File size: 74,444 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 |
# mypy: allow-untyped-defs
from __future__ import annotations
import contextlib
import dataclasses
import warnings
import weakref
from dataclasses import dataclass
from typing import (
Any,
Callable,
ClassVar,
ContextManager,
Dict,
List,
Optional,
Tuple,
Type,
TYPE_CHECKING,
Union,
)
from typing_extensions import TypeAlias
import torch
from torch._C._autograd import CreationMeta
from torch._C._functorch import (
_add_batch_dim,
_unwrap_functional_tensor,
_wrap_functional_tensor,
get_unwrapped,
is_batchedtensor,
is_functorch_wrapped_tensor,
is_gradtrackingtensor,
is_legacy_batchedtensor,
maybe_get_bdim,
maybe_get_level,
peek_interpreter_stack,
)
from torch._logging import trace_structured
from torch.utils._mode_utils import no_dispatch
from torch.utils._python_dispatch import is_traceable_wrapper_subclass
from torch.utils.weak import WeakIdKeyDictionary
if TYPE_CHECKING:
from torch._C._functorch import CInterpreter
from torch._guards import Source
# Import here to avoid cycle
from torch._subclasses.fake_tensor import FakeTensorMode
# Import the following modules during type checking to enable code intelligence features,
# Do not import unconditionally, as they import sympy and importing sympy is very slow
from torch.fx.experimental.symbolic_shapes import ShapeEnv, SymbolicContext
DimList = List
def safe_is_leaf(t):
try:
return t.is_leaf
except RuntimeError:
# inference mode can trigger this
return False
def safe_grad(t):
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "The .grad attribute of a Tensor")
return t.grad
def assert_eq(a, b):
assert a == b, f"{a} != {b}"
def assert_metadata_eq(
assert_eq,
m1: Union[MetaTensorDesc, torch.Tensor],
m2: torch.Tensor,
*,
skip_symbolic=False,
skip_leaf=False,
):
if isinstance(m1, torch.Tensor):
m1 = MetaTensorDescriber().describe_tensor(m1)
def go(m1, m2):
assert_eq(m1.dtype, m2.dtype)
if not skip_symbolic:
assert_eq(m1.shape, m2.shape)
assert_eq(m1.requires_grad, m2.requires_grad)
if not skip_leaf:
assert_eq(m1.is_leaf, m2.is_leaf)
# MetaTensorDesc doesn't store grad_fn; inferred from leaf
# assert_eq(m1.grad_fn is None, m2.grad_fn is None)
assert_eq(m1.is_sparse, m2.is_sparse)
assert_eq(m1.is_inference, m2.is_inference())
assert_eq(m1.is_conj, m2.is_conj())
assert_eq(m1.is_neg, m2.is_neg())
assert_eq(m1.grad is not None, safe_grad(m2) is not None)
if m1.grad is not None:
go(m1.grad, safe_grad(m2))
if m1.is_sparse:
assert_eq(m1.dense_dim, m2.dense_dim())
assert_eq(m1.sparse_dim, m2.sparse_dim())
assert_eq(m1.is_coalesced, m2.is_coalesced())
else:
if not skip_symbolic:
assert_eq(m1.stride, m2.stride())
assert_eq(m1.storage_offset, m2.storage_offset())
assert_eq(m1.is_view, m2._is_view())
if m1.is_view:
go(m1.base, m2._base)
# TODO: test if is resizable (no direct query for this atm)
# TODO: audit AutogradMeta to see if it matches
# TODO: test forward AD
return go(m1, m2)
def is_sparse_coo(t):
return isinstance(t, torch.Tensor) and t.layout is torch.sparse_coo
def is_sparse_compressed_layout(layout):
return layout in {
torch.sparse_csr,
torch.sparse_csc,
torch.sparse_bsr,
torch.sparse_bsc,
}
def is_sparse_compressed(t):
return isinstance(t, torch.Tensor) and is_sparse_compressed_layout(t.layout)
def is_sparse_any(t):
return is_sparse_coo(t) or is_sparse_compressed(t)
# Don't use id() directly, because those can get reallocated over time.
MetaStorageId: TypeAlias = int
MetaTensorId: TypeAlias = int
DESCRIBER_NEXT_ID = 0
class MetaTensorDescriber:
"""
Given a Tensor/Storage, generate a MetaTensorDesc/MetaStorageDesc
for it, which is enough information to reconstruct a meta tensor/fake tensor
corresponding to a Tensor as faithfully as possible.
This is a stateful conversion object because we keep track of the IDs
of the tensors/storages passed to us, so we can consistently give
the same ID when we see the same tensor/storage.
"""
def __init__(self, *, copy_data=False):
global DESCRIBER_NEXT_ID
self.id = DESCRIBER_NEXT_ID
DESCRIBER_NEXT_ID += 1
self.next_tensor_id: MetaTensorId = 0
self.next_storage_id: MetaStorageId = 0
# Tensor -> int
self.lookup_tensor = WeakIdKeyDictionary()
# Storage -> int
self.lookup_storage = WeakIdKeyDictionary()
self.copy_data = copy_data
self.traced_tensors = set()
self.traced_storages = set()
def get_tensor_id(self, t: torch.Tensor):
if t not in self.lookup_tensor:
self.lookup_tensor[t] = self.next_tensor_id
self.next_tensor_id += 1
return self.lookup_tensor[t]
def get_storage_id(self, s: torch.UntypedStorage):
if s not in self.lookup_storage:
self.lookup_storage[s] = self.next_storage_id
self.next_storage_id += 1
return self.lookup_storage[s]
def describe_storage(self, s: torch.UntypedStorage, *, trace: bool = False):
r = MetaStorageDesc(
id=self.get_storage_id(s),
size=s.size(),
# NB: We don't do the copy yet; copy happens when we start
# creating the new storages
data=s if self.copy_data else None,
)
if trace and r.id not in self.traced_storages:
trace_structured(
"describe_storage",
metadata_fn=lambda: r.as_json(self.id),
)
self.traced_storages.add(r.id)
return r
def describe_tensor(
self, t: torch.Tensor, *, recurse: bool = True, trace: bool = False
):
is_leaf = safe_is_leaf(t)
is_view = t._is_view()
is_sparse = t.is_sparse
layout = t.layout
is_nested = t.is_nested
is_traceable_wrapper_subclass_v = is_traceable_wrapper_subclass(t)
is_functorch_wrapped = is_functorch_wrapped_tensor(t)
is_mkldnn = t.is_mkldnn
is_batchedtensor_v = is_batchedtensor(t)
is_legacy_batchedtensor_v = is_legacy_batchedtensor(t)
is_gradtrackingtensor_v = is_gradtrackingtensor(t)
is_functorch_batched_or_grad = is_batchedtensor_v or is_gradtrackingtensor_v
is_functional = torch._is_functional_tensor(t)
storage = None
# NB: For compatibility, I default this to zero, as sometimes people
# still have stuffed zero into storage offset even though the tensor
# doesn't meaningfully have an offset
storage_offset = 0
if not (
is_sparse
or is_sparse_compressed_layout(layout)
or (is_nested and not is_traceable_wrapper_subclass_v)
or is_mkldnn
# TODO: TBH, functorch wrapped tensors probably should have
# storage associated with them
or is_functorch_wrapped
or is_legacy_batchedtensor_v
):
# NB: We actually don't use storage to do views, but might as well
# put it in for accuracy
storage = self.describe_storage(t.untyped_storage(), trace=trace)
storage_offset = t.storage_offset()
stride = None
if not (
is_sparse
or is_sparse_compressed_layout(layout)
or (is_nested and not is_traceable_wrapper_subclass_v)
):
# stride/storage_offset are called from is_functorch_wrapped,
# view_from_base, empty_create_subclass,
# sym_sizes_strides_storage_offset (empty_create)
stride = t.stride()
# NB: this technically should refer to functorch unwrapped tensor, but
# I am (perhaps abusively) using it to store both the functorch and
# non-functorch functional tensor
unwrapped = None
autograd_meta_from = None
current_level = None
if is_batchedtensor_v or is_gradtrackingtensor_v:
unwrapped = self.describe_tensor(get_unwrapped(t), trace=trace)
# xla and lazy tensors present as functional tensors, but we want them
# to be handled specially
elif is_functional and t.device.type not in ("xla", "lazy"):
if t._is_view():
raise RuntimeError(
"Cannot safely fakify a view because this process drops the view information right now."
)
if not is_functorch_wrapped:
torch._sync(t)
unwrapped = self.describe_tensor(
torch._from_functional_tensor(t), trace=trace
)
autograd_meta_from = t
else:
reapply_views = torch._C._functionalization_reapply_views_tls()
# NB: has side effects!
unwrapped = self.describe_tensor(
_unwrap_functional_tensor(t, reapply_views), trace=trace
)
# TODO: It's pretty suspicious that functional tensors don't have
# valid level and thus we just grab whatever the current level
# is
current_level = torch._C._functorch.current_level()
maybe_functorch_stack = None
if is_functorch_wrapped:
with torch._functorch.pyfunctorch.temporarily_clear_interpreter_stack() as maybe_functorch_stack:
pass
attrs = None
ctx = None
type_v = None
if is_traceable_wrapper_subclass_v:
assert hasattr(t, "__tensor_flatten__")
raw_attrs, ctx = t.__tensor_flatten__()
attrs = {
attr: self.describe_tensor(getattr(t, attr), trace=trace)
for attr in raw_attrs
}
type_v = type(t)
# TODO: Is it important to enable torch.inference_mode before querying
# these values?
r = MetaTensorDesc(
id=self.get_tensor_id(t),
storage=storage,
is_inference=t.is_inference(),
is_leaf=is_leaf,
requires_grad=t.requires_grad,
# NB: ndim should be OK too but there is a disaster at
# python test/dynamo/test_subclasses.py -k test_user_overidden_property_unsupported
# Actually, this means that we have a little bit of a problem
# here, which is that there is some sensitivity to how exactly an
# access is done if you have a __torch_function__ subclass. Maybe
# should disable torch function before doing accesses?
ndim=t.dim(),
dtype=t.dtype,
is_sparse=is_sparse,
is_mkldnn=is_mkldnn,
is_functorch_wrapped=is_functorch_wrapped,
is_batchedtensor=is_batchedtensor_v,
is_legacy_batchedtensor=is_legacy_batchedtensor_v,
is_gradtrackingtensor=is_gradtrackingtensor_v,
is_view=is_view,
is_conj=t.is_conj(),
is_neg=t.is_neg(),
is_parameter=isinstance(t, torch.nn.Parameter),
is_traceable_wrapper_subclass=is_traceable_wrapper_subclass_v,
is_nested=is_nested,
is_functional=is_functional,
layout=layout,
device=t.device,
size=t.size(),
stride=stride,
storage_offset=storage_offset,
dynamo_dynamic_indices=list(getattr(t, "_dynamo_dynamic_indices", set())),
sparse_dim=t.sparse_dim()
if t.is_sparse or is_sparse_compressed(t)
else None,
dense_dim=t.dense_dim() if t.is_sparse or is_sparse_compressed(t) else None,
is_coalesced=t.is_coalesced() if t.is_sparse else None,
# TODO: I actually think recursing here is correct, but we have at
# least an infinite cycle from base -> values -> base
# https://github.com/pytorch/pytorch/issues/122089
crow_indices=self.describe_tensor(
t.crow_indices(), recurse=False, trace=trace
)
if recurse and t.layout in {torch.sparse_csr, torch.sparse_bsr}
else None,
col_indices=self.describe_tensor(
t.col_indices(), recurse=False, trace=trace
)
if recurse and t.layout in {torch.sparse_csr, torch.sparse_bsr}
else None,
ccol_indices=self.describe_tensor(
t.ccol_indices(), recurse=False, trace=trace
)
if recurse and t.layout in {torch.sparse_csc, torch.sparse_bsc}
else None,
row_indices=self.describe_tensor(
t.row_indices(), recurse=False, trace=trace
)
if recurse and t.layout in {torch.sparse_csc, torch.sparse_bsc}
else None,
values=self.describe_tensor(t.values(), recurse=False, trace=trace)
if recurse and is_sparse_compressed(t)
else None,
grad=self.describe_tensor(safe_grad(t), trace=trace)
if safe_grad(t) is not None
else None,
creation_meta=torch._C._autograd._get_creation_meta(t)
if t._is_view()
else None,
unwrapped=unwrapped,
level=maybe_get_level(t)
if is_batchedtensor_v or is_gradtrackingtensor_v
else None,
bdim=maybe_get_bdim(t) if is_batchedtensor_v else None,
base=self.describe_tensor(t._base, trace=trace)
if recurse and t._is_view() and t._base is not None
else None,
fake_mode=torch._subclasses.fake_tensor.maybe_get_fake_mode(t),
view_func=t._view_func_unsafe,
attrs=attrs,
ctx=ctx,
type=type_v,
# NB: even if functorch is enabled, don't actually save the
# interpreter stack here unless we are actually functorch wrapped;
# it's irrelevant for non-functorch stuff
functorch_stack=maybe_functorch_stack,
autograd_meta_from=autograd_meta_from,
current_level=current_level,
data=t if self.copy_data else None,
)
if trace and r.id not in self.traced_tensors:
trace_structured(
"describe_tensor",
metadata_fn=lambda: r.as_json(self.id),
)
self.traced_tensors.add(r.id)
return r
@dataclass(frozen=True)
class MetaStorageDesc:
id: MetaStorageId
size: int
# NB: this is only populated with copy_data True, it is not directly
# serializable in JSON, you want to do something special here anyway
data: Optional[torch.UntypedStorage]
def as_json(self, describer_id):
return {
"id": self.id,
"describer_id": describer_id,
"size": self.size if isinstance(self.size, int) else repr(self.size),
}
@dataclass(frozen=True)
class MetaTensorDesc:
id: MetaTensorId
ndim: int
dtype: torch.dtype
device: torch.device
# NB: Sometimes, size, stride and storage_offset contain SymInt, in which
# case this is NOT serializable. That only happens when you're
# re-fakeifying a fake tensor with an existing ShapeEnv... maybe we
# can get rid of this use case entirely. Notably, even if we are
# fakeifying a real tensor into a fake tensor with symbolic shapes, the
# size here is NOT dynamic
# NB: These also contain SymInt because wrap_meta_outputs_with_default_device_logic
# goes through this codepath. But it really should not LOL.
# NB: size could potentially be None as you can override it and make it
# throw an error, but we don't currently have any subclasses that do this
# except C++ nested tensor but we're going to have nested int to make this
# defined on NJT
size: Tuple[int, ...]
dynamo_dynamic_indices: List[int]
layout: torch.layout = torch.strided
is_inference: bool = False
is_leaf: bool = False
requires_grad: bool = False
is_sparse: bool = False
is_mkldnn: bool = False
is_functorch_wrapped: bool = False
is_batchedtensor: bool = False
is_legacy_batchedtensor: bool = False
is_gradtrackingtensor: bool = False
is_view: bool = False
is_nested: bool = False
is_traceable_wrapper_subclass: bool = False
is_functional: bool = False
is_conj: bool = False
is_neg: bool = False
is_parameter: bool = False
stride: Optional[Tuple[int, ...]] = None
storage_offset: int = 0
# NB: We have a choice whether or not to store the id or a direct pointer
# to the data structure. For ease of use, we store the data structure,
# but this means that when we serialize, we have to swizzle these pointers
# back into ids (so we have accurate aliasing relationships)
storage: Optional[MetaStorageDesc] = None
sparse_dim: Optional[int] = None # is_sparse, is_sparse_compressed
dense_dim: Optional[int] = None # is_sparse, is_sparse_compressed
is_coalesced: Optional[bool] = None # is_sparse
crow_indices: Optional[MetaTensorDesc] = None # is_sparse_compressed
col_indices: Optional[MetaTensorDesc] = None # is_sparse_compressed
ccol_indices: Optional[MetaTensorDesc] = None # is_sparse_compressed
row_indices: Optional[MetaTensorDesc] = None # is_sparse_compressed
values: Optional[MetaTensorDesc] = None # is_sparse_compressed
unwrapped: Optional[MetaTensorDesc] = None # is_functorch_wrapped
bdim: Optional[int] = None # is_functorch_wrapped
base: Optional[MetaTensorDesc] = None # is_view
attrs: Optional[Dict[str, MetaTensorDesc]] = None # is_traceable_wrapper_subclass
creation_meta: Optional[CreationMeta] = None
grad: Optional[MetaTensorDesc] = None
# Everything below is NOT serializable, need some more work
_UNSERIALIZABLE: ClassVar[List[str]] = [
"ctx",
"type",
"fake_mode",
"view_func",
"level",
"current_level",
"functorch_stack",
"autograd_meta_from",
"data",
]
ctx: Optional[object] = None # is_traceable_wrapper_subclass
type: Optional[Type] = None # is_traceable_wrapper_subclass
fake_mode: Optional[FakeTensorMode] = None
view_func: Optional[
Callable[
[
torch.Tensor,
Callable[[int], int],
Callable[[torch.Tensor], torch.Tensor],
],
torch.Tensor,
]
] = None
# level looks serializable, but actually it is meaningless without
# the functorch_stack below
level: Optional[int] = None # is_functorch_wrapped
current_level: Optional[int] = None
functorch_stack: Optional[List[CInterpreter]] = None
autograd_meta_from: Optional[torch.Tensor] = None
# This is only populated on copy_data, and typically is not used at all,
# except for some of our meta-ification paths that don't properly use
# storage (pro-tip: you should use storage)
data: Optional[torch.Tensor] = None
# Faithfully serializing functorch tensors will not be too difficult.
# We only need to consider grad/vmap interpreters, and their internal
# state is only bools (mostly what the grad enabled/disabled state
# should be in the lower layer). Beyond that, tensors just need to
# precisely indicate which particular interpreter they correspond
# to (we then replace level with a pointer to the interpreter stack.)
# However, this use of functorch is very "non-lexical" so it's not
# entirely clear how to make it all lexical again, so we haven't done
# it for now.
# NB: This will reference numeric IDs, and it is assumed that you've
# already serialized everything this recursively references
def as_json(self, describer_id):
def json(k, v):
# Some best-effort debugging serialization for unserializable
# fields (feel free to add other special cases as appropriate)
if k in ["data", "autograd_meta_from"]:
return None # never repr these
if k in set(MetaTensorDesc._UNSERIALIZABLE):
return repr(v)
if isinstance(v, (torch.device, torch.dtype, torch.layout)):
return repr(v)
if isinstance(v, torch.SymInt):
return repr(v)
if isinstance(v, (tuple, list)):
return [json(k, v1) for v1 in v]
if isinstance(v, (MetaStorageDesc, MetaTensorDesc)):
return v.id
if isinstance(v, CreationMeta):
return str(v)
if k == "attrs" and isinstance(v, dict):
return {k1: v1.id for k1, v1 in v.items()}
return v
r = {
field.name: json(field.name, getattr(self, field.name))
for field in dataclasses.fields(self)
if not (
getattr(self, field.name) is field.default
or (
field.name == "dynamo_dynamic_indices"
and not getattr(self, field.name)
)
)
}
r.update({"describer_id": describer_id})
return r
@property
def shape(self):
return self.size
# A more faithful reproduction would do a copy on the entire
# storage, but this needs to be done carefully because the
# underlying storage could have larger extent than is implied
# by size/stride. The real fix is to properly call
# meta_storage recursively here.
#
# These "safe" functions are intended to be used under no_dispatch() mode.
# The no_dispatch() here is intended to prevent ambient fake tensor mode from
# fakeifying the operation. But if we are given an honest to goodness
# FakeTensor as src, we MUST NOT run the copy/clone operation. A better way
# to do this would be to not use no_dispatch and instead just disable fake
# tensor mode only (allowing for subclass dispatch to occur)
def _safe_copy(dst, src):
if type(src) is not torch.Tensor:
return
dst.copy_(src)
def _safe_clone(src):
if type(src) is not torch.Tensor:
return None
return src.clone()
# This is a class for converting multiple tensors into meta tensors which
# share the same view/storage structure. The operation model is you allocate
# one of these, and then call it repeatedly on all the tensors you want to
# convert. It's important to use the same object for tensors you want to
# share storage because this is how we correlate shared storages to the same
# meta storages. This class will hold weak references to cached tenosrs
# and tensor storages.
class MetaConverter:
def __init__(self, *, copy_data: bool = False):
# Maps MetaStorageId to UntypedStorage
self.storage_memo: weakref.WeakValueDictionary = weakref.WeakValueDictionary()
# Maps MetaTensorId to torch.Tensor (typically a meta tensor or
# FakeTensor)
self.tensor_memo: weakref.WeakValueDictionary = weakref.WeakValueDictionary()
self.hit = 0
self.miss = 0
self.del_hook = None
self.arg_cnt = 0
# Ensures real_storage/real_tensor are populated on the resulting
# metaified storage/tensor. The naming of this attribute is load
# bearing: FakeTensor relies on real tensor being set to exactly this
# value
self.copy_data = copy_data
self.describer = MetaTensorDescriber(copy_data=copy_data)
def successful(self):
return self.hit > 0 and self.miss == 0
def get_tensor_memo(self, t: MetaTensorDesc):
return self.tensor_memo.get(t.id, None)
def set_tensor_memo(self, t: MetaTensorDesc, v):
self.tensor_memo[t.id] = v
def get_storage_memo(self, s: MetaStorageDesc):
return self.storage_memo.get(s.id, None)
def set_storage_memo(self, s: MetaStorageDesc, v):
self.storage_memo[s.id] = v
def meta_storage(self, s: MetaStorageDesc, callback):
# If we are fakeifying a tensor that has a secretly-zero-sized storage,
# Need to make sure to resize the meta storage too.
if self.get_storage_memo(s) is None:
r_s = callback(
lambda: torch.empty(s.size, dtype=torch.uint8, device="meta"),
).untyped_storage()
if self.copy_data:
# NB: no_dispatch is needed because internally storage copy is
# implemented as Tensor operations
with torch.no_grad(), no_dispatch():
assert s.data is not None
r_s.real_storage = s.data.clone()
self.set_storage_memo(s, r_s)
return r_s
else:
return self.get_storage_memo(s)
# This function assumes that it's possible to do the conversion
# NB: name here is used in a conventional way by Dynamo; it corresponds
# precisely to the Source.name() of the tensor we're fakeifying and
# corresponds to a valid Python expression. When we construct sub-names
# as part of this process, we will maintain this invariant! (Even though
# other users of this may not need it this property to be upheld.)
def meta_tensor(
self,
t: MetaTensorDesc,
shape_env: Optional[ShapeEnv] = None,
callback=lambda t: t(),
source: Optional[Source] = None,
symbolic_context: Optional[SymbolicContext] = None,
):
if source is None:
from torch._dynamo.source import ConstantSource
# TODO: make a dedicated UnknownSource for this?
source = ConstantSource(
f"__meta_utils_unknown_tensor{len(self.tensor_memo)}"
)
# This indicates you set no_dispatch() before calling into this
# function. This is an error: we may be creating fake tensors and
# will perform operations on them which need fake tensor mode to
# be active. You will segfault if you are in a no_dispatch() block.
assert not torch._C._dispatch_tls_local_exclude_set().has(
torch._C.DispatchKey.Python
)
arg_cnt = self.arg_cnt
self.arg_cnt += 1
# When we make as_strided calls, we end up generating a guard
# that the new as_strided tensor is in bounds for the old storage
# for the base (since as_strided calls can "bust" out of their
# bounding box.) This guard is unnecessary: if a user is able
# to provide us a tensor with the view base setup this way, we
# don't need to produce a guard, because the fact that they
# were able to produce the view base means its in bounds.
#
# Now, ordinarily, this guard would be harmless. However, the
# generated guard refers to variables bound on the base variable.
# At the moment, Dynamo doesn't actually guard on x._base, because
# according to Voz this results in a lot of spurious invalidations,
# and also if the user doesn't directly make use of _base, its
# pointless anyway (because programs should be parametric over
# whether or not the input tensor is a view or not--unless you're
# mutating the input, but that's a whole 'nother ballgame). So
# for expediency, we suppress these guards so we don't have to
# deal with this (yet, anyway.)
#
# NB: An old version of this code suppressed guards for ALL operations
# happening during meta conversion, not just as_strided calls.
# This is too aggressive: we do duck sizing and 0/1 simplification
# as we allocate variables, and we do need to register guards for
# these cases.
maybe_suppress: Callable[[], Any] = contextlib.nullcontext
if shape_env is not None:
maybe_suppress = shape_env.suppress_guards
def sym_sizes_strides_storage_offset(
t: MetaTensorDesc, src, symbolic_context=symbolic_context
) -> Tuple[Tuple[int, ...], Tuple[int, ...], int]:
assert t.stride is not None
if shape_env is not None:
fake_mode = t.fake_mode
if fake_mode is not None and fake_mode.shape_env is shape_env:
# Don't reallocate the sizes; the shape envs are the same,
# so reuse the old sizes/strides/etc
return (t.size, t.stride, t.storage_offset)
else:
# TODO: deduplicate this
t_size = tuple(
shape_env._maybe_specialize_sym_int_with_hint(sz)
for sz in t.size
)
t_stride = tuple(
shape_env._maybe_specialize_sym_int_with_hint(sd)
for sd in t.stride
)
t_storage_offset = shape_env._maybe_specialize_sym_int_with_hint(
t.storage_offset
)
return shape_env._create_symbolic_sizes_strides_storage_offset(
t_size,
t_stride,
t_storage_offset,
[d in t.dynamo_dynamic_indices for d in range(t.ndim)],
src,
symbolic_context=symbolic_context,
)
else:
return (t.size, t.stride, t.storage_offset)
def empty_create(
inner_t: MetaTensorDesc, inner_src, symbolic_context=symbolic_context
):
(
inner_sizes,
inner_strides,
inner_storage_offset,
) = sym_sizes_strides_storage_offset(inner_t, inner_src, symbolic_context)
return torch.empty_strided(
inner_sizes,
inner_strides,
dtype=inner_t.dtype,
device="meta",
)
# Creates a subclass instance with empty inner tensors according to the specified
# symbolic context.
def empty_create_subclass(
t: MetaTensorDesc,
outer_size,
outer_stride,
symbolic_context=symbolic_context,
callback=callback,
source=source,
):
from torch._dynamo.source import AttrSource
from torch.fx.experimental.symbolic_shapes import SubclassSymbolicContext
assert t.attrs is not None
assert t.type is not None
# NB: t.ctx could be None if the subclass in question has no
# meaningful context
assert symbolic_context is None or isinstance(
symbolic_context, SubclassSymbolicContext
)
# Note: transform_subclass will use __tensor_unflatten__ to generate
# a fresh subclass wrapper with outer sizes / strides according to the
# outer symbolic context (passed in to this function). Inner size / stride
# / storage offset symbols are allocated according to the appropriate inner
# symbolic contexts, after which the checks in transform_subclass() will
# relate them to the outer metadata as possible.
#
# Morally, the code here is same as transform_subclass, but we've
# written it from scratch to read EmptyCreateSubclass
outer_size = outer_size if outer_size is not None else t.size
outer_stride = outer_stride if outer_stride is not None else t.stride
def transform(attr, inner_t):
r = callback(
lambda: empty_create(
inner_t,
AttrSource(source, attr),
symbolic_context=(
None
if symbolic_context is None
else symbolic_context.inner_contexts[attr]
),
)
)
if self.copy_data:
with torch.no_grad(), no_dispatch():
r.real_tensor = torch.empty_strided(
inner_t.size,
inner_t.stride,
dtype=inner_t.dtype,
device=inner_t.device,
)
assert inner_t.data is not None
_safe_copy(r.real_tensor, inner_t.data)
return r
transformed_tensors_dict = {
attr: transform(attr, inner_t) for attr, inner_t in t.attrs.items()
}
sub = t.type.__tensor_unflatten__(
transformed_tensors_dict, t.ctx, outer_size, outer_stride
)
# NB: Purposefully guard here to simplify the inner / outer symbols.
# Using sym_eq() for symbolic comparison can result in an expression that's too
# difficult to guard on, so we use == here.
assert sub.shape == outer_size, (
f"Expected return value from {t.type}__tensor_unflatten__() to have "
f"shape equal to {outer_size}, but got: {sub.shape}"
)
assert sub.stride() == outer_stride, (
f"Expected return value from {t.type}__tensor_unflatten__() to have "
f"stride equal to {outer_stride}, but got: {sub.stride()}"
)
return sub
# Returns an all-dynamic symbolic context used for metafying the given tensor with
# fully dynamic dims. This is useful when fake-ifying intermediate tensors in
# closed-over ViewFunc state, as we don't have symbolic contexts for them, but we
# don't want to over-specialize during view replay.
def all_dynamic_symbolic_context(
t: MetaTensorDesc, source, shape_env, callback
):
from torch._dynamo.source import AttrSource
from torch.fx.experimental.symbolic_shapes import (
DimDynamic,
StatelessSymbolicContext,
SubclassSymbolicContext,
)
view_base_context: Optional[SymbolicContext] = None
if t.is_view:
assert t.base is not None
view_base_context = all_dynamic_symbolic_context(
t.base, AttrSource(source, "_base"), shape_env, callback
)
t_symbolic_context: SymbolicContext
t_dynamic_sizes = [DimDynamic.DYNAMIC] * t.ndim
if t.is_traceable_wrapper_subclass:
assert t.attrs is not None
inner_contexts: Dict[str, SymbolicContext] = {}
for attr, inner in t.attrs.items():
assert isinstance(attr, str)
inner_contexts[attr] = all_dynamic_symbolic_context(
inner, AttrSource(source, attr), shape_env, callback
)
t_symbolic_context = SubclassSymbolicContext(
dynamic_sizes=t_dynamic_sizes,
constraint_sizes=[None] * t.ndim,
inner_contexts=inner_contexts,
tensor_source=source,
view_base_context=view_base_context,
)
else:
t_symbolic_context = StatelessSymbolicContext(
dynamic_sizes=t_dynamic_sizes,
constraint_sizes=[None] * t.ndim,
view_base_context=view_base_context,
)
return t_symbolic_context
# Returns a fake-ified version of an input view tensor t, given an already fake-ified
# base. At a high level, we want two things:
# 1. fake_t should have the same view relationship to the given fake base as the
# input t has to its _base.
# 2. fake_t should have symbolic sizes / strides / storage offset according to the
# appropriate symbolic context (i.e. from the automatic dynamic algorithm).
#
# We currently take different strategies across view types:
# * For dense -> dense views, accomplish both (1) and (2) simultaneously via an
# as_strided() call on the fake-ified base, passing symbolic metadata.
# * For views involving subclasses, perform view replay using view funcs to
# achieve (1). It's necessary for (2) to swap out any closed-over state in
# the view funcs with symbolicized SymInts and fake-ified tensors. Doing this
# avoids specialization (and thus over-eager simplification of symbols) that
# could occur during view replay on the fake-ified base.
#
# Examples:
# * t.unsqueeze(-1) with dense t is a dense -> dense view. It can be modeled
# with an as_strided() call on the fake base passing symbolic metadata.
# * sub.select(dim=0, index=3) is a subclass -> subclass view. The index arg
# is made symbolic to avoid invalid specialization and view replay is then
# done to reconstruct the view.
# * _nested_from_jagged(values, offsets) is a dense -> subclass view
# that returns a subclass instance from a dense values tensor. The offsets
# tensor is closed over in the view func, as it can be considered view metadata.
# First, the offsets tensor is fake-ified according to the inner symbolic
# context and with the correct relationship to the outer size / stride metadata.
# Then view replay is done, swapping in the fake offsets so the view replay output
# is fully fake with no invalid specialization.
def view_from_base(
base: torch.Tensor, t: MetaTensorDesc, source=source, shape_env=shape_env
):
# fake-ify t's metadata according to the outer symbolic context
(sizes, strides, storage_offset) = sym_sizes_strides_storage_offset(
t, source
)
if (
not t.is_traceable_wrapper_subclass
and not is_traceable_wrapper_subclass(base)
):
# Dense -> Dense view case uses as_strided() to construct view relationship.
# TODO: Change this logic to use view replay for consistency?
# It's likely there is no view func available.
with maybe_suppress():
return base.as_strided(sizes, strides, storage_offset)
from torch._dynamo.source import EphemeralSource
from torch.fx.experimental.symbolic_shapes import (
StatelessSymbolicContext,
sym_eq,
)
def symint_visitor_fn(s):
nonlocal symbolic_context
from torch.fx.experimental.symbolic_shapes import DimDynamic
all_static_sizes = (
symbolic_context is not None
and isinstance(symbolic_context, StatelessSymbolicContext)
and all(
x is DimDynamic.STATIC for x in symbolic_context.dynamic_sizes
)
)
# Can't just rely on shape env being None - dynamo always initializes it
if all_static_sizes or shape_env is None:
return s
# NB: The symbol here is expected to be simplified out because we a priori
# allocate inner and outer symbols according to the appropriate symbolic
# contexts and prefer those over this symbol during symbol simplification
# (via usage of EphemeralSource below). This -shouldn't- happen, but if
# this symbol somehow leaks out beyond the view tensor's shape metadata, our
# assumption of it being simplified out will fail and it may be guarded on,
# which will hard error.
sym_source = EphemeralSource("symint_visitor_fn")
symbol = shape_env.create_symbol(s, sym_source)
return shape_env.create_symintnode(symbol, hint=s, source=sym_source)
real_to_fake_mapping = {}
if t.is_traceable_wrapper_subclass:
assert t.attrs is not None
# NB: t.ctx could be None if the subclass in question has no
# meaningful context
assert t.type is not None
# Fake-ify t naively here; this is only done so we can get fake-ified inner
# tensors with the correct relationships to the outer sizes / strides for use
# in view replay. It's done beforehand here because it's not easy to do when
# visiting tensors one-by-one during view replay.
#
# Example:
# Consider a Dense -> NJT view. NJT has (values, offsets) components and we
# want a view of values with the offsets closed over. As the offsets component
# is needed to describe the output view, it's important that it's fakeified
# correctly.
fake_t = empty_create_subclass(
t, outer_size=sizes, outer_stride=strides
)
attrs, _ = fake_t.__tensor_flatten__()
for attr in attrs:
real_to_fake_mapping[t.attrs[attr].id] = getattr(fake_t, attr)
def tensor_visitor_fn(
visited_t: torch.Tensor,
# These arguments are never passed, we just use them to close
# over these relevant values
shape_env=shape_env,
callback=callback,
):
# It's possible to close over an undefined tensor (e.g. NJT's lengths).
if visited_t is None:
return None
# NB: visited_t being a Tensor here is very naughty! Should
# have already been described
# Fake inner tensors of view subclasses will come from the mapping built above.
visited_id = self.describer.get_tensor_id(visited_t)
fake_visited_t = real_to_fake_mapping.get(visited_id, None)
if fake_visited_t is not None:
return fake_visited_t
visited_desc = self.describer.describe_tensor(visited_t)
# For other closed-over tensor state, fake-ify it as all dynamic with an
# ephemeral source. This avoids invalid specialization during view replay.
# If we find that in practice the usage of ephemeral sources isn't enough
# to guarantee that we don't have guards on these symbols, we may need to
# explicitly suppress guards (as is done for _base in the dense -> dense
# view case).
temp_source = EphemeralSource("tensor_visitor_fn")
return self.meta_tensor(
visited_desc,
shape_env,
callback,
source=temp_source,
symbolic_context=all_dynamic_symbolic_context(
visited_desc, temp_source, shape_env, callback
),
)
# Replay the view, swapping out any non-symbolic SymInts or real tensors
# for symbolic SymInts or fake tensors.
assert t.view_func is not None
# NB: we do NOT suppress guards here, we need to remove ephemeral
# sources
fake_t = t.view_func(base, symint_visitor_fn, tensor_visitor_fn)
# Ensure the output has symbolic shapes according to the outer symbolic context.
# These checks should simplify out any symbols created for closed-over view func
# SymInts.
torch._check(sym_eq(fake_t.size(), sizes))
torch._check(sym_eq(fake_t.stride(), strides))
torch._check(sym_eq(fake_t.storage_offset(), storage_offset))
return fake_t
if self.get_tensor_memo(t) is None:
GRAD_TENSOR_SENTINEL_VALUE = -2
with torch.inference_mode(t.is_inference):
if t.is_sparse:
is_leaf = t.is_leaf
# The lambda function below is similar to
# `t.to(device='meta')` except the latter
# preserves nnz value
r = callback(
lambda: torch.ops.aten._sparse_coo_tensor_with_dims(
t.sparse_dim,
t.dense_dim,
t.size,
dtype=t.dtype,
layout=torch.sparse_coo,
device="meta",
)
)
if self.copy_data:
# Pray that sparse clone doesn't lose information
assert t.data is not None
with torch.no_grad(), no_dispatch():
r.real_tensor = _safe_clone(t.data)
assert safe_is_leaf(r), "the callback you passed in doesn't detach"
# Note [is_coalesced is dispatched]
# Strangely enough, is_coalesced() is a dispatched operator,
# which means that it will get caught by fake tensor mode.
# Ordinarily this would error, but there's some logic in
# fake tensor ensure this doesn't happen.
r._coalesced_(t.is_coalesced)
if t.requires_grad:
r.requires_grad = True
if t.requires_grad and not is_leaf:
# This should probably use DelayedError,
# but clone is fine for now for sparse tensors.
# (DelayedError does not work for sparse because it causes
# the Fake sparse tensor to "lose" its fakeness)
r = r.clone()
with torch.enable_grad():
r._coalesced_(t.is_coalesced)
elif is_sparse_compressed_layout(t.layout):
is_leaf = t.is_leaf
if t.layout in {torch.sparse_bsr, torch.sparse_bsc}:
assert t.sparse_dim is not None
assert t.dense_dim is not None
assert t.values is not None
batch_dim = t.ndim - t.sparse_dim - t.dense_dim
blocksize = t.values.shape[batch_dim + 1 : batch_dim + 3]
else:
blocksize = ()
if t.layout in {torch.sparse_csr, torch.sparse_bsr}:
assert t.crow_indices is not None
index_dtype = t.crow_indices.dtype
else:
assert t.ccol_indices is not None
index_dtype = t.ccol_indices.dtype
r = callback(
lambda: torch.ops.aten._sparse_compressed_tensor_with_dims(
0,
t.dense_dim,
t.shape,
blocksize,
index_dtype,
layout=t.layout,
dtype=t.dtype,
device="meta",
)
)
if self.copy_data:
# Pray sparse clone doesn't lose information
assert t.data is not None
with torch.no_grad(), no_dispatch():
r.real_tensor = _safe_clone(t.data)
assert safe_is_leaf(r), "the callback you passed in doesn't detach"
if t.requires_grad:
r.requires_grad = True
if t.requires_grad and not is_leaf:
r = torch._C._functions.DelayedError(
"Internal error: Tried to backward() through example input",
1,
)(r)
elif t.is_nested and not t.is_traceable_wrapper_subclass:
# TODO: Handle this better in Dynamo?
# There are checks there now, but this can still be triggered by a dense
# tensor graph input that is a view of a strided NT.
from torch._dynamo.exc import unimplemented
unimplemented(
"strided nested tensors are not supported by meta conversion"
)
elif t.is_mkldnn:
is_leaf = t.is_leaf
sizes, strides, _storage_offset = sym_sizes_strides_storage_offset(
t, source
)
# TODO: This doesn't seem right, where's the MKLDNN'ness
# lol
r = callback(
lambda: torch.empty_strided(
sizes, strides, dtype=t.dtype, device="meta"
)
)
if self.copy_data:
with torch.no_grad(), no_dispatch():
assert t.size is not None
assert t.stride is not None
r.real_tensor = torch.empty_strided(
t.size, t.stride, dtype=t.dtype, device=t.device
)
assert t.data is not None
_safe_copy(r.real_tensor, t.data)
assert safe_is_leaf(r), "the callback you passed in doesn't detach"
if t.requires_grad:
r.requires_grad = True
if t.requires_grad and not is_leaf:
r = torch._C._functions.DelayedError(
"Internal error: Tried to backward() through example input",
1,
)(r)
elif t.is_functorch_wrapped:
if t.is_view:
from torch._dynamo.exc import unimplemented
unimplemented(
"view functorch tensors are not supported by meta conversion"
)
# Wraps a functorch tensor class (BatchedTensor, GradTrackingTensor)
# in a FakeTensor
def _to_fake_tensor(t: MetaTensorDesc):
# TODO: why aren't the recursive calls going to
# meta_tensor
if t.is_batchedtensor:
assert t.unwrapped is not None
assert t.level is not None
assert t.bdim is not None
ft = _to_fake_tensor(t.unwrapped)
lvl = t.level
bdim = t.bdim
# You cannot create functorch tensors without
# having the ambient funtorch interpreter stack
# available, as the level refers to things in the
# stack
with torch._functorch.pyfunctorch.temporarily_restore_interpreter_stack(
t.functorch_stack
):
r = _add_batch_dim(ft, bdim, lvl)
elif t.is_gradtrackingtensor:
assert t.unwrapped is not None
assert t.level is not None
disable_functorch = torch._C._DisableFuncTorch
with disable_functorch():
ft = _to_fake_tensor(t.unwrapped)
lvl = t.level
if lvl == GRAD_TENSOR_SENTINEL_VALUE:
r = ft
else:
with torch._functorch.pyfunctorch.temporarily_restore_interpreter_stack(
t.functorch_stack
):
r = torch._C._functorch._wrap_for_grad(ft, lvl)
is_leaf = t.is_leaf
if t.requires_grad and safe_is_leaf(r):
r.requires_grad = True
elif t.requires_grad and not is_leaf:
r = torch._C._functions.DelayedError( # type: ignore[assignment]
"Internal error: Tried to backward() through example input",
1,
)(
r # type: ignore[arg-type]
)
elif t.is_functional:
assert t.unwrapped is not None
assert t.current_level is not None
ft = self.meta_tensor(
t.unwrapped,
shape_env=shape_env,
callback=callback,
# NB: reuse these exactly, we treat the
# functional tensor as "invisible".
# TODO: Actually this all probably doesn't
# work, take a closer look.
source=source,
symbolic_context=symbolic_context,
)
r = _wrap_functional_tensor(ft, t.current_level)
# TODO: is_leaf/requires_grad?
else:
assert t.stride is not None
sizes = t.size
strides = t.stride
r = callback(
lambda: torch.empty_strided(
sizes,
strides,
dtype=t.dtype,
device="meta",
)
)
if self.copy_data:
with torch.no_grad(), no_dispatch():
r.real_tensor = torch.empty_strided( # type: ignore[attr-defined]
t.size,
t.stride,
dtype=t.dtype,
device=t.device,
)
assert t.data is not None
_safe_copy(r.real_tensor, t.data) # type: ignore[attr-defined]
return r
r = _to_fake_tensor(t)
elif t.is_functional and t.device.type not in ["xla", "lazy"]:
assert t.unwrapped is not None
assert not t.is_functorch_wrapped # handled above
unwrapped = self.meta_tensor(
t.unwrapped,
shape_env=shape_env,
callback=callback,
source=source,
symbolic_context=symbolic_context,
)
r = torch._to_functional_tensor(unwrapped)
torch._mirror_autograd_meta_to(t.autograd_meta_from, r) # type: ignore[attr-defined]
elif t.is_view:
# Construct views in two steps: recursively meta-fy their
# base, and then create view(s) off that. NB: doing it
# directly from storage is WRONG because this won't cause
# version counters to get shared.
assert t.base is not None
base_symbolic_context = None
if shape_env and symbolic_context is not None:
from torch.fx.experimental.symbolic_shapes import (
StatelessSymbolicContext,
)
assert isinstance(symbolic_context, StatelessSymbolicContext)
# NB: This should generally be set when the input is a view,
# but the exception right now is for fake-ifying grads, which is
# a work in progress.
if symbolic_context.view_base_context is not None:
base_symbolic_context = symbolic_context.view_base_context
base = self.meta_tensor(
t.base,
shape_env,
callback,
source=torch._dynamo.source.AttrSource(source, "_base"),
symbolic_context=base_symbolic_context,
)
def is_c_of_r(complex_dtype, real_dtype):
return (
utils.is_complex_dtype(complex_dtype)
and utils.corresponding_real_dtype(complex_dtype)
== real_dtype
)
# In some situations, MetaConverter may be called in a
# context where autograd is disabled. For the _is_view
# assert to pass, we have to setup the autograd view
# metadata anyway. Do this by reenabling the
# ADInplaceOrView key. This is kind of a hack.
old_exclude = torch._C._dispatch_tls_is_dispatch_key_excluded(
torch._C.DispatchKey.ADInplaceOrView
)
torch._C._dispatch_tls_set_dispatch_key_excluded(
torch._C.DispatchKey.ADInplaceOrView, False
)
try:
if base.dtype == t.dtype:
pass
elif is_c_of_r(base.dtype, t.dtype):
base = torch.view_as_real(base)
elif is_c_of_r(t.dtype, base.dtype):
base = torch.view_as_complex(base)
else:
# This is not guaranteed to succeed. If it fails, it
# means there is another dtype-converting view function
# that hasn't been handled here
base = base.view(t.dtype)
# This is very tricky. Naively, you might expect this
# to hold:
#
# if t.requires_grad and not safe_is_leaf(t)
# assert t._base.requires_grad
#
# But it's not true! As you can see in the following
# program:
#
# x = torch.zeros(4)
# y = x.view(1, 4)
# y.requires_grad = True
# z = y.view(1, 1, 4)
# assert z._base is x
#
# So we may have to do *two* views out of the base to
# recreate this situation.
if t.is_leaf:
# Leaf views that track view metadata are created by
# creating a view inside a no_grad block
with torch.no_grad():
r = view_from_base(base, t)
# As it's a leaf, we can directly assign requires_grad
r.requires_grad = t.requires_grad
else:
if t.base.requires_grad == t.requires_grad:
# Easy case, just run the view op
with torch.enable_grad():
r = view_from_base(base, t)
# NB: We don't actaully faithfully replicate
# autograd connectivity, but that doesn't matter
# today. See following for more info:
# https://gist.github.com/soulitzer/e03f015b314c3f5fcf80888c69390913
else:
# Obscure case. Create a leaf view and give it the
# correct requires_grad, then do the final view.
# NB: Can't have a non-leaf without requiring grad!
assert t.requires_grad
with torch.no_grad():
mid = base.view(base.shape)
mid.requires_grad = t.requires_grad
with torch.enable_grad():
r = view_from_base(mid, t)
# The CreationMeta influences whether or not inplace
# mutation is an error or not. So we need to make
# sure we properly propagate this as well.
assert t.creation_meta is not None
torch._C._autograd._set_creation_meta(r, t.creation_meta)
finally:
torch._C._dispatch_tls_set_dispatch_key_excluded(
torch._C.DispatchKey.ADInplaceOrView, old_exclude
)
else:
is_leaf = t.is_leaf
# Graph-Break for wrapped tensors
if (
not (t.is_batchedtensor or t.is_gradtrackingtensor)
and t.is_functorch_wrapped
) or t.is_legacy_batchedtensor:
return NotImplemented
(
sizes,
strides,
storage_offset,
) = sym_sizes_strides_storage_offset(t, source, symbolic_context)
# If we have a subclass that desugars into dense tensors,
# perform our callback on each inner tensor.
if t.is_traceable_wrapper_subclass:
r = empty_create_subclass(
t, outer_size=sizes, outer_stride=strides
)
else:
r = callback(
lambda: torch.empty_strided(
sizes,
strides,
dtype=t.dtype,
device="meta",
)
)
if self.copy_data:
with torch.no_grad(), no_dispatch():
assert t.size is not None
assert t.stride is not None
r.real_tensor = torch.empty_strided(
t.size, t.stride, dtype=t.dtype, device=t.device
)
_safe_copy(r.real_tensor, t.data)
assert safe_is_leaf(r), "the callback you passed in doesn't detach"
if t.requires_grad:
r.requires_grad = t.requires_grad
if not is_leaf:
# Fake up some autograd history.
# Note: we *used* to call .clone() here to mock up some autograd history.
# This is bad for subclasses.
# Consider the case where you have a wrapper subclass that is contiguous,
# but its inner tensor is noncontiguous().
# .clone() (or other ops) will have the side effect of changing
# the metadata of the inner tensor.
# So instead, we now have a dedicated fn to set autograd history,
# without inadvertently changing other metadata.
r = torch._C._functions.DelayedError(
"Internal error: Tried to backward() through example input",
1,
)(r)
s = t.storage
assert s is not None
if s.id not in self.storage_memo and (
r.is_nested
or (
r.stride() == strides
and r.storage_offset() == storage_offset
)
):
# You're normal and happy, install the fresh storage into the memo
self.set_storage_memo(s, r.untyped_storage())
if self.copy_data:
r.untyped_storage().real_storage = (
r.real_tensor.untyped_storage()
)
else:
# You're in crazy town; somehow you gave us a tensor
# that wasn't a view, but had nonzero storage offset,
# nontrivial strides (such that clone() couldn't
# preserve them), or already aliases with another
# tensor's storage. The most typical way to end
# up here is with set_. So use set_ to bludgeon this
# in.
r_s = self.meta_storage(s, callback=callback)
# NB: In principle, this should always work, but there
# is some subtle difference in the autograd metadata
# that means we will backprop the set_ call, even if
# r is declared as an input to grad.
# See https://github.com/pytorch/pytorch/issues/87956
# for the reproducer.
# NB: The in_kernel_invocation_manager here is necessary
# for fake tensor. If we run the set_ call with fake
# tensor on, r will improperly report that it is NOT a
# meta tensor but a cpu tensor, and then the set_ call
# will fail due to device mismatch. no_dispatch() is
# not enough, because the fake tensor will still claim
# to be a CPU tensor and you'll end up in the CPU
# kernel. Arguably this is a hack; a cleaner way to
# solve this is to have a FakeStorage concept which
# would report it's CPU device--no problem now! But
# this is difficult to do because we don't have storage
# subclasses. Relevant test is
# DynamicShapesFunctionTests::test_add_dynamic_shapes in
# test/dynamo/test_dynamic_shapes.py
maybe_fake_mgr: ContextManager[None] = contextlib.nullcontext()
from torch._subclasses.fake_tensor import (
in_kernel_invocation_manager,
maybe_get_fake_mode,
)
mb_fake_mode = maybe_get_fake_mode(r)
if mb_fake_mode is not None:
maybe_fake_mgr = in_kernel_invocation_manager(mb_fake_mode)
with torch.no_grad(), maybe_suppress():
with maybe_fake_mgr:
r.set_(r_s, storage_offset, sizes, strides)
if self.copy_data:
with torch.no_grad(), no_dispatch():
r.real_tensor.set_(
r_s.real_storage,
t.storage_offset,
t.size,
t.stride,
)
if t.grad is not None:
from torch._dynamo.source import AttrSource
# TODO: Use a valid grad-specific symbolic context instead of recycling
# the one from t. This isn't correct if e.g. t._is_view() != t.grad._is_view().
r.grad = self.meta_tensor(
t.grad,
shape_env,
callback,
source=AttrSource(source, "grad"),
symbolic_context=symbolic_context,
)
torch._C._set_conj(r, t.is_conj)
torch._C._set_neg(r, t.is_neg)
# This can be skipped if necessary for performance reasons
skip_leaf = (
t.is_gradtrackingtensor and t.level == GRAD_TENSOR_SENTINEL_VALUE
)
assert_metadata_eq(assert_eq, t, r, skip_symbolic=True, skip_leaf=skip_leaf)
# Thanks to storage resizing, it's possible to end up with a tensor
# that advertises a real size, but has a storage that actually has zero bytes.
# Need to reflect this in the generated FakeTensor.
if t.storage is not None and t.storage.size == 0:
r.untyped_storage().resize_(0)
if t.is_parameter:
r._is_param = True
self.set_tensor_memo(t, r)
return self.get_tensor_memo(t)
def __call__(
self,
t,
shape_env=None,
*,
callback=lambda t: t(),
source=None,
symbolic_context=None,
# Controls whether or not we should dump the tensor metadata to structured logs
# when source is not None. Because we refakify after Dynamo is done,
# we don't want to dump info again from AOTAutograd, it is redundant.
trace=True,
):
# TODO: zero tensors? We appear to have eliminated them by
# excluding complex for now
# Filter out cases we don't support
# TODO: This can probably be simplified quite a bit
if isinstance(t, torch.Tensor) or is_traceable_wrapper_subclass(t):
if (
# Lazy tensors are not supported. Note that XLA is
# implemented on top of lazy tensor, not excluded here; we
# have some special handling for it; this is for XLA Dynamo
# integration
t.device.type == "lazy"
or
# Quantization is not supported
t.is_quantized
or
# Views out of sparse tensors not currently supported (plain
# sparse is supported htough)
(t._is_view() and t._base is not None and t._base.is_sparse)
):
self.miss += 1
return NotImplemented
else:
self.hit += 1
elif torch.overrides.is_tensor_like(t):
self.miss += 1
return NotImplemented
else:
# non-Tensor types don't count as hit or miss
return t
if source is None:
trace = False
# Describe the tensor. NB: do NOT disable ambient modes, we may need
# to query them when figuring out what to put in here
t_desc = self.describer.describe_tensor(t, trace=trace)
if trace:
trace_structured(
"describe_source",
metadata_fn=lambda: {
"describer_id": self.describer.id,
"id": t_desc.id,
"source": source.name(),
},
)
# Do the meta-fication. Here, we disable all the ambient modes, to
# better simulate what would be like to re-fakeify from a fresh
# process
with contextlib.ExitStack() as exit_stack:
exit_stack.enter_context(torch._dispatch.python.suspend_functionalization())
st = peek_interpreter_stack()
if st is not None:
exit_stack.enter_context(
torch._functorch.pyfunctorch.temporarily_clear_interpreter_stack()
)
r = self.meta_tensor(
t_desc,
shape_env=shape_env,
callback=callback,
source=source,
symbolic_context=symbolic_context,
)
if type(t) is torch.nn.Parameter:
# NB: Cannot directly use Parameter constructor
# because that would force a detach, not desirable
r._is_param = True
# TODO: return the description for later
return r
import torch._prims_common as utils
|