File size: 18,131 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
# mypy: allow-untyped-defs
# Copyright (c) Meta Platforms, Inc. and affiliates

import dataclasses
import io
import logging
import operator
from collections import ChainMap
from functools import reduce
from typing import Any, cast, Dict, List, Optional, Tuple, Union

import torch
from torch.distributed._shard._utils import narrow_tensor_by_index
from torch.distributed._tensor import DTensor
from torch.distributed.checkpoint._dedup_save_plans import dedup_save_plans
from torch.distributed.checkpoint._nested_dict import (
    FLATTEN_MAPPING,
    flatten_state_dict,
)
from torch.distributed.checkpoint._sharded_tensor_utils import _flatten_sharded_tensors
from torch.distributed.checkpoint._traverse import set_element
from torch.distributed.checkpoint.metadata import (
    BytesStorageMetadata,
    ChunkStorageMetadata,
    Metadata,
    MetadataIndex,
    STATE_DICT_TYPE,
    STORAGE_TYPES,
    StorageMeta,
    TensorStorageMetadata,
)
from torch.distributed.checkpoint.planner import (
    LoadPlan,
    LoadPlanner,
    ReadItem,
    SavePlan,
    SavePlanner,
    WriteItem,
    WriteItemType,
)
from torch.distributed.checkpoint.planner_helpers import (
    _create_default_metadata_only_plan,
    _create_read_items,
    _create_write_items,
    _init_state_dict,
)
from torch.distributed.checkpoint.utils import find_state_dict_object

logger: logging.Logger = logging.getLogger(__name__)


__all__ = [
    "DefaultSavePlanner",
    "DefaultLoadPlanner",
    "create_default_local_load_plan",
    "create_default_global_load_plan",
    "create_default_local_save_plan",
    "create_default_global_save_plan",
]


# TODO: Update docstrings for default_planner.py
class DefaultSavePlanner(SavePlanner):
    mappings: FLATTEN_MAPPING

    def __init__(
        self,
        flatten_state_dict: bool = True,
        flatten_sharded_tensors: bool = True,
        dedup_replicated_tensors: Optional[bool] = None,
        dedup_save_to_lowest_rank: bool = False,
    ) -> None:
        self.flatten_state_dict = flatten_state_dict
        self.flatten_sharded_tensors = flatten_sharded_tensors
        self.mappings = {}
        self.dedup_save_to_lowest_rank = dedup_save_to_lowest_rank
        if dedup_replicated_tensors is not None:
            logger.warning(
                "DefaultSavePlanner's `dedup_replicated_tensors` argument is being "
                "deprecated, and no longer has any effect. Please remove this argument "
                "from your call."
            )

    def set_up_planner(
        self,
        state_dict: STATE_DICT_TYPE,
        storage_meta: Optional[StorageMeta] = None,
        is_coordinator: bool = False,
    ) -> None:
        if self.flatten_state_dict:
            state_dict, self.mappings = flatten_state_dict(state_dict)
        if self.flatten_sharded_tensors:
            state_dict = _flatten_sharded_tensors(state_dict)
        self.state_dict = state_dict
        self.is_coordinator = is_coordinator

    def create_local_plan(self) -> SavePlan:
        plan = create_default_local_save_plan(self.state_dict, self.is_coordinator)
        if self.flatten_state_dict:
            plan = dataclasses.replace(plan, planner_data=self.mappings)
        self.plan = plan

        return self.plan

    def create_global_plan(
        self, all_plans: List[SavePlan]
    ) -> Tuple[List[SavePlan], Metadata]:
        all_plans = dedup_save_plans(all_plans, self.dedup_save_to_lowest_rank)

        global_plan, metadata = create_default_global_save_plan(all_plans)

        if self.flatten_state_dict:
            # | does not work for Python 3.8 or older version.
            # merged_mappings = reduce(
            #     lambda x, y: x | y, (p.planner_data for p in global_plan)
            # )
            planner_data_dict = [p.planner_data for p in global_plan]
            merged_mappings = dict(ChainMap(*planner_data_dict))
            metadata = dataclasses.replace(metadata, planner_data=merged_mappings)

        if not _validate_global_plan(global_plan, metadata):
            raise ValueError("Failed to validate global plan")

        self.global_plan = global_plan
        self.metadata = metadata

        return self.global_plan, self.metadata

    def finish_plan(self, new_plan: SavePlan) -> SavePlan:
        self.plan = new_plan
        return new_plan

    def resolve_data(self, write_item: WriteItem) -> Union[torch.Tensor, io.BytesIO]:
        object = self.lookup_object(write_item.index)
        return self.transform_object(write_item, object)

    def lookup_object(self, index: MetadataIndex) -> Any:
        """Extension from the planner interface to make it easy to extend the default planner."""
        return find_state_dict_object(self.state_dict, index)

    def transform_object(self, write_item: WriteItem, object: Any):
        """Extension from the planner interface to make it easy to extend the default planner."""
        if write_item.type == WriteItemType.BYTE_IO:
            bytes = io.BytesIO()
            torch.save(object, bytes)
            object = bytes
        return object


class DefaultLoadPlanner(LoadPlanner):
    """
    DefaultLoadPlanner that adds multiple features on top of LoadPlanner.

    In particular it adds the following:

    flatten_state_dict: Handle state_dict with nested dicts
    flatten_sharded_tensors: For FSDP in 2D parallel mode
    allow_partial_load: If False, will raise a runtime error if a key is present in state_dict, but not in the checkpoint.
    """

    original_state_dict: STATE_DICT_TYPE
    mappings: FLATTEN_MAPPING

    def __init__(
        self,
        flatten_state_dict: bool = True,
        flatten_sharded_tensors: bool = True,
        allow_partial_load: bool = False,
    ) -> None:
        self.flatten_state_dict = flatten_state_dict
        self.flatten_sharded_tensors = flatten_sharded_tensors
        self.original_state_dict = {}
        self.mappings = {}
        self.allow_partial_load = allow_partial_load

    def set_up_planner(
        self,
        state_dict: STATE_DICT_TYPE,
        metadata: Optional[Metadata] = None,
        is_coordinator: bool = False,
    ) -> None:
        _init_state_dict(state_dict)
        self.original_state_dict = state_dict

        if self.flatten_sharded_tensors:
            state_dict = _flatten_sharded_tensors(state_dict)

        if self.flatten_state_dict:
            state_dict, self.mappings = flatten_state_dict(state_dict)

        self.state_dict = state_dict
        self.metadata = metadata
        self.is_coordinator = is_coordinator

    def create_local_plan(self) -> LoadPlan:
        assert self.metadata is not None
        return create_default_local_load_plan(
            self.state_dict, self.metadata, not self.allow_partial_load
        )

    def create_global_plan(self, global_plan: List[LoadPlan]) -> List[LoadPlan]:
        return create_default_global_load_plan(global_plan)

    def finish_plan(self, new_plan: LoadPlan) -> LoadPlan:
        return new_plan

    def load_bytes(self, read_item: ReadItem, value: io.BytesIO) -> None:
        if self.flatten_state_dict:
            set_element(
                self.original_state_dict,
                self.mappings[read_item.dest_index.fqn],
                torch.load(value),
            )
        else:
            self.state_dict[read_item.dest_index.fqn] = torch.load(value)

    def resolve_tensor(self, read_item: ReadItem):
        tensor = self.lookup_tensor(read_item.dest_index)
        return self.transform_tensor(read_item, tensor)

    def commit_tensor(self, read_item: ReadItem, tensor: torch.Tensor) -> None:
        pass

    def lookup_tensor(self, index: MetadataIndex) -> torch.Tensor:
        """Extension from the planner interface to make it easy to extend the default planner."""
        return find_state_dict_object(self.state_dict, index)

    def transform_tensor(self, read_item: ReadItem, tensor: torch.Tensor):
        """Extension from the planner interface to make it easy to extend the default planner."""
        return narrow_tensor_by_index(tensor, read_item.dest_offsets, read_item.lengths)


class _EmptyStateDictLoadPlanner(DefaultLoadPlanner):
    """
    Extension of DefaultLoadPlanner, which rebuilds state_dict from the saved metadata.
    Useful for loading in state_dict without first initializing a model, such as
    when converting a DCP checkpoint into a Torch save file.

    . N.B. `state_dict` must be an empty dictionary when used with this LoadPlanner

    .. warning::
        Because the entire state dict is initialized, It's recommended to only utilize
        this LoadPlanner on a single rank or process to avoid OOM.

    """

    def __init__(self, keys=None, *args, **kwargs):
        self.keys = keys
        super().__init__(*args, **kwargs)

    def _should_include_key(self, key: str, metadata: Metadata) -> bool:
        if self.keys is None:
            return True

        if key in self.keys:
            True

        unflattened_keys: List[str] = []
        planner_data = metadata.planner_data.get(key)
        for unflattened_key in planner_data:
            if unflattened_keys:
                unflattened_keys.append(
                    ".".join([unflattened_keys[-1], str(unflattened_key)])
                )

            else:
                unflattened_keys.append(unflattened_key)

        if any(unflattened_key in self.keys for unflattened_key in unflattened_keys):
            return True

        return False

    def set_up_planner(
        self,
        state_dict: STATE_DICT_TYPE,
        metadata: Optional[Metadata] = None,
        is_coordinator: bool = False,
    ) -> None:
        assert not state_dict
        assert metadata is not None

        # rebuild the state dict from the metadata
        for k, v in metadata.state_dict_metadata.items():
            if not self._should_include_key(k, metadata):
                continue

            if isinstance(v, TensorStorageMetadata):
                v = torch.empty(v.size, dtype=v.properties.dtype)  # type: ignore[assignment]
            if k in metadata.planner_data:
                set_element(state_dict, metadata.planner_data[k], v)
            else:
                state_dict[k] = v

        super().set_up_planner(state_dict, metadata, is_coordinator)


def create_default_local_load_plan(
    state_dict: Dict[str, Any], metadata: Metadata, strict: bool = True
) -> LoadPlan:
    requests = []
    """
    Create the ``LoadPlan`` used by DefaultLoadPlanner.

    It produces one read item per value in ``state_dict`` using the metadata in ``metadata``.

    The default behavior is to match key exactly between state_dict and metadata.
    It handles resharding by issuing multiple read requests against storage in order to match
    load requirements.
    """

    for fqn, obj in state_dict.items():
        # ignore state_dict keys which do not exist in `state_dict` if strict=False
        if fqn not in metadata.state_dict_metadata:
            if strict:
                raise RuntimeError(f"Missing key in checkpoint state_dict: {fqn}.")
            else:
                continue

        md = metadata.state_dict_metadata[fqn]
        # Since DTensor supports submesh, adding extra check to ensure _create_read_items()
        # gets called only when the current rank is part of the mesh for the corresponding DTensor.
        if isinstance(obj, DTensor):
            if obj.device_mesh.get_coordinate() is not None:
                requests += _create_read_items(fqn, md, obj)
        else:
            requests += _create_read_items(fqn, md, obj)

    return LoadPlan(requests)


def create_default_global_load_plan(
    all_plans: List[LoadPlan],
) -> List[LoadPlan]:
    """
    Create global load plan used by DefaultLoadPlanner.

    The default load behavior involved no global coordination and this function
    currently doesn't change the local plans.
    """
    return all_plans


def create_default_local_save_plan(
    state_dict: Dict[str, Any], is_coordinator: bool
) -> SavePlan:
    """
    Create the ``SavePlan`` used by DefaultSavePlanner.

    On non-coordinator ranks, this function ignores tensors and non-tensor objects,
    only producing writes for ShardedTensor objects.

    On the coordinator rank, produce writes for all values.
    """
    requests = []
    for fqn, obj in state_dict.items():
        # Since DTensor supports submesh, adding extra check to ensure _create_write_items()
        # gets called only when the current rank is part of the mesh for the corresponding DTensor.
        if isinstance(obj, DTensor):
            if obj.device_mesh.get_coordinate() is not None:
                requests += _create_write_items(fqn, obj)
        else:
            # For the plain tensor and non-tensor values, add the request for all
            # the ranks. Coordinator will decides whether to deduplicate the
            # values based on the keys.
            requests += _create_write_items(fqn, obj)

    return SavePlan(requests)


def create_default_global_save_plan(
    all_plans: List[SavePlan],
    rewrite_index_hints: bool = True,
) -> Tuple[List[SavePlan], Metadata]:
    """
    Create the global plan and metadata used by DefaultSavePlanner.

    Metadata is produced by concatenating the metadata of all ``WriteItem`` from the supplied plans.

    The only global planning change is to update index hints in all ``MetadataIndex`` objects if
    ``rewrite_index_hints`` is True.
    """
    md: Dict[str, STORAGE_TYPES] = {}
    new_plans = []
    for plan in all_plans:
        new_items = []
        for item in plan.items:
            if not item.type == WriteItemType.SHARD:
                assert item.index.fqn not in md

            if item.type == WriteItemType.BYTE_IO:
                md[item.index.fqn] = BytesStorageMetadata()
                new_items.append(item)
            else:
                assert item.tensor_data is not None
                tensor_md = cast(
                    TensorStorageMetadata,
                    md.setdefault(
                        item.index.fqn,
                        TensorStorageMetadata(
                            properties=item.tensor_data.properties,
                            size=item.tensor_data.size,
                            chunks=[],
                        ),
                    ),
                )
                new_item = item
                if rewrite_index_hints:
                    new_index = dataclasses.replace(
                        item.index, index=len(tensor_md.chunks)
                    )
                    new_item = dataclasses.replace(item, index=new_index)
                new_items.append(new_item)

                assert (
                    item.tensor_data.chunk is not None
                ), f"""
                    Cannot create MD for tensor without bounds.
                    FQN: {item.index.fqn}
                """
                tensor_md.chunks.append(item.tensor_data.chunk)
        new_plans.append(dataclasses.replace(plan, items=new_items))
    return (new_plans, Metadata(md))


def _create_default_local_metadata(state_dict: STATE_DICT_TYPE) -> Metadata:
    """Return the ``Metadata`` if DefaultSavePlanner was used to checkpoint ``state_dict``."""
    plan = _create_default_metadata_only_plan(state_dict)
    _, md = create_default_global_save_plan([plan])
    return md


def _check_box_overlap(box0: ChunkStorageMetadata, box1: ChunkStorageMetadata) -> bool:
    """Check if two boxes overlap. Tuples are (offset, lengths)."""
    # For each dim of each shard, check if one shard resides on the other
    # end of second shard with respect to that dim. As an example for a 2D
    # shard, we would check if one shard is above or on the left of the
    # other shard.
    ndims = len(box0.offsets)
    for i in range(ndims):
        if box0.offsets[i] >= box1.offsets[i] + box1.sizes[i]:
            return False
        if box1.offsets[i] >= box0.offsets[i] + box0.sizes[i]:
            return False

    return True


def _check_box_bounds(
    outer_box_size: torch.Size, inner_box: ChunkStorageMetadata
) -> bool:
    for i in range(len(outer_box_size)):
        if inner_box.offsets[i] < 0:
            return False
        if inner_box.sizes[i] < 0:
            return False
        if inner_box.offsets[i] + inner_box.sizes[i] > outer_box_size[i]:
            return False

    return True


def _validate_global_plan(global_plan: List[SavePlan], metadata: Metadata) -> bool:
    all_good = True
    for key, value in metadata.state_dict_metadata.items():
        if isinstance(value, BytesStorageMetadata):
            continue
        if len(value.size) == 0:
            continue
        chunks_volume = 0
        for chunk_idx, chunk0 in enumerate(value.chunks):
            # Compute the volume
            if not _check_box_bounds(value.size, chunk0):
                logger.warning(
                    """
                        key:%s has out of bounds chunk:
                        tensor-size:%s chunk: %s
                    """,
                    key,
                    value.size,
                    chunk0,
                )
                all_good = False
            chunks_volume += reduce(operator.mul, chunk0.sizes, 1)

            # Check for overlap
            for chunk1 in value.chunks[chunk_idx + 1 :]:
                if _check_box_overlap(chunk0, chunk1):
                    logger.warning(
                        "key:%s has overlapping chunks: %s %s", key, chunk0, chunk1
                    )
                    all_good = False

        # Check whether combined chunk cover the whole tensor
        tensor_volume = reduce(operator.mul, value.size, 1)
        if chunks_volume != tensor_volume:
            logger.warning(
                """
                    key:%s invalid fill tensor-volume:
                    %s chunks-volume: %s
                """,
                key,
                tensor_volume,
                chunks_volume,
            )
            all_good = False

    return all_good