, other.writes)
index_exprs = set.union(self.index_exprs, other.index_exprs)
op_counts = collections.Counter(self.op_counts)
op_counts.update(other.op_counts)
return ReadWrites(reads - writes, writes, index_exprs, op_counts=op_counts)
@staticmethod
def merge_list(read_writes: List["ReadWrites"]):
all_writes = set.union(*[rw.writes for rw in read_writes])
all_reads = set.union(*[rw.reads for rw in read_writes]) - all_writes
all_index_exprs = set.union(*[rw.index_exprs for rw in read_writes])
op_counts: typing.Counter[Any] = collections.Counter()
for rw in read_writes:
op_counts.update(rw.op_counts)
return ReadWrites(all_reads, all_writes, all_index_exprs, op_counts=op_counts)
def remove_reads(self, rem_reads):
return ReadWrites(
self.reads - rem_reads,
self.writes,
self.index_exprs,
self.range_vars,
self.var_ranges,
op_counts=self.op_counts,
)
def reads_and_writes(self):
return itertools.chain(self.reads, self.writes)
def buffer_names(self, ignore_integer_index=True):
"""
Integer index is used for load_seed.
"""
names = set()
for dep in self.reads_and_writes():
if not isinstance(dep, MemoryDep):
continue
if not ignore_integer_index or not isinstance(
dep.index, (int, sympy.Integer)
):
names.add(dep.name)
return names
class _RecordLoadStoreInner(V.MockHandler): # type: ignore[name-defined]
def __init__(self, var_ranges: VarRanges, normalize: bool):
super().__init__()
self._reads: Set[Dep] = set()
self._writes: Set[MemoryDep] = set()
self._index_exprs: Set[IndexExprDep] = set()
self._var_ranges: VarRanges = var_ranges
self._normalize: bool = normalize
def canonicalize(
self, index: sympy.Expr
) -> Tuple[sympy.Expr, Tuple[sympy.Symbol, ...], Tuple[sympy.Expr, ...]]:
if not self._normalize:
sizes = [V.graph.sizevars.simplify(x) for x in self._var_ranges.values()]
var_names = tuple(
k for k, v in zip(self._var_ranges.keys(), sizes) if v != 1
)
sizes = tuple(v for v in sizes if v != 1)
return index, var_names, sizes # type: ignore[return-value]
# Try to further simplify the indexes even if simplify_loops didn't
# convert it to the simplest form because of the interference from
# different indexing formulas.
free_symbols = index.free_symbols
var_ranges = {
k: V.graph.sizevars.simplify(v)
for k, v in self._var_ranges.items()
# TODO(jansel): explore this further normalization
# if k in free_symbols
}
index_vars = [*var_ranges.keys()]
sizes = tuple(var_ranges.values())
new_sizes, reindex, prune = V.graph.sizevars._simplify_loops(
index_vars,
sizes,
index_prevent_reordering([index], index_vars, sizes),
)
# assign new variables each dimension to deal with numbering mismatches
# d0, d1, d2 could become d0, d2 -- which won't match d0, d1
new_vars, add_var = var_builder(canonicalization_prefix())
replacement = dict(zip(index_vars, reindex([add_var(x) for x in new_sizes])))
index = sympy_subs(sympy.expand(index), replacement)
new_vars = [*new_vars.keys()]
new_sizes = [*new_sizes]
free_symbols = index.free_symbols
while new_vars and new_vars[-1] not in free_symbols:
# Reduction has last (reduced) dim in its sizes, but
# downstream users won't. Normalize this away.
new_vars.pop()
new_sizes.pop()
return index, tuple(new_vars), tuple(new_sizes) # type: ignore[arg-type]
def load(self, name: str, index: sympy.Expr) -> str:
self._reads.add(MemoryDep(name, *self.canonicalize(index)))
return f"load({name}, {sympy_str(index)})"
def load_seed(self, name: str, index: int):
assert isinstance(index, int)
return self.load(name, sympy.Integer(index))
def store(self, name: str, index: sympy.Expr, value: str, mode=None) -> str:
self._writes.add(MemoryDep(name, *self.canonicalize(index), mode=mode))
return f"store({name}, {sympy_str(index)}, {value}, {mode})"
def store_reduction(self, name: str, index, value) -> str:
return self.store(name, index, f"store_reduction({value})")
def index_expr(self, index: sympy.Expr, dtype) -> str:
self._index_exprs.add(IndexExprDep(*self.canonicalize(index)))
return f"index_expr({sympy_str(index)}, {dtype})"
def bucketize(
self,
values,
offsets_name: str,
offsets_size: sympy.Expr,
indexing_dtype: torch.dtype,
right: bool,
):
self._reads.add(StarDep(offsets_name))
return f"bucketize({values}, {offsets_name}, {sympy_str(offsets_size)}, {indexing_dtype}, {right})"
class _OpCounter:
"""Shim to count how many times each op is used"""
def __init__(self, inner):
super().__init__()
self.parent_handler = inner
self._op_counts: typing.Counter[Any] = collections.Counter()
def __getattr__(self, name):
self._op_counts[name] += 1
return getattr(self.parent_handler, name)
class RecordLoadStore(V.KernelFormatterHandler): # type: ignore[name-defined]
def __init__(self, var_ranges: VarRanges, normalize: bool):
parent_handler = _RecordLoadStoreInner(
var_ranges=var_ranges, normalize=normalize
)
parent_handler = _OpCounter(parent_handler)
super().__init__(parent_handler=parent_handler)
# TODO: check call sites
def var_builder(prefix: str) -> Tuple[VarRanges, Callable[[sympy.Expr], sympy.Symbol]]:
cnt = itertools.count()
var_ranges: VarRanges = dict()
def add_var(length: sympy.Expr) -> sympy.Symbol:
v = sympy_index_symbol(f"{prefix}{next(cnt)}")
var_ranges[v] = length
return v
return var_ranges, add_var
def index_vars_no_squeeze(*argsizes: Tuple[sympy.Expr, ...], prefix: str):
var_ranges, add_var = var_builder(prefix)
args: List[List[sympy.Symbol]] = []
for size in argsizes:
args.append(list(map(add_var, size)))
return args, var_ranges
def index_vars_squeeze(*argsizes: Tuple[sympy.Expr, ...], prefix: str = "d"):
from .ir import SqueezeView
var_ranges, add_var = var_builder(prefix)
args: List[List[sympy.Expr]] = []
new_sizes: List[List[sympy.Expr]] = []
for size in argsizes:
new_size, reindex = SqueezeView.squeezer(size)
new_sizes.append(new_size)
args.append(reindex(list(map(add_var, new_size))))
return args, var_ranges
def extract_read_writes(
fn: Callable[..., Any],
*argsizes: Tuple[sympy.Expr, ...],
normalize: bool = False,
prefix: str = "d",
):
args, var_ranges = index_vars_squeeze(*argsizes, prefix=prefix)
rw = RecordLoadStore(var_ranges, normalize=normalize)
with V.set_ops_handler(rw):
fn(*args)
if normalize:
range_vars = [] # Number of vars could differ due to normalization
else:
range_vars = list(itertools.chain.from_iterable(args))
inner = rw.parent_handler.parent_handler
return ReadWrites(
set(inner._reads),
set(inner._writes),
inner._index_exprs,
range_vars,
var_ranges,
rw.parent_handler._op_counts,
)
def extract_input_node_reduction_ranges(
input_node: "torch._inductor.ir.TensorBox",
) -> Tuple[Optional[List[sympy.Expr]], Optional[List[sympy.Expr]]]:
"""
Returns the size and reduction size of all inputs, if the sizes and reduction_sizes (if exist) are all the same.
It's possible that a node has multiple inputs, some are Reduction nodes and others are Pointwise nodes.
In this case, reduction_sizes of the Reduction nodes need to be the same.
Otherwise returns (None, None).
"""
from .ir import ComputedBuffer, Loops
if isinstance(input_node.data, ComputedBuffer):
# Input node has already been realized. Return its size and reduction_size.
size = input_node.get_size()
reduction_size = input_node.get_reduction_size()
if len(reduction_size) > 0:
return (size, reduction_size)
else:
return (None, None)
if not isinstance(input_node.data.data, Loops): # type: ignore[attr-defined]
# Other IRNodes do not have reduction_ranges.
return (None, None)
# There is one issue: what if there are views / permutations between the input node and its dependent realized nodes?
# The current method still uses reduction ranges from the dependent realized node, which is not ideal.
# Is there a way to check whether there are permutations inbetween?
reads = input_node.get_reads()
reduction_size = None
size = None
while reduction_size is None and len(reads) > 0:
seen = set()
new_reads = []
for read in reads:
if not isinstance(read, MemoryDep):
continue
if read.name in seen:
continue
seen.add(read.name)
buffer = V.graph.get_buffer(read.name)
if buffer is None:
continue
if (
isinstance(buffer, ComputedBuffer)
and len(buffer.get_reduction_size()) > 0
):
if reduction_size is None:
reduction_size = buffer.get_reduction_size()
size = buffer.get_size()
elif (
reduction_size != buffer.get_reduction_size()
or size != buffer.get_size()
):
return (None, None)
else:
new_reads.extend(buffer.get_reads())
if reads == new_reads:
return (size, reduction_size)
else:
reads = new_reads
return (size, reduction_size)
def canonicalization_prefix():
return "c"
# ops handler which computes all the free unbacked symbols for an IR
class FreeUnbackedSymbolsOpsHandler:
symbols: Set[sympy.Symbol]
def __init__(self):
self.symbols = set()
def __getattr__(self, name: str) -> Callable[..., Any]:
def inner(*args, **kwargs):
for a in itertools.chain(args, kwargs.values()):
if isinstance(a, (sympy.Expr, sympy.logic.boolalg.Boolean)):
self.symbols |= free_unbacked_symbols(a)
return inner
def indirect_indexing(self, index_var, size, check=True) -> sympy.Symbol:
assert not isinstance(index_var, (sympy.Expr, sympy.logic.boolalg.Boolean))
self.symbols |= free_unbacked_symbols(size)
return sympy_index_symbol(f"({str(index_var)})")
def frexp(self, x):
return (None,) * 2
def scan(self, dtypes, combine_fn, values):
return (None,) * len(values)
def reduction(
self,
dtype: torch.dtype,
src_dtype: torch.dtype,
reduction_type: ReductionType,
value: Union[None, Tuple[None, ...]],
) -> Union[None, Tuple[None, ...]]:
num_values = reduction_num_outputs(reduction_type)
return (None,) * num_values if num_values > 1 else None
def _typecheck_FreeUnbackedSymbolsOpsHandler(
h: FreeUnbackedSymbolsOpsHandler,
) -> OpsHandler[None]:
return h
def extract_free_unbacked_symbols(fn: Callable[..., Any], index, rindex=None):
from .ir import FlexibleLayout
args = [index, rindex] if rindex is not None else [index]
handler = FreeUnbackedSymbolsOpsHandler()
# NB: I cargo culted the allow_indexing patch here, I don't understand why
# people do this all over
with V.set_ops_handler(handler), patch.object(
FlexibleLayout, "allow_indexing", True
):
fn(*args)
return handler.symbols
|