File size: 57,042 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
# mypy: allow-untyped-defs
from __future__ import annotations

import collections
import contextlib
import dataclasses
import enum
import functools
import inspect
import io
import itertools
import json
import logging
import math
import operator
import os
import platform
import shutil
import sys
import tempfile
import textwrap
import time
import unittest
from datetime import datetime
from io import StringIO
from pathlib import Path
from typing import (
    Any,
    Callable,
    Dict,
    Generic,
    Iterable,
    List,
    NamedTuple,
    Optional,
    Protocol,
    Set,
    Tuple,
    TypeVar,
    Union,
    ValuesView,
)
from typing_extensions import Concatenate, ParamSpec
from unittest import mock

import sympy

import torch
import torch._export
import torch.utils._pytree as pytree
from torch._dynamo.device_interface import get_interface_for_device
from torch._dynamo.utils import detect_fake_mode
from torch.autograd import DeviceType
from torch.autograd.profiler_util import EventList
from torch.fx.passes.shape_prop import ShapeProp
from torch.utils._sympy.functions import CeilDiv, CleanDiv, FloorDiv, ModularIndexing
from torch.utils._sympy.symbol import make_symbol, SymT
from torch.utils._sympy.value_ranges import bound_sympy, ValueRanges
from . import config
from .runtime.runtime_utils import cache_dir, ceildiv as runtime_ceildiv

log = logging.getLogger(__name__)

_T = TypeVar("_T")
VarRanges = Dict[sympy.Expr, sympy.Expr]

GPU_ALIGN_BYTES = 16

ALIGN_BYTES = 64
assert (ALIGN_BYTES & (ALIGN_BYTES - 1)) == 0 and ALIGN_BYTES >= 8, "must be power of 2"


def _align(nbytes):
    """Round up to the nearest multiple of ALIGN_BYTES"""
    return (nbytes + ALIGN_BYTES - 1) & -ALIGN_BYTES


def _is_aligned(v: sympy.Expr):
    """v can be statically proven to be a multiple of ALIGN_BYTES"""
    if isinstance(v, (sympy.Add, sympy.Max)):
        return all(map(_is_aligned, v.args))
    return isinstance(v, align) or sympy.gcd(v, ALIGN_BYTES) == ALIGN_BYTES


class align(sympy.Function):
    """Symbolically round up to the nearest multiple of ALIGN_BYTES"""

    nargs = (1,)
    is_integer = True

    @classmethod
    def eval(cls, value):
        if isinstance(value, (int, sympy.Integer)):
            return _align(int(value))
        if _is_aligned(value):
            return value


def do_bench_using_profiling(fn: Callable[[], Any], warmup=25, rep=100) -> float:
    """
    Returns benchmark results by examining torch profiler events.
    This could be more accurate as it doesn't count CPU side overhead.
    However, this also requires manually excluding irrelevant event, e.g.
    vectorized_elementwise_kernel which is used to fill L2 cache,
    various CUDA events, etc, so could also be fragile.
    """

    fn()
    torch.cuda.synchronize()
    cache = torch.empty(int(256e6 // 4), dtype=torch.int, device="cuda")

    # Estimate the runtime of the function
    start_event = torch.cuda.Event(enable_timing=True)
    end_event = torch.cuda.Event(enable_timing=True)
    start_event.record()
    for _ in range(5):
        cache.zero_()
        fn()
    end_event.record()
    torch.cuda.synchronize()
    estimate_ms = start_event.elapsed_time(end_event) / 5

    # compute number of warmup and repeat
    n_warmup = max(1, int(warmup / estimate_ms))
    n_repeat = max(1, int(rep / estimate_ms))

    # Warm-up
    for _ in range(n_warmup):
        fn()

    with torch.profiler.profile(
        activities=[
            torch.profiler.ProfilerActivity.CUDA,
        ]
    ) as p:
        # Benchmark
        for i in range(n_repeat):
            # we clear the L2 cache before each run
            cache.zero_()
            # record time of `fn`
            fn()
        # Record clocks
        torch.cuda.synchronize()

    log.debug("raw events")
    log.debug(p.key_averages().table(sort_by="self_cuda_time_total", row_limit=-1))

    filtered_events = EventList(
        [
            event
            for event in p.events()
            if event.device_type == DeviceType.CUDA and event.name != "Context Sync"
        ]
    )
    if len(filtered_events) % n_repeat != 0:
        raise RuntimeError(
            "Failed to divide all profiling events into #repeat groups. "
            "#CUDA events: %d, #repeats: %s",
            len(filtered_events),
            n_repeat,
        )
    num_event_per_group = len(filtered_events) / n_repeat
    actual_events = EventList(
        [
            event
            for i, event in enumerate(filtered_events)
            if i % num_event_per_group != 0
        ]
    )
    actual_events._build_tree()
    actual_events = actual_events.key_averages()

    log.debug("profiling time breakdown")
    log.debug(actual_events.table(row_limit=-1))

    res = sum(event.device_time_total for event in actual_events) / 1000.0 / n_repeat
    log.debug("profiling results: %s ms", res)
    return res


@functools.lru_cache(None)
def has_torchvision_roi_align() -> bool:
    try:
        from torchvision.ops import roi_align  # noqa: F401

        torch._C._dispatch_has_kernel_for_dispatch_key("torchvision::nms", "Meta")
        return roi_align is not None and hasattr(
            getattr(torch.ops, "torchvision", None), "roi_align"
        )
    except ImportError:
        return False
    except RuntimeError as e:
        assert "torchvision::nms does not exist" in str(e)
        return False


def decode_device(device: Union[Optional[torch.device], str]) -> torch.device:
    if device is None:
        return torch.tensor(0.0).device  # default device
    if isinstance(device, str):
        device = torch.device(device)
    if device.type not in ("cpu", "meta") and device.index is None:
        device_interface = get_interface_for_device(device.type)
        return torch.device(device.type, index=device_interface.Worker.current_device())
    return device


def sympy_product(it):
    return functools.reduce(operator.mul, it, sympy.Integer(1))


def sympy_dot(seq1, seq2):
    assert len(seq1) == len(seq2)
    return sympy.expand(sum(a * b for a, b in zip(seq1, seq2)))


def unique(it: Iterable[_T]) -> ValuesView[_T]:
    return {id(x): x for x in it}.values()


def ceildiv(
    numer: Union[int, sympy.Expr], denom: Union[int, sympy.Expr]
) -> Union[int, sympy.Expr]:
    if isinstance(numer, sympy.Expr) or isinstance(denom, sympy.Expr):
        return CeilDiv(sympy.sympify(numer), sympy.sympify(denom))
    # TODO: There is a bug in a call to this function, to repro:
    # python benchmarks/dynamo/huggingface.py --inductor -d cuda --accuracy
    # --amp --only YituTechConvBert --dynamic-shapes
    assert isinstance(numer, int) and isinstance(
        denom, int
    ), f"{numer}: {type(numer)}, {denom}: {type(denom)}"
    return runtime_ceildiv(numer, denom)


def _type_of(key):
    # Use the function here to get rid of dependencies on the Triton during the codegen.
    # Refer to Triton implementation here:
    # https://github.com/openai/triton/blob/98b5945d2aef679e00ebca8e07c35c3658ec76de/python/triton/runtime/jit.py#L238
    # `None` is nullptr.  Implicitly convert to *i8.
    if key is None:
        return "*i8"
    dtype_str = str(key).split(".")[-1]
    tys = {
        "bool": "i1",
        "float8e4nv": "fp8e4nv",
        "float8e5": "fp8e5",
        "float8e4b15": "fp8e4b15",
        "float8e4b15x4": "fp8e4b15x4",
        "float8_e4m3fn": "fp8e4nv",
        "float8_e5m2": "fp8e5",
        "float16": "fp16",
        "bfloat16": "bf16",
        "float32": "fp32",
        "float64": "fp64",
        "int8": "i8",
        "int16": "i16",
        "int32": "i32",
        "int64": "i64",
        "uint8": "u8",
        "uint16": "u16",
        "uint32": "u32",
        "uint64": "u64",
    }
    # reinterpret can create triton type
    for v in list(tys.values()):
        tys[v] = v
    return key if isinstance(key, str) else f"*{tys[dtype_str]}"


def convert_shape_to_inductor(
    lst: Iterable[Union[int, torch.SymInt]]
) -> List[sympy.Expr]:
    """
    Gets the shape and stride of a tensor. For non-symbolic tensors, this is
    trivial. But for symbolic tensors, we need to map from SymIntNode into
    sympy.Expr.
    """
    return [
        i.node.expr if isinstance(i, torch.SymInt) else sympy.Integer(i) for i in lst
    ]


def convert_shape_to_symint(
    lst: Iterable[Union[int, sympy.Expr]]
) -> List[Union[int, torch.SymInt]]:
    """
    Takes a list of shapes from Inductor and converts them into symints (or just
    ints if all shapes are static).
    """
    from .virtualized import V

    return [
        i
        if isinstance(i, int)
        else int(i)
        if isinstance(i, sympy.Integer)
        else V.graph.sizevars.shape_env.create_symintnode(i, hint=None)
        for i in lst
    ]


def is_view(op: torch._ops.OpOverload):
    """
    Does this op overload have aliasing
    """
    assert isinstance(op, torch._ops.OpOverload)
    return any(a.alias_info is not None for a in op._schema.arguments)


def is_pointwise_use(use):
    if not use.op == "call_function":
        return False

    if not (
        isinstance(use.target, torch._ops.OpOverload) or use.target is operator.getitem
    ):
        return False

    if use.target is operator.getitem or is_view(use.target):
        return all(is_pointwise_use(u) for u in use.users)

    return torch.Tag.pointwise in use.target.tags


def gen_gm_and_inputs(target, args, kwargs):
    g = torch.fx.Graph()
    g_args = []
    a_args = []
    for n, arg in enumerate(args):
        if isinstance(arg, torch.Tensor):
            g_args.append(g.placeholder(f"arg{n}"))
            a_args.append(arg)
        else:
            g_args.append(arg)
    assert all(not isinstance(x, torch.Tensor) for x in kwargs.values())
    node = g.call_function(target, tuple(g_args), kwargs)
    if (
        len(target._schema.returns) == 1
        and str(target._schema.returns[0].type) == "Tensor"
    ):
        node = (node,)
    g.output(node)

    gm = torch.fx.GraphModule({}, g)
    return gm, a_args


def synchronize(device: str = "cuda"):
    if device == "cpu":
        return
    device_interface = get_interface_for_device(device)
    if device_interface.is_available():
        device_interface.synchronize()


def timed(
    model: Callable[..., Any], example_inputs, times: int = 1, device: str = "cuda"
) -> float:
    synchronize(device)
    torch.manual_seed(1337)
    t0 = time.perf_counter()
    for _ in range(times):
        result = model(*example_inputs)
        synchronize(device)
    t1 = time.perf_counter()
    # GC the result after timing
    assert result is not None  # type: ignore[possibly-undefined]
    return t1 - t0


def print_performance(
    fn, args=(), times=10, repeat=10, baseline=1.0, device: str = "cuda"
):
    timings = torch.tensor([timed(fn, args, times, device) for _ in range(repeat)])
    took = torch.median(timings) / times
    print(f"{took / baseline:.6f}")
    return took


def precompute_method(obj: Any, method: str):
    """Replace obj.method() with a new method that returns a precomputed constant."""
    result = getattr(obj, method)()
    setattr(obj, method, lambda: result)


def precompute_methods(obj: Any, methods: List[str]):
    """Replace methods with new methods that returns a precomputed constants."""
    for method in methods:
        precompute_method(obj, method)


def cmp(a, b) -> int:
    return int(a > b) - int(a < b)


def pad_listlike(x, size):
    if len(x) == 1:
        return type(x)([x[0]]) * size
    else:
        return x


# Used to ensure that iterating over a set is deterministic
def tuple_sorted(x):
    if len(x) == 0:
        return []

    def sort_func(elem):
        if isinstance(elem, str):
            return elem
        else:
            # We expect `elem` to be `scheduler.BaseSchedulerNode` type here,
            # but we are not able to do isinstance assert because of circular dependency
            return elem.get_name()

    return sorted(x, key=sort_func)


P = ParamSpec("P")
RV = TypeVar("RV", covariant=True)


class CachedMethod(Protocol, Generic[P, RV]):
    @staticmethod
    def clear_cache(self) -> None:
        ...

    def __call__(self, *args: P.args, **kwargs: P.kwargs) -> RV:
        ...


# See https://github.com/python/mypy/issues/13222#issuecomment-1193073470 to understand the type signature
def cache_on_self(fn: Callable[Concatenate[Any, P], RV]) -> CachedMethod[P, RV]:
    key = f"__{fn.__name__}_cache"

    @functools.wraps(fn)
    def wrapper(self):
        if not hasattr(self, key):
            setattr(self, key, fn(self))
        return getattr(self, key)

    def clear_cache(self):
        if hasattr(self, key):
            delattr(self, key)

    wrapper.clear_cache = clear_cache  # type: ignore[attr-defined]
    return wrapper  # type: ignore[return-value]


def aggregate_origins(node_schedule):
    from . import ir

    if isinstance(node_schedule, list):
        return functools.reduce(
            operator.or_,
            [
                node.node.origins
                for node in node_schedule
                if hasattr(node, "node") and node.node
            ],
            set(),
        )
    elif isinstance(node_schedule, ir.ExternKernel):
        return node_schedule.origins
    else:
        return set()


def get_fused_kernel_name(node_schedule, descriptive_names):
    all_origins = aggregate_origins(node_schedule)
    if descriptive_names == "original_aten":
        # Bases the kernel name off of the top-level aten operator (i.e. pre-decompositions)
        sources = [
            origin.meta["original_aten"]._overloadpacket.__name__
            for origin in all_origins
            if origin.op == "call_function"
            and "original_aten" in origin.meta
            and origin.meta["original_aten"] is not None
        ]
        sources = sorted(set(sources))
    elif descriptive_names == "torch":
        # Bases the kernel name off of the top-level "torch" operator (i.e. post-dynamo graph)
        sources = []
        for origin in all_origins:
            if origin.op == "call_function" and "source_fn_stack" in origin.meta:
                source_fn = origin.meta["source_fn_stack"][-1]
                if isinstance(source_fn[1], str):
                    sources.append(source_fn[1])
                else:
                    sources.append(source_fn[1].__name__)
        sources = sorted(set(sources))
    elif descriptive_names == "inductor_node":
        sources = [
            origin.name for origin in all_origins if origin.op == "call_function"
        ]
    else:
        raise NotImplementedError
    sources = sources
    return "_".join(["fused"] + sources)


def get_kernel_metadata(node_schedule, wrapper):
    all_origins = aggregate_origins(node_schedule)
    inductor_nodes = [origin for origin in all_origins if origin.op == "call_function"]

    from_node_dict = collections.defaultdict(list)
    original_aten_dict = collections.defaultdict(list)
    for node in inductor_nodes:
        if "original_aten" in node.meta and node.meta["original_aten"] is not None:
            key = str(node.meta["original_aten"]._overloadpacket)
            original_aten_dict[key].append(node.name)
        if "from_node" in node.meta:
            key = node.meta["from_node"][0][0]
            from_node_dict[key].append(node.name)
    metadata = (
        f"{wrapper.comment} Source Nodes: [{', '.join(sorted(from_node_dict.keys()))}], "
        f"Original ATen: [{', '.join(sorted(original_aten_dict.keys()))}]"
    )
    # trace back to original node here
    detailed_metadata = []
    for original_node, nodes in sorted(from_node_dict.items()):
        detailed_metadata.append(
            f"{wrapper.comment} {original_node} => {', '.join(sorted(nodes))}"
        )
    return metadata, "\n".join(detailed_metadata)


def dominated_nodes(
    initial_queue: Iterable[torch.fx.Node], skip_filter=None
) -> Set[torch.fx.Node]:
    """Returns the set of nodes whose values depend on those within initial_queue"""
    initial_queue = list(initial_queue)
    dominated_set = set(initial_queue)

    while initial_queue:
        node = initial_queue.pop()
        for user in node.users:
            if skip_filter and skip_filter(user):
                continue
            if user not in dominated_set:
                dominated_set.add(user)
                initial_queue.append(user)

    return dominated_set


def gather_origins(args, kwargs):
    import itertools

    from . import ir

    def is_unrealized_node(n):
        if isinstance(n, ir.TensorBox):
            return is_unrealized_node(n.data)
        if isinstance(n, ir.StorageBox):
            return is_unrealized_node(n.data)
        return isinstance(n, ir.IRNode) and isinstance(n, ir.Pointwise)

    kwarg_origins = [val.origins for val in kwargs.values() if is_unrealized_node(val)]
    arg_origins = [arg.origins for arg in args if is_unrealized_node(arg)]
    return set(itertools.chain(*arg_origins, *kwarg_origins))


def sympy_str(expr: sympy.Expr) -> str:
    """
    Normal sympy str is very slow, this is a lot faster.  The result are
    somewhat worse, as it doesn't do as much simplification.  So don't
    use this for final codegen.
    """
    if isinstance(expr, sympy.Symbol):
        return expr.name
    if isinstance(expr, sympy.Add):
        return " + ".join(map(sympy_str, expr.args))
    if isinstance(expr, sympy.Mul):
        return " * ".join(map(sympy_str, expr.args))

    if isinstance(expr, (ModularIndexing, CleanDiv, FloorDiv)):
        return f"{expr.func.__name__}({', '.join(map(sympy_str, expr.args))})"
    return str(expr)


def get_bounds_index_expr(index):
    from .virtualized import V

    # If this expression does not come from an FX node, we compute its bounds
    if (
        config.compute_all_bounds
        and (fx_node := getattr(V.interpreter, "current_node", None))
        and fx_node.target != "index_expr"
    ):
        return bound_sympy(index)
    else:
        return ValueRanges.unknown()


def sympy_index_symbol_with_prefix(prefix: SymT, idx: int) -> sympy.Symbol:
    """
    Used to generate an integer-nonnegative symbol.
    """
    # This should never be used for creating shape/stride symbols, as those
    # should all be allocated before Inductor.
    assert prefix != SymT.SIZE
    # NOTE: shape symbols are positive (> 0), but index variables are only
    # non-negative (>= 0).
    return make_symbol(prefix, idx, integer=True, nonnegative=True)


def generate_assert(check):
    return (check or config.debug_index_asserts) and config.assert_indirect_indexing


def sympy_index_symbol(name: str) -> sympy.Symbol:
    """
    Used to generate an integer-nonnegative symbol.
    """
    # This should never be used for creating shape/stride symbols, as those
    # should all be allocated before Inductor.
    assert name[0] != "s"
    # NOTE: shape symbols are positive (> 0), but index variables are only
    # non-negative (>= 0).
    return sympy.Symbol(name, integer=True, nonnegative=True)


def sympy_subs(expr: sympy.Expr, replacements: Dict[sympy.Expr, Any]) -> sympy.Expr:
    """
    When the passed replacement symbol v is a string, it is converted to a symbol with name v that
    have the same replaced expression integer and nonnegative properties.
    """

    def to_symbol(replaced, replacement):
        assert isinstance(replaced, sympy.Expr)
        if isinstance(replacement, str):
            return sympy.Symbol(
                replacement,
                integer=replaced.is_integer,  # type: ignore[attr-defined]
                nonnegative=replaced.is_nonnegative,  # type: ignore[attr-defined]
            )
        else:
            return replacement

    # xreplace is faster than subs, but is way more picky
    return sympy.sympify(expr).xreplace(
        {k: to_symbol(k, v) for k, v in replacements.items()}
    )


def is_symbolic(a: Any) -> bool:
    return isinstance(a, torch.SymInt) or (
        isinstance(a, torch.Tensor)
        and any(is_symbolic(x) for x in itertools.chain(a.size(), a.stride()))
    )


def any_is_symbolic(*args: Any) -> bool:
    return any(is_symbolic(a) for a in args)


def get_first_incompatible_cudagraph_node(gm):
    from torch.fx.experimental.symbolic_shapes import free_unbacked_symbols

    forbidden_set = {
        "aten._fused_moving_avg_obs_fq_helper.default",
        "aten._fused_moving_avg_obs_fq_helper_functional.default",
        "aten.multinomial.default",
        "fbgemm.dense_to_jagged.default",
        "fbgemm.jagged_to_padded_dense.default",
        "run_and_save_rng_state",
        "run_with_rng_state",
        "aten._local_scalar_dense",
        # Technically, it's not necessary to ban this, because an
        # assert_scalar with constant arguments can be validly run
        # with CUDA graphs, but the operator is also pointless with
        # constant arguments, so might as well ban
        "aten._assert_scalar",
    }
    if torch.are_deterministic_algorithms_enabled():
        forbidden_set.update(
            {
                "aten._unsafe_index_put.default",
                "aten.index_put.default",
                "aten.index_put_.default",
                "aten.scatter.src",
                "aten.scatter.reduce",
                "aten.scatter.value_reduce",
                "aten.scatter_add_",
                "aten.scatter_add.default",
                "aten.scatter_reduce.two",
                "aten.scatter_reduce_.two",
                "aten.scatter_reduce.two_out",
            }
        )
    for node in gm.graph.nodes:
        if str(node.target) in forbidden_set:
            return node
        if (val := node.meta.get("val")) is not None and free_unbacked_symbols(val):
            return node
    return None


def has_incompatible_cudagraph_ops(gm):
    return get_first_incompatible_cudagraph_node(gm) is not None


def output_node(gm: torch.fx.GraphModule):
    """Get the output node from an FX graph"""
    last_node = next(iter(reversed(gm.graph.nodes)))
    assert last_node.op == "output"
    return last_node


_registered_caches: List[Any] = []


def clear_on_fresh_inductor_cache(obj: Any):
    """
    Use this decorator to register any caches that should be cache_clear'd
    with fresh_inductor_cache().
    """
    if not hasattr(obj, "cache_clear") or not callable(obj.cache_clear):
        raise AttributeError(f"{obj} does not have a cache_clear method")

    _registered_caches.append(obj)
    return obj


def clear_inductor_caches():
    """
    Clear all registered caches.
    """
    for obj in _registered_caches:
        obj.cache_clear()


@contextlib.contextmanager
def fresh_inductor_cache(cache_entries=None):
    """
    Contextmanager that provides a clean tmp cachedir for inductor.

    Optionally, pass a dict as 'cache_entries' to get a list of filenames and sizes
    generated with this cache instance.
    """
    clear_inductor_caches()

    inductor_cache_dir = tempfile.mkdtemp()
    try:
        with mock.patch.dict(
            os.environ, {"TORCHINDUCTOR_CACHE_DIR": inductor_cache_dir}
        ):
            triton_cache_dir = os.path.join(inductor_cache_dir, "triton")
            with mock.patch.dict(os.environ, {"TRITON_CACHE_DIR": triton_cache_dir}):
                yield
                if isinstance(cache_entries, dict):
                    assert len(cache_entries) == 0, "expected empty cache_entries dict"
                    if os.path.exists(triton_cache_dir):
                        files = os.listdir(triton_cache_dir)
                        cache_entries.update(
                            {
                                f: os.path.getsize(os.path.join(triton_cache_dir, f))
                                for f in files
                                if ".lock" not in f
                            }
                        )
        shutil.rmtree(inductor_cache_dir)
    except Exception:
        log.warning("on error, temporary cache dir kept at %s", inductor_cache_dir)
        raise
    finally:
        clear_inductor_caches()


def argsort(seq) -> List[int]:
    # preserve original order for equal strides
    getter = seq.__getitem__
    a_r = range(len(seq))
    return list(reversed(sorted(a_r, key=getter, reverse=True)))  # noqa: C413


@functools.lru_cache(8)
def get_dtype_size(dtype):
    return torch.empty((), dtype=dtype).element_size()


class LineContext(NamedTuple):
    context: Any


class IndentedBuffer:
    tabwidth = 4

    def __init__(self, initial_indent=0):
        self._lines = []
        self._indent = initial_indent

    def getvaluewithlinemap(self) -> tuple[str, list[tuple[int, LineContext]]]:
        buf = StringIO()
        p = 1
        linemap = []
        for line in self._lines:
            if isinstance(line, DeferredLineBase):
                line = line()
                if line is None:
                    continue
            elif isinstance(line, LineContext):
                linemap.append((p, line.context))
                continue
            assert isinstance(line, str)
            buf.write(line)
            buf.write("\n")
            p += 1 + line.count("\n")
        return buf.getvalue(), linemap

    def getvalue(self) -> str:
        v, _ = self.getvaluewithlinemap()
        return v

    def getrawvalue(self) -> str:
        buf = StringIO()
        for line in self._lines:
            if isinstance(line, DeferredLineBase):
                line = line()
                if line is None:
                    continue
            elif isinstance(line, LineContext):
                continue
            assert isinstance(line, str)
            # backslash implies line continuation
            if line.endswith("\\"):
                buf.write(line[:-1])
            else:
                buf.write(line)
                buf.write("\n")
        return buf.getvalue()

    def clear(self):
        self._lines.clear()

    def __bool__(self):
        return bool(self._lines)

    def prefix(self):
        return " " * (self._indent * self.tabwidth)

    def newline(self):
        self.writeline("\n")

    def writeline(self, line):
        if isinstance(line, LineContext):
            self._lines.append(line)
        elif isinstance(line, DeferredLineBase):
            self._lines.append(line.with_prefix(self.prefix()))
        elif line.strip():
            self._lines.append(f"{self.prefix()}{line}")
        else:
            self._lines.append("")

    def writelines(self, lines):
        for line in lines:
            self.writeline(line)

    def indent(self, offset=1):
        @contextlib.contextmanager
        def ctx():
            self._indent += offset
            try:
                yield
            finally:
                self._indent -= offset

        return ctx()

    def do_indent(self, offset=1):
        self._indent += offset

    def do_unindent(self, offset=1):
        self._indent -= offset

    def splice(self, other_code, strip=False):
        if isinstance(other_code, IndentedBuffer):
            dedent = float("inf")
            for line in other_code._lines:
                if not isinstance(line, LineContext) and line:
                    dedent = min(dedent, len(line) - len(line.lstrip()))
            if math.isinf(dedent):
                dedent = 0
            for line in other_code._lines:
                if isinstance(line, LineContext):
                    self._lines.append(line)
                else:
                    IndentedBuffer.writeline(self, line[int(dedent) :])
        else:
            other_code = textwrap.dedent(other_code)
            if strip:
                other_code = other_code.lstrip()
            if not other_code:
                return
            other_code = other_code.rstrip()
            for line in other_code.split("\n"):
                self.writeline(line)

    def map(self, func: Callable[[Any], Any]) -> IndentedBuffer:
        res = IndentedBuffer(initial_indent=self._indent)
        res._lines = [func(line) for line in self._lines]
        return res

    def __repr__(self):
        return f"{type(self)}({self.getvalue()})"

    def __add__(self, other):
        assert self._indent == other._indent
        res = IndentedBuffer(initial_indent=self._indent)
        res.writelines(self._lines)
        res.writelines(other._lines)
        return res


class FakeIndentedBuffer(IndentedBuffer):
    def __init__(self):
        super().__init__()

    def __getattribute__(self, name):
        if name == "__class__":  # Allow access to the class attribute
            return object.__getattribute__(self, name)
        raise RuntimeError(
            f"Tried to call self.{name} on FakeIndentedBuffer. This buffer"
            "is currently used on TritonTemplateKernel to prevent actual"
            "writes to the body without explicitly specifying the body with"
            "`TritonTemplateKernel.set_subgraph_body(name)`"
        )


@contextlib.contextmanager
def restore_stdout_stderr(initial_stdout, initial_stderr):
    try:
        yield
    finally:
        sys.stdout = initial_stdout
        sys.stderr = initial_stderr


class DeferredLineBase:
    """A line that can be 'unwritten' at a later time"""

    def __init__(self, line):
        if not line.strip():
            line = ""
        self.line = line

    def __call__(self) -> Optional[str]:
        """Returns either self.line or None to indicate the line has been 'unwritten'"""
        raise NotImplementedError

    def _new_line(self, line: str) -> DeferredLineBase:
        """Returns a new deferred line with the same condition"""
        raise NotImplementedError

    def with_prefix(self, prefix):
        return self._new_line(f"{prefix}{self.line}")

    def lstrip(self):
        return self._new_line(self.line.lstrip())

    def __getitem__(self, index):
        return self._new_line(self.line[index])

    def __bool__(self):
        return bool(self.line)

    def __len__(self):
        return len(self.line)


@functools.lru_cache(None)
def is_big_gpu(index) -> bool:
    min_sms = 68  # 3080
    avail_sms = torch.cuda.get_device_properties(index).multi_processor_count
    if avail_sms < min_sms:
        log.warning(
            "Not enough SMs to use max_autotune_gemm mode",
            extra={"min_sms": min_sms, "avail_sms": avail_sms},
        )
        return False
    return True


def use_max_autotune() -> bool:
    return (
        config.max_autotune or config.max_autotune_gemm or config.search_autotune_cache
    )


def _use_template_for_cuda(layout, allowed_layout_dtypes: List[torch.dtype]) -> bool:
    return (
        use_max_autotune()
        and layout.device.type == "cuda"
        and layout.dtype in allowed_layout_dtypes
        and is_big_gpu(layout.device.index or 0)
    )


def _use_autotune_backend(backend: str) -> bool:
    return backend.upper() in [
        x.strip() for x in config.max_autotune_gemm_backends.upper().split(",")
    ]


def use_triton_template(layout, *, enable_int32=False):
    layout_dtypes = [torch.float16, torch.bfloat16, torch.float32]
    if enable_int32:
        layout_dtypes = [torch.float16, torch.bfloat16, torch.float32, torch.int32]
    return _use_template_for_cuda(layout, layout_dtypes) and _use_autotune_backend(
        "TRITON"
    )


def use_cutlass_template(layout, m, n, k):
    from .virtualized import V

    gemm_size = V.graph.sizevars.size_hint(m * n * k, fallback=-1)
    if gemm_size <= 0 or gemm_size < config.cuda.cutlass_backend_min_gemm_size:
        return False
    from .codegen.cuda.cutlass_utils import try_import_cutlass

    # Do not use cutlass template on ROCm
    if torch.version.hip:
        return False

    layout_dtypes = [torch.float16, torch.bfloat16, torch.float32, torch.int32]
    res = _use_template_for_cuda(layout, layout_dtypes) and _use_autotune_backend(
        "CUTLASS"
    )

    if res:
        if not try_import_cutlass():
            log.warning(
                "Failed to import CUTLASS lib. Please check whether "
                "_inductor.config.cuda.cutlass_dir is set correctly. "
                "Skipping CUTLASS backend for now."
            )
            return False
    return res


def _use_template_for_cpu(layout):
    return use_max_autotune() and layout.device.type == "cpu"


def use_cpp_packed_gemm_template(layout, mat1, mat2):
    from . import ir
    from .codegen.cpp_micro_gemm import create_micro_gemm
    from .kernel.mm_common import mm_args

    if not _use_template_for_cpu(layout) or not _use_autotune_backend("CPP"):
        return False

    if not config.cpp.weight_prepack:
        return False

    layout_dtypes = [torch.float32]
    m, n, k, layout, mat1, mat2 = mm_args(mat1, mat2)
    # TODO(jgong5): support dynamic shapes for n or k
    if has_free_symbols((n, k)):
        return False
    if isinstance(mat2, ir.BaseView):
        mat2 = mat2.unwrap_view()
    micro_gemm = create_micro_gemm(
        "micro_gemm", m, n, k, layout.dtype, num_threads=parallel_num_threads()
    )
    # TODO(jgong5): support n % n_block_size != 0
    return (
        layout.dtype in layout_dtypes
        and micro_gemm is not None
        and n % micro_gemm.register_blocking[1] == 0
        and mat1.get_stride()[-1] == 1  # TODO(jgong5): support transposed input
        and isinstance(mat2, ir.StorageBox)
        and mat2.is_module_buffer()
    )


def use_aten_gemm_kernels():
    return not use_max_autotune() or _use_autotune_backend("ATEN")


class DebugDirManager:
    counter = itertools.count(0)
    prev_debug_name: str

    def __init__(self):
        self.id = next(DebugDirManager.counter)

    def __enter__(self):
        self.prev_debug_name = torch._dynamo.config.debug_dir_root
        self.new_name = f"{self.prev_debug_name}_tmp_{self.id}"
        torch._dynamo.config.debug_dir_root = self.new_name

    def __exit__(self, *args):
        shutil.rmtree(self.new_name)
        torch._dynamo.config.debug_dir_root = self.prev_debug_name


def run_and_get_code(fn, *args, **kwargs):
    from .graph import GraphLowering

    compile_to_module = GraphLowering.compile_to_module
    source_codes: List[str] = []

    def patched_compile_to_module(self):
        mod = compile_to_module(self)
        with open(mod.__file__) as f:
            source_codes.append(f.read())
        return mod

    # If FX code caching is enabled, a hit prevents getting the code.
    with config.patch({"fx_graph_cache": False}):
        with mock.patch.object(
            GraphLowering, "compile_to_module", patched_compile_to_module
        ):
            torch._dynamo.reset()
            result = fn(*args, **kwargs)
    return result, source_codes


def get_code(fn, *args, **kwargs):
    """Get the inductor-generated code, but skip any actual compilation or running."""
    from .graph import GraphLowering

    source_codes: List[str] = []

    def patched_compile_to_module(self: GraphLowering):
        class DummyModule:
            """This is empty to replace the generated triton module"""

            def __init__(self):
                pass

            def call(self, *args, **kwargs):
                # Don't do anything when called
                pass

        code, _ = (
            self.codegen_with_cpp_wrapper() if self.cpp_wrapper else self.codegen()
        )
        # Skip all the actual compiling.

        source_codes.append(code)
        return DummyModule()

    # If FX code caching is enabled, a hit prevents getting the code.
    with config.patch({"fx_graph_cache": False}):
        with mock.patch.object(
            GraphLowering, "compile_to_module", patched_compile_to_module
        ):
            torch._dynamo.reset()
            # Note the return here is None
            _ = fn(*args, **kwargs)

    return source_codes


def get_triton_code(fn, *args, **kwargs):
    source_codes = get_code(fn, *args, **kwargs)
    # Can have two outputs if backwards was eagerly compiled
    assert (
        1 <= len(source_codes) <= 2
    ), f"expected one or two code outputs got {len(source_codes)}"
    return source_codes[0]


def run_and_get_triton_code(fn, *args, **kwargs):
    _, source_codes = run_and_get_code(fn, *args, **kwargs)
    # Can have two outputs if backwards was eagerly compiled
    assert (
        1 <= len(source_codes) <= 2
    ), f"expected one or two code outputs got {len(source_codes)}"
    return source_codes[0]


@contextlib.contextmanager
def override_lowering(aten_op, override_fn):
    """
    Override the lowering of aten_op with override_fn.
    The first argument of override_fn is the original lowering fn.
    """
    from torch._inductor import lowering

    orig_fn = lowering.lowerings[aten_op]
    try:
        lowering.lowerings[aten_op] = functools.partial(override_fn, orig_fn)
        yield
    finally:
        lowering.lowerings[aten_op] = orig_fn


def add_scheduler_init_hook(pre_fn, post_fn=None):
    """
    Add hook functions to be called at the beginning and end of Scheduler.__init__.
    Used for unit tests.
    """
    from torch._inductor.scheduler import Scheduler

    orig_fn = Scheduler.__init__

    def wrapper(scheduler, nodes):
        pre_fn(scheduler, nodes)
        out = orig_fn(scheduler, nodes)
        if post_fn:
            post_fn(scheduler, nodes)
        return out

    return unittest.mock.patch.object(Scheduler, "__init__", wrapper)


def developer_warning(msg):
    """
    Warnings that will be actionable for PyTorch developers, but not
    end users.  Allows us to easily disable them in stable releases but
    keep them on for nightly builds.
    """
    if config.developer_warnings:
        log.warning(msg)
    else:
        log.info(msg)


def get_benchmark_name():
    """
    An experimental API used only when config.benchmark_kernel is true.

    The benchmark name is only available at codegen time. So we can not
    directly call it in benchmark_all_kernels which is run after codegen.

    The function assumes the argument after --only is the benchmark name.
    It works for torchbench.py/hugginface.py/timm_models.py. But for ad-hoc
    scripts, this function may return None.

    There are 2 flavors of --only argument we need handle:
    1. --only model_name
    2. --only=model_name
    """
    try:
        idx = sys.argv.index("--only")
        if (
            idx + 1 < len(sys.argv)
            and len(sys.argv[idx + 1]) > 0
            and sys.argv[idx + 1][0] != "-"
        ):
            return sys.argv[idx + 1]
    except ValueError:
        pass

    for arg in sys.argv:
        if arg.startswith("--only="):
            return arg[len("--only=") :]


def is_ones(items):
    return all(x == 1 for x in items)


def is_zeros(items):
    return all(x == 0 for x in items)


def is_cpu_device(inputs):
    return all(
        item.device == torch.device("cpu")
        for item in inputs
        if isinstance(item, torch.Tensor)
    )


def get_sympy_Expr_dtype(val: sympy.Expr) -> torch.dtype:
    assert isinstance(
        val, sympy.Expr
    ), "only support sympy.Expr as input to get_sympy_Expr_dtype"
    if val.is_integer:  # type: ignore[attr-defined]
        return torch.int64
    else:
        return torch.float64


@contextlib.contextmanager
def maybe_profile(should_profile, *args, **kwargs):
    if should_profile:
        with torch.profiler.profile(*args, **kwargs) as p:
            yield p
    else:
        yield


def parallel_num_threads():
    threads = config.cpp.threads
    if threads < 1:
        threads = torch.get_num_threads()
    return threads


@functools.lru_cache(None)
def get_device_tflops(dtype):
    from triton.testing import get_max_simd_tflops, get_max_tensorcore_tflops

    assert dtype in (torch.float16, torch.bfloat16, torch.float32)

    if inspect.signature(get_max_simd_tflops).parameters.get("clock_rate"):
        # Triton API change in https://github.com/openai/triton/pull/2293
        from torch._utils_internal import max_clock_rate

        sm_clock = max_clock_rate()
        if dtype in (torch.float16, torch.bfloat16):
            return get_max_tensorcore_tflops(dtype, sm_clock)

        if torch.backends.cuda.matmul.allow_tf32:
            return get_max_tensorcore_tflops(torch.float32, sm_clock)
        else:
            return get_max_simd_tflops(torch.float32, sm_clock)
    else:
        if dtype in (torch.float16, torch.bfloat16):
            return get_max_tensorcore_tflops(dtype)

        if torch.backends.cuda.matmul.allow_tf32:
            return get_max_tensorcore_tflops(torch.float32)
        else:
            return get_max_simd_tflops(torch.float32)


@functools.lru_cache(None)
def get_gpu_dram_gbps():
    from triton.testing import get_dram_gbps

    return get_dram_gbps()


def get_gpu_shared_memory():
    from triton.runtime import driver

    return driver.active.utils.get_device_properties(0).get("max_shared_mem", 0)


def is_welford_reduction(reduction_type):
    return reduction_type.startswith("welford")


def reduction_num_outputs(reduction_type):
    return 3 if is_welford_reduction(reduction_type) else 1


def is_linux() -> bool:
    return platform.system() == "Linux"


def has_free_symbols(itr: Iterable[Any]):
    return any(isinstance(x, sympy.Expr) and not x.is_number for x in itr)


def is_dynamic(*args):
    from . import ir

    for t in args:
        if isinstance(t, ir.TensorBox):
            if has_free_symbols(t.data.get_size()) or (
                hasattr(t.data, "get_stride") and has_free_symbols(t.data.get_stride())
            ):
                return True
        elif isinstance(t, (ir.StorageBox, ir.BaseView, ir.ComputedBuffer)):
            assert hasattr(t, "get_size") and hasattr(t, "get_stride")
            if has_free_symbols(t.get_size()) or has_free_symbols(t.get_stride()):
                return True
        elif not isinstance(t, ir.IRNode):
            continue
        else:
            raise TypeError(f"unexpected type for is_dynamic {type(t)}")

    return False


# Placeholder strings used in triton codegen.
class Placeholder(enum.Enum):
    # The placeholder for the actual name of a triton kernel.
    # e.g. for "def triton_" it would be "triton_"
    KERNEL_NAME = "KERNEL_NAME"

    # The descriptive name of the triton kernel; when unique_kernel_names = False, this
    # placeholder will be replaced with a string with more information.
    DESCRIPTIVE_NAME = "DESCRIPTIVE_NAME"


def pass_execution_and_save(func, gm, inp, msg):
    from .pattern_matcher import stable_topological_sort

    with tempfile.NamedTemporaryFile(
        mode="w",
        encoding="utf-8",
        delete=False,
    ) as f:
        before_io = io.StringIO()
        after_io = io.StringIO()
        ShapeProp(gm=gm, fake_mode=detect_fake_mode(inp)).propagate(*inp)
        print(f"Before:\n{gm.graph}", file=f)
        print(gm.graph, file=before_io)
        start_time = datetime.now()
        func(gm.graph)
        time_elapsed = datetime.now() - start_time
        # recompile graph
        stable_topological_sort(gm.graph)
        gm.graph.lint()
        gm.recompile()

        print(f"After:\n{gm.graph}", file=f)
        print(gm.graph, file=after_io)
        t = before_io.getvalue() == after_io.getvalue()
        log.info(
            "%s, save before/after graph to %s, graph before/after are the same = %s, time elapsed = %s",
            msg,
            f.name,
            t,
            time_elapsed,
        )


def is_collective(node):
    from . import ir

    return type(node) == ir._CollectiveKernel


def is_wait(node):
    from . import ir

    return type(node) == ir._WaitKernel


def num_fw_fixed_arguments(dynamo_gm_num_inputs: int, aot_fw_gm_num_inputs: int):
    "Computes the number of inputs to the aot fw graph which have fixed addresses (params and buffers)"
    num_rng_seed_offset_inputs = (
        2 if torch._functorch.config.functionalize_rng_ops else 0
    )
    return aot_fw_gm_num_inputs - dynamo_gm_num_inputs - num_rng_seed_offset_inputs


def count_tangents(fx_g: torch.fx.GraphModule):
    """
    Infers which inputs are static for a backwards graph
    """

    def is_saved_tensor(x):
        return (
            "tangents" not in x.name
            and "bwd_seed" not in x.name
            and "bwd_base_offset" not in x.name
        )

    arg_count = 0
    static_arg_idxs = []
    for n in fx_g.graph.nodes:
        if n.op == "placeholder":
            if is_saved_tensor(n):
                static_arg_idxs.append(arg_count)
            arg_count += 1

    assert static_arg_idxs == list(range(len(static_arg_idxs)))
    return len(static_arg_idxs)


@dataclasses.dataclass
class BoxedBool:
    value: bool

    def __bool__(self):
        return self.value

    @staticmethod
    def disable(obj):
        if isinstance(obj, BoxedBool):
            obj.value = False
            return obj
        return False


@contextlib.contextmanager
def collect_defined_kernels(kernel_list):
    from .codegen.wrapper import WrapperCodeGen

    orig_define_kernel = WrapperCodeGen.define_kernel

    def new_define_kernel(wrapper, name, kernel_code, metadata, *args, **kwargs):
        nonlocal kernel_list
        kernel_list.append(kernel_code)
        return orig_define_kernel(wrapper, name, kernel_code, metadata, *args, **kwargs)

    with unittest.mock.patch.object(WrapperCodeGen, "define_kernel", new_define_kernel):
        yield


def get_cloned_parameter_buffer_name(name: str):
    return name + "__original__"


def is_gpu(device: str):
    return device in ["cuda", "xpu"]


def device_need_guard(device: str):
    assert isinstance(device, str)
    return is_gpu(device)


def needs_fallback_due_to_atomic_add_limitations(dtype):
    # tl.atomic_add does NOT support the following types
    return dtype in {torch.int64, torch.bool, torch.bfloat16}


def use_scatter_fallback(
    op_overload: torch._ops.OpOverload,
    reduction_type,
    self_dtype,
    src_dtype,
    src_device_type,
    src_is_tensor,
):
    reduce_ty = (
        "add" if op_overload.overloadpacket == torch.ops.aten.scatter_ else "sum"
    )

    return (
        reduction_type not in {None, reduce_ty}
        or (
            src_is_tensor
            and is_gpu(src_device_type)
            and needs_fallback_due_to_atomic_add_limitations(src_dtype)
        )
        or (
            op_overload.overloadpacket == torch.ops.aten.scatter_reduce_
            and reduction_type == "sum"
            and src_is_tensor
            and src_device_type == "cpu"
            and config.cpp.fallback_scatter_reduce_sum
            and (config.cpp.dynamic_threads or parallel_num_threads() != 1)
        )
        or (reduction_type == reduce_ty and self_dtype in {torch.bool, torch.int64})
        or torch.are_deterministic_algorithms_enabled()
    )


def dump_node_schedule(node_schedule):
    """
    An API that can be used in pdb to dump a node_schedule.
    Right mainly dump the read/write dependencies but can add more as needed.
    """
    from torch._inductor.codegen.simd import DisableReduction, EnableReduction
    from torch._inductor.scheduler import SchedulerNode

    print(f"Node schedule with {len(node_schedule)} nodes")
    for idx, node in enumerate(node_schedule):
        print(f" {idx:3}:")
        if node is EnableReduction:
            print("enable reduction")
        elif node is DisableReduction:
            print("disable reduction")
        elif isinstance(node, SchedulerNode):
            is_red = node.is_reduction()
            print(f"{'red' if is_red else 'pw'} scheduler node")
            if is_red:
                assert node.node is not None
                print(f"original reduction hint {node.node.data.reduction_hint}")  # type: ignore[attr-defined]
            print("ReadDep:")
            for dep in node.read_writes.reads:
                print(dep)
            print("WriteDep:")
            for dep in node.read_writes.writes:
                print(dep)
        else:
            raise RuntimeError(f"Unrecognized node type: {type(node)}")


def tensor_is_aligned(tensor: torch.Tensor):
    # See Note: [Input Alignment handling in Inductor]
    # Right now, we don't try to guard on the alignment of the storage offset.
    # When this comment was written, non-symbolic storage_offsets are not guarded on
    # but symbolic storage_offsets are. For consistency, we suppress guard creation
    # upon performing this check: that ensures that we don't add recompiles when we
    # add this logic.
    return (
        tensor.storage_offset() * get_dtype_size(tensor.dtype)
    ) % GPU_ALIGN_BYTES == 0


def should_assume_input_aligned(example_input: torch.Tensor):
    # See Note: [Input Alignment handling in Inductor]

    # right now, we only care about alignment for cuda tensors.
    if not is_gpu(example_input.device.type):
        return False
    return config.assume_aligned_inputs or tensor_is_aligned(example_input)


def maybe_get_suppress_shape_guards_ctx():
    # Try to get TracingContext.try_get().fake_mode.shape_env.suppress_guards()
    # If it's not available, return a nullcontext.

    # If we're dealing with cudagraphs, we might not have a tracing_context
    tracing_context = torch._guards.TracingContext.try_get()
    if not tracing_context:
        return contextlib.nullcontext()

    # In standalone inductor compile mode, we might not have a shape_env attached to the fake mode
    shape_env = tracing_context.fake_mode.shape_env
    if not shape_env:
        return contextlib.nullcontext()

    return shape_env.suppress_guards()


def aoti_eager_cache_dir(namespace: str, device: str):
    return Path(cache_dir()) / "aoti_eager" / namespace / device


def aoti_eager_op_conf_lock(op_func_name_with_overload: str):
    from filelock import FileLock

    # Avoid circular import
    from torch._inductor.codecache import get_lock_dir, LOCK_TIMEOUT

    op_conf_lock_file = f"{op_func_name_with_overload}.lock"
    lock_dir = get_lock_dir()
    return FileLock(os.path.join(lock_dir, op_conf_lock_file), timeout=LOCK_TIMEOUT)


def load_aoti_eager_cache(ns: str, op_func_name_with_overload: str, device_type: str):
    device_kernel_cache = aoti_eager_cache_dir(ns, device_type)
    op_conf = device_kernel_cache / f"{op_func_name_with_overload}.json"
    if not op_conf.exists():
        return []

    with aoti_eager_op_conf_lock(op_func_name_with_overload):
        with open(op_conf) as f:
            json_data = json.load(f)
            for item in json_data:
                # Get absolution path for kernel library
                kernel_lib_abs_path = device_kernel_cache / item["kernel_path"]
                item["kernel_path"] = kernel_lib_abs_path.as_posix()

                # Check if the kernel library exists
                if not kernel_lib_abs_path.exists():
                    return []

                for metadata in item["meta_info"]:
                    assert not metadata[
                        "is_dynamic"
                    ], "Only support static shape for now"
                    if metadata["device_type"] == "cpu":
                        metadata["device_index"] = -1
                    metadata["dtype"] = getattr(torch, metadata["dtype"].split(".")[-1])

            return json_data


def aoti_compile_with_persistent_cache(
    ns: str,
    op_func_name_with_overload: str,
    device_type: str,
    dynamic: bool,
    f: Callable[..., Any],
    args: Tuple[Any],
    kwargs: Dict[str, Any],
    *,
    dynamic_shapes: Optional[Dict[str, Any]] = None,
    options: Optional[Dict[str, Any]] = None,
    remove_runtime_assertions: bool = False,
    disable_constraint_solver: bool = False,
):
    """
    Compile the given function with persistent cache for AOTI eager mode.
    """
    assert not dynamic, "Only support static shape for now"
    type_to_torch_dtype = {int: torch.int32, float: torch.float, bool: torch.bool}
    supported_scalar_types = tuple(type_to_torch_dtype.keys())
    flattened_inputs = pytree.arg_tree_leaves(*args, **kwargs)
    if not all(
        isinstance(input, (supported_scalar_types, torch.Tensor))
        for input in flattened_inputs
    ):
        raise NotImplementedError("Only support tensor, int, float, bool for now")

    persistent_cache = aoti_eager_cache_dir(ns, device_type)
    if not persistent_cache.exists():
        persistent_cache.mkdir(parents=True)

    persistent_cache_lib = persistent_cache / "lib"
    if not persistent_cache_lib.exists():
        persistent_cache_lib.mkdir()

    with mock.patch.dict(
        os.environ,
        {"TORCHINDUCTOR_CACHE_DIR": persistent_cache_lib.absolute().as_posix()},
    ):
        try:
            kernel_lib_path = torch._export.aot_compile(
                f,
                args,
                kwargs,
                dynamic_shapes=dynamic_shapes,
                options=options,
                remove_runtime_assertions=remove_runtime_assertions,
                disable_constraint_solver=disable_constraint_solver,
                # Some operations may have non-Tensor parameters like int, float, bool. These
                # non-Tensor parameters will not be the input of the graph. Therefore, we do
                # need to keep the same signature.
                same_signature=False,
            )

            kernel_metadata_items = []
            for input in flattened_inputs:
                # TODO(Eikan): To add dynamic support
                metadata: Dict[str, Any] = {}
                metadata["is_dynamic"] = dynamic

                if isinstance(input, torch.Tensor):
                    metadata["device_type"] = f"{input.device.type}"
                    if is_cpu_device([input]):
                        metadata["device_index"] = -1
                    else:
                        metadata["device_index"] = input.device.index
                    metadata["dtype"] = f"{input.dtype}"
                    metadata["sizes"] = list(input.size())
                    metadata["strides"] = list(input.stride())
                else:
                    assert isinstance(input, supported_scalar_types)
                    # Scalar tensor
                    metadata["device_type"] = device_type
                    metadata["device_index"] = -1 if device_type == "cpu" else 0
                    metadata["dtype"] = f"{type_to_torch_dtype[type(input)]}"
                    metadata["sizes"] = []
                    metadata["strides"] = []
                    metadata["scalar_value"] = input

                kernel_metadata_items.append(metadata)

            kernel_meta_info: Dict[str, Any] = {}
            kernel_meta_info["meta_info"] = kernel_metadata_items
            kernel_meta_info["kernel_path"] = (
                Path(kernel_lib_path).relative_to(persistent_cache).as_posix()
            )

            json_data = []
            update_json = True
            op_conf = persistent_cache / f"{op_func_name_with_overload}.json"
            mode = "r" if op_conf.exists() else "w"
            with aoti_eager_op_conf_lock(op_func_name_with_overload):
                with open(op_conf, mode) as op_conf_file:
                    try:
                        json_data = json.load(op_conf_file)
                    except Exception as e:
                        json_data = []

                    assert isinstance(json_data, list)
                    for item in json_data:
                        assert isinstance(item, dict)
                        # Same kernel meta info already exists in the json file
                        if item["meta_info"] == kernel_metadata_items:
                            update_json = False
                            break

                if update_json:
                    json_data.append(kernel_meta_info)
                    with open(op_conf, "w") as op_conf_file:
                        json.dump(json_data, op_conf_file, indent=4)

            return kernel_lib_path
        except Exception as e:
            return ""


def run_and_get_cpp_code(fn, *args, **kwargs):
    # We use the patch context manager instead of using it as a decorator.
    # In this way, we can ensure that the attribute is patched and unpatched correctly
    # even if this run_and_get_cpp_code function is called multiple times.
    with unittest.mock.patch.object(config, "debug", True):
        torch._dynamo.reset()
        import io
        import logging

        log_capture_string = io.StringIO()
        ch = logging.StreamHandler(log_capture_string)
        from torch._inductor.graph import output_code_log

        output_code_log.addHandler(ch)
        prev_level = output_code_log.level
        output_code_log.setLevel(logging.DEBUG)
        result = fn(*args, **kwargs)
        s = log_capture_string.getvalue()
        output_code_log.setLevel(prev_level)
        output_code_log.removeHandler(ch)
    return result, s