File size: 8,507 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# mypy: allow-untyped-defs
import dataclasses
import inspect
import sys
from typing import Any, Callable, Dict, Iterable, Tuple

import torch
import torch._utils_internal as _utils_internal
from torch import _C


@dataclasses.dataclass
class Kernel:
    """Models a (function, source location)"""

    func: Callable
    source: str

    def __call__(self, *args, **kwargs):
        return self.func(*args, **kwargs)


class RegistrationHandle:
    """Does something when someone calls .destroy() on it"""

    def __init__(self, on_destroy: Callable):
        self._on_destroy = on_destroy

    def destroy(self) -> None:
        self._on_destroy()


def get_source(stacklevel: int) -> str:
    """Get a string that represents the caller.

    Example: "/path/to/foo.py:42"

    Use stacklevel=1 to get the caller's source
    Use stacklevel=2 to get the caller's caller's source
    etc.
    """
    frame = inspect.getframeinfo(sys._getframe(stacklevel))
    source = f"{frame.filename}:{frame.lineno}"
    return source


def parse_namespace(qualname: str) -> Tuple[str, str]:
    splits = qualname.split("::")
    if len(splits) != 2:
        raise ValueError(
            f"Expected `qualname` to be of the form "
            f'"namespace::name", but got {qualname}. '
            f"The qualname passed to the torch.library APIs must consist "
            f"of a namespace and a name, e.g. aten::sin"
        )
    return splits[0], splits[1]


def lookup_op(qualname: str) -> torch._ops.OpOverload:
    namespace, name = parse_namespace(qualname)
    if "." in name:
        name, overload = name.split(".")
    else:
        overload = "default"
    ns = getattr(torch.ops, namespace)
    packet = getattr(ns, name)
    return getattr(packet, overload)


def is_builtin(op: torch._ops.OpOverload) -> bool:
    assert isinstance(op, torch._ops.OpOverload)
    return op.namespace in {"aten", "prim", "prims"}


def is_functional_schema(schema: Any) -> bool:
    """Check if the schema is functional.

    An operator is functional if:
    - it does not mutate any of its inputs
    - it does not return a view on any of its inputs
    - it has at least one return
    """

    def is_functional(schema):
        if schema.is_mutable:
            return False
        rets = schema.returns
        is_non_mutating_view = len(rets) > 0 and any(
            r.alias_info is not None and not r.alias_info.is_write for r in rets
        )
        if is_non_mutating_view:
            return False
        if not schema.returns:
            return False
        return True

    if isinstance(schema, torch._C.FunctionSchema):
        return is_functional(schema)

    # Lazy import because not all PyTorch builds have torchgen
    from torchgen.model import FunctionSchema

    if isinstance(schema, str):
        schema = FunctionSchema.parse(schema)
    assert isinstance(schema, FunctionSchema)
    return is_functional(schema)


# should be torch._C.JitType but that annotation is busted
def is_tensorlist_like_type(typ: Any) -> bool:
    return (
        typ == _C.ListType(_C.TensorType.get())
        or typ == _C.ListType(_C.OptionalType(_C.TensorType.get()))
        or typ == _C.OptionalType(_C.ListType(_C.TensorType.get()))
        or typ == _C.OptionalType(_C.ListType(_C.OptionalType(_C.TensorType.get())))
    )


# should be torch._C.JitType but that annotation is busted
def is_tensor_like_type(typ: Any) -> bool:
    return typ == _C.TensorType.get() or typ == _C.OptionalType(_C.TensorType.get())


def mutates_and_returns_first_arg(op: torch._ops.OpOverload):
    """Check if an op is an inplace aten op, i.e. it mutates and returns the first arg.

    TODO: torchgen/model.py's FunctionSchema.parse is the source of truth for this,
    but not all PyTorch builds have torchgen (due to the yaml dependency being weird).
    Figure this out.

    Example: add_(Tensor(a!) x, Tensor y) -> Tensor(a)
    """
    if op.namespace != "aten":
        return False
    schema = op._schema
    if not len(schema.returns) == 1:
        return False
    if schema.returns[0].alias_info is None:
        return False
    alias_set = schema.returns[0].alias_info.after_set
    if len(alias_set) != 1:
        return False
    loc = next(iter(alias_set))
    if len(schema.arguments) < 1:
        return False
    first_arg = schema.arguments[0]
    if first_arg.alias_info is None:
        return False
    if not first_arg.alias_info.is_write:
        return False
    alias_set = first_arg.alias_info.after_set
    if len(alias_set) != 1:
        return False
    if loc != next(iter(alias_set)):
        return False
    for arg in schema.arguments[1:]:
        if arg.alias_info is not None:
            return False
    return True


def fill_defaults(schema, args, kwargs):
    new_args = []
    new_kwargs = {}
    for i in range(len(schema.arguments)):
        info = schema.arguments[i]
        if info.kwarg_only:
            if info.name in kwargs:
                new_kwargs[info.name] = kwargs[info.name]
            else:
                new_kwargs[info.name] = info.default_value
        else:
            if i < len(args):
                new_args.append(args[i])
            else:
                new_args.append(info.default_value)
    return tuple(new_args), new_kwargs


def zip_schema(
    schema: _C.FunctionSchema, args: Tuple[Any, ...], kwargs: Dict[str, Any]
) -> Iterable[Tuple[_C.Argument, Any]]:
    """zips schema.arguments and (args, kwargs) together.

    Assumes that (args, kwargs) were the inputs to some torch._ops.OpOverload:
    that is, kwargs must be keyword-only arguments and default values may be omitted.
    """
    assert len(schema.arguments) >= len(args) + len(kwargs)
    for i in range(len(schema.arguments)):
        info = schema.arguments[i]
        if info.kwarg_only:
            if info.name in kwargs:
                yield info, kwargs[info.name]
            continue
        if i >= len(args):
            # args that are equal to their default values are not populated
            # if they are followed by args that are equal to their defaults.
            # Skip these.
            continue
        yield info, args[i]
    return


def can_generate_trivial_fake_impl(op: torch._ops.OpOverload) -> bool:
    assert isinstance(op, torch._ops.OpOverload)
    if is_builtin(op):
        # We control the built-ins. These may (in rare cases)
        # do input metadata mutation (which we have banned on custom ops)
        return False
    schema = op._schema
    # It's suspicious if the op is not mutable but returns nothing, so we return False out of an abundance of caution
    if not schema.is_mutable:
        return False
    if len(schema.returns) > 0:
        return False
    # If the op returns nothing, then it has a trivial fake impl.
    return True


def requires_set_python_module() -> bool:
    """If an op was defined in C++ and extended from Python using the
    torch.library APIs, returns if we require that there have been a
    m.set_python_module("mylib.ops") call from C++ that associates
    the C++ op with a python module.
    """
    return getattr(_utils_internal, "REQUIRES_SET_PYTHON_MODULE", True)


def handle_dispatch_mode(curr_mode, op_overload, *args, **kwargs):
    assert isinstance(curr_mode, torch.utils._python_dispatch.TorchDispatchMode)
    overload_types = []
    args_flattened, _ = torch.utils._pytree.tree_flatten((args, kwargs.values()))
    for a in args_flattened:
        # TODO: need to double check the semantics of the "types" argument to torch_dispatch.
        # It's generated in PyInterpreter.cpp, but seems to be generated in two places,
        # where in one case we only include tensors with the python key, and in another
        # we include **all** tensors.
        if isinstance(a, torch.Tensor) and torch._C._dispatch_keys(a).has(
            torch._C.DispatchKey.Python
        ):
            overload_types.append(type(a))
    # TODO: check that I got these args correct (in C++, we pass in "0000"??)

    return curr_mode.__torch_dispatch__(op_overload, overload_types, args, kwargs)


def has_kwarg_only_args(schema: _C.FunctionSchema):
    return any(a.kwarg_only for a in schema.arguments)


def has_kwarg_only_tensors(schema: _C.FunctionSchema):
    for a in schema.arguments:
        if not (is_tensor_like_type(a.type) or is_tensorlist_like_type(a.type)):
            continue
        if not a.kwarg_only:
            continue
        return True
    return False