File size: 51,657 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 |
# mypy: allow-untyped-defs
import contextlib
import functools
import gc
import warnings
from dataclasses import asdict, dataclass, field
from itertools import chain
from typing import (
Any,
Callable,
cast,
Dict,
Generator,
Iterable,
List,
no_type_check,
Optional,
Set,
Tuple,
Union,
)
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed._state_dict_utils import (
_broadcast_state_dict,
_flatten_state_dict,
_gather_state_dict,
_offload_state_dict_to_cpu,
_unflatten_state_dict,
)
from torch.distributed._tensor import DTensor
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
_CHECKPOINT_PREFIX,
)
from torch.distributed.fsdp import (
FullOptimStateDictConfig,
FullStateDictConfig,
FullyShardedDataParallel as FSDP,
OptimStateDictConfig,
ShardedOptimStateDictConfig,
ShardedStateDictConfig,
StateDictConfig,
StateDictType,
)
from torch.distributed.fsdp._common_utils import (
_get_module_fsdp_state_if_fully_sharded_module,
FSDP_WRAPPED_MODULE,
)
from torch.nn.modules.module import _IncompatibleKeys
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils._pytree import tree_map_only
__all__ = [
"FQNS_T",
"PrimitiveType",
"ValueType",
"DictValueType",
"ListDictValueType",
"OptimizerStateType",
"StateDictOptions",
"get_model_state_dict",
"get_optimizer_state_dict",
"get_state_dict",
"set_model_state_dict",
"set_optimizer_state_dict",
"set_state_dict",
]
_FLAT_PARAM = "_flat_param"
_PG = "param_groups"
_PARAMS = "params"
_STATE = "state"
FQNS_T = Set[str]
PrimitiveType = Union[DTensor, ShardedTensor, torch.Tensor, int, float, str]
ValueType = Union[
PrimitiveType, List[PrimitiveType], Tuple[PrimitiveType], Dict[str, "ValueType"]
]
DictValueType = Dict[str, ValueType]
ListDictValueType = List[DictValueType]
OptimizerStateType = Dict[str, Union[DictValueType, ListDictValueType]]
_patched_state_dict: Set[Callable] = set()
@contextlib.contextmanager
def _gc_context():
is_enabled = gc.isenabled()
gc.disable()
try:
yield
finally:
if is_enabled:
gc.enable()
@dataclass
class StateDictOptions:
"""
This dataclass specifies how get_state_dict/set_state_dict will work.
- ``full_state_dict``: if this is set to True, all the tensors in the
returned state_dict will be gathered. No ShardedTensor and DTensor
will be in the returned state_dict.
- ``cpu_offload``: offload all the tensors to cpu. To prevent CPU OOM, if
``full_state_dict`` is also true, then only the rank0 will get the
state_dict and all other ranks will get empty state_dict.
- ``ignore_frozen_params``: if the value is True, the returned state_dict
won't contain any frozen parameters -- the ``requires_grad`` is False.
The default value is False.
- ``keep_submodule_prefixes`` (deprecated): when ``submodules`` is not None, this option
indicates whether to keep the submodule prefixes from the state_dict keys.
or example, if the submodule is ``module.pretrain`` and the full FQN of
the parameter is ``pretrain.layer1.weight`` of the param. When this option
is True, the parameter's key in the returned state_dict will be
``pretrain.layer1.weight``. If the options is False, the key will be
``layer1.weight``.
Note that if ``keep_submodule_prefixes`` is False, there may be conflicted
FQNs, hence there should be only one submodule in ``submodules``.
- ``strict``: the ``strict`` option when ``set_state_dict`` calls
model.load_state_dict().
- ``broadcast_from_rank0``: when the option is True, rank0 should receive a
full state_dict and will broadcast the tensors in the state_dict/
optim_state_dict one by one to other ranks. Other ranks will receive
the tensors and shard according to the local shards in the model and
optimizer. ``full_state_dict`` must be set to True when using this option.
This option currently only supports DTensor, not the legacy ShardedTensor.
"""
full_state_dict: bool = False
cpu_offload: bool = False
ignore_frozen_params: bool = False
keep_submodule_prefixes: bool = True
strict: bool = True
broadcast_from_rank0: bool = False
flatten_optimizer_state_dict: bool = False
@dataclass
class _StateDictInfo(StateDictOptions):
fqn_param_mapping: Dict[
Union[str, torch.Tensor], Union[FQNS_T, torch.Tensor]
] = field(default_factory=dict)
shared_params_mapping: Dict[
Union[str, torch.Tensor], Union[FQNS_T, torch.Tensor]
] = field(default_factory=dict)
submodule_prefixes: Set[str] = field(default_factory=set)
handle_model: bool = True
handle_optim: bool = True
fsdp_context: Callable = contextlib.nullcontext
fsdp_modules: List[nn.Module] = field(default_factory=list)
@functools.lru_cache(maxsize=None)
def _get_fqns(
model: nn.Module,
name: str,
skip_ddp_prefix: bool = True,
skip_compiler_prefix: bool = True,
) -> FQNS_T:
"""
This API is used to convert the name of a parameter to the FQNs. For FSDP
without `use_orig_params`, the name of FlatParameter can be mapped to
multiple original parameters. As a result, the return type of this function
is `Set[str]`.
Args:
module (nn.Module): the root model.
name (str): the name
skip_ddp_prefix (bool): whether to skip DDP's `module` prefix
Returns:
The canonical FQNs based on the model traversal.
"""
# Remove the checkpoint prefix, if it exists.
name = name.replace(_CHECKPOINT_PREFIX, "")
if "." not in name:
return {name}
obj_names = name.split(".")
fqn_obj_names = []
curr_obj = model
for i, curr_obj_name in enumerate(obj_names):
if isinstance(curr_obj, DDP):
assert curr_obj_name == "module"
curr_obj = curr_obj.module
if not skip_ddp_prefix:
fqn_obj_names.append(curr_obj_name)
elif isinstance(curr_obj, FSDP):
if i < len(obj_names) - 1 and obj_names[i + 1] == _FLAT_PARAM:
prefix = ".".join(fqn_obj_names)
flat_param = getattr(curr_obj, _FLAT_PARAM)
if prefix:
prefix = f"{prefix}."
return {f"{prefix}{fqn}" for fqn in flat_param._fqns}
curr_obj = getattr(curr_obj, FSDP_WRAPPED_MODULE)
if curr_obj_name != FSDP_WRAPPED_MODULE:
fqn_obj_names.append(curr_obj_name)
curr_obj = getattr(curr_obj, curr_obj_name)
elif isinstance(curr_obj, torch._dynamo.eval_frame.OptimizedModule):
assert curr_obj_name == "_orig_mod"
curr_obj = curr_obj._orig_mod
if not skip_compiler_prefix:
fqn_obj_names.append(curr_obj_name)
else:
fqn_obj_names.append(curr_obj_name)
if curr_obj_name == nn.modules.module._EXTRA_STATE_KEY_SUFFIX:
if i != len(obj_names) - 1:
raise RuntimeError("Expect `_extra_state` to be the last obj name")
else:
curr_obj = getattr(curr_obj, curr_obj_name)
return {".".join(fqn_obj_names).replace(_CHECKPOINT_PREFIX, "")}
class _EXTRA_STATE:
pass
def _iterate_valid_model_state(model):
visited_modules: Set[nn.Module] = set()
def recurse(module: nn.Module, curr_fqn: str) -> Generator:
visited_modules.add(module)
curr_fqn = f"{curr_fqn}." if curr_fqn else ""
for name, submodule in module.named_children():
if submodule in visited_modules:
continue
new_fqn = f"{curr_fqn}{name}"
yield from recurse(submodule, new_fqn)
for name, obj in chain(
module.named_buffers(recurse=False), module.named_parameters(recurse=False)
):
if name in module._non_persistent_buffers_set:
continue
new_fqn = f"{curr_fqn}{name}"
yield new_fqn, obj
if (
getattr(module.__class__, "get_extra_state", nn.Module.get_extra_state)
!= nn.Module.get_extra_state
):
new_fqn = f"{curr_fqn}{nn.modules.module._EXTRA_STATE_KEY_SUFFIX}"
yield new_fqn, _EXTRA_STATE()
yield from recurse(model, "")
def _verify_options(
model: nn.Module,
optims: Tuple[torch.optim.Optimizer, ...],
optim_only: bool,
*,
submodules: Optional[Set[nn.Module]] = None,
options: Optional[StateDictOptions] = None,
) -> _StateDictInfo:
"""
Verify the model and options passed by the user and generates _StateDictInfo.
"""
if submodules:
warnings.warn(
"Getting submodules only model/optim state_dict is deprecated and "
"will be removed in 2.5. This feature can be achieved by manually "
"filtering out the state_dict returned from get_state_dict.",
FutureWarning,
)
if optim_only and not optims:
raise RuntimeError(
"Optimizers are not passed in but optim_only is set to True."
)
options = options or StateDictOptions()
fqn_param_mapping: Dict[
Union[str, torch.Tensor], Union[Set[str], torch.Tensor]
] = {}
shared_params_mapping: Dict[
Union[str, torch.Tensor], Union[Set[str], torch.Tensor]
] = {}
for name, param in _iterate_valid_model_state(model):
if isinstance(param, _EXTRA_STATE):
continue
fqns = _get_fqns(model, name)
fqn = fqn_param_mapping.get(param, None)
if fqn is not None:
cast(Set[str], fqn_param_mapping[param]).update(fqns)
shared_params_mapping[param] = fqn_param_mapping[param]
else:
# We need to do copy as _get_fqns is lru_cached
fqn_param_mapping[param] = fqns.copy()
for fqn in fqns:
if not isinstance(param, _EXTRA_STATE):
fqn_param_mapping[fqn] = param
for param_, fqns_ in list(shared_params_mapping.items()):
for fqn in fqns_:
shared_params_mapping[fqn] = cast(torch.Tensor, param_)
submodule_prefixes: Set[str] = set()
if submodules:
submodules = set(submodules)
for name, module in model.named_modules():
if module not in submodules:
continue
fqns = _get_fqns(model, name)
assert len(fqns) == 1, "Submodule FQN should only have 1 instance"
submodule_prefixes.update(f"{fqn}." for fqn in fqns)
if options.broadcast_from_rank0 and not options.full_state_dict:
raise ValueError(
"full_state_dict must be True when broadcast_from_rank0 is True."
)
fsdp_modules = FSDP.fsdp_modules(model)
state_dict_config: StateDictConfig
optim_state_dict_config: OptimStateDictConfig
fsdp_context: Callable
if fsdp_modules:
# FSDP API only work if at least one FSDP instance exists.
if options.full_state_dict:
state_dict_config = FullStateDictConfig(
offload_to_cpu=options.cpu_offload, rank0_only=options.cpu_offload
)
optim_state_dict_config = FullOptimStateDictConfig(
offload_to_cpu=options.cpu_offload,
rank0_only=(options.cpu_offload or options.broadcast_from_rank0),
)
state_dict_type = StateDictType.FULL_STATE_DICT
else:
state_dict_config = ShardedStateDictConfig(
offload_to_cpu=options.cpu_offload,
)
optim_state_dict_config = ShardedOptimStateDictConfig(
offload_to_cpu=options.cpu_offload,
)
state_dict_type = StateDictType.SHARDED_STATE_DICT
@contextlib.contextmanager
def fsdp_state_dict_type_without_warning(
module,
state_dict_type,
state_dict_config,
optim_state_dict_config,
):
with warnings.catch_warnings():
with FSDP.state_dict_type(
module=module,
state_dict_type=state_dict_type,
state_dict_config=state_dict_config,
optim_state_dict_config=optim_state_dict_config,
):
yield
fsdp_context = functools.partial(
fsdp_state_dict_type_without_warning,
module=model,
state_dict_type=state_dict_type,
state_dict_config=state_dict_config,
optim_state_dict_config=optim_state_dict_config,
)
else:
fsdp_context = contextlib.nullcontext
return _StateDictInfo(
**asdict(options),
fqn_param_mapping=fqn_param_mapping,
shared_params_mapping=shared_params_mapping,
submodule_prefixes=submodule_prefixes,
fsdp_context=fsdp_context,
fsdp_modules=cast(List[nn.Module], fsdp_modules),
handle_model=not optim_only,
handle_optim=(len(optims) > 0),
)
def _verify_state_dict(
model_state_dict: Dict[str, ValueType],
optim_state_dict: OptimizerStateType,
info: _StateDictInfo,
) -> None:
for module in info.fsdp_modules:
fsdp_state = _get_module_fsdp_state_if_fully_sharded_module(module)
assert fsdp_state is not None, "Expected a fsdp_state with a fsdp module."
# Verify if the model_state_dict and optim_state_dict are valid. This API
# should give the users an explicit error message to debug or report.
if (
info.handle_model
and not model_state_dict
and not info.submodule_prefixes
and not info.ignore_frozen_params
and not (info.cpu_offload and info.full_state_dict)
and info.strict
and not info.broadcast_from_rank0
):
raise RuntimeError(
"The option indicates that model state_dict is required to save "
"or load, but model state_dict is empty."
f"rank = {dist.get_rank()=}."
)
if info.handle_optim:
if (
not optim_state_dict
and not (info.cpu_offload and info.full_state_dict)
and (not info.broadcast_from_rank0)
):
raise RuntimeError(
"The option indicates that model state_dict is required to save, "
f"or load but optim state_dict is empty. {optim_state_dict}"
)
for key in model_state_dict.keys():
if _FLAT_PARAM in key:
raise RuntimeError(
f"{key} contains {_FLAT_PARAM}. This can happen if the model "
"is not the root module."
)
def _state_dict_fn(obj: Union[nn.Module, torch.optim.Optimizer], api: str) -> Callable:
call = getattr(obj, api)
if call in _patched_state_dict:
call = functools.partial(getattr(obj.__class__, api), self=obj)
return call
def _maybe_full_or_cpu_state_dict(
state_dict: Dict[str, Any], info: _StateDictInfo
) -> Dict[str, Any]:
if info.full_state_dict:
ranks_only = (
tuple()
if (not info.cpu_offload or not torch.distributed.is_initialized())
else (0,)
)
return _gather_state_dict(
state_dict, cpu_offload=info.cpu_offload, ranks_only=ranks_only
)
elif info.cpu_offload:
return _offload_state_dict_to_cpu(state_dict)
else:
return state_dict
def _get_model_state_dict(
model: nn.Module, info: _StateDictInfo
) -> Dict[str, ValueType]:
if not info.handle_model:
return {}
with info.fsdp_context():
state_dict = _state_dict_fn(model, "state_dict")()
for key in list(state_dict.keys()):
fqns = _get_fqns(model, key)
assert len(fqns) == 1, (key, fqns)
fqn = next(iter(fqns))
if fqn != key:
# As we only support FSDP, DDP, and TP, the only cases are
# wrapper-based DDP and compiler. Verify if the assumption
# is correct.
def verify(key, fqn) -> bool:
if len(fqn) >= len(key):
return False
fqn_split = fqn.split(".")
key_split = key.split(".")
fqn_idx = 0
for key_idx, key_name in enumerate(key_split):
if key_name == fqn_split[fqn_idx]:
fqn_idx += 1
if fqn_idx == len(fqn_split):
return key_idx == len(key_split) - 1
elif key_name in ("module", "_orig_mod"):
continue
else:
return False
return True
if not verify(key, fqn):
raise RuntimeError(f"An unexpected key, {key}, exists. FQN is {fqn}")
state_dict[fqn] = state_dict.pop(key)
if info.submodule_prefixes:
new_state_dict: Dict[str, ValueType] = {}
# TODO: make this faster.
for fqn in state_dict.keys():
for prefix in info.submodule_prefixes:
if not fqn.startswith(prefix):
continue
if info.keep_submodule_prefixes:
new_state_dict[fqn] = state_dict[fqn]
else:
new_fqn = fqn[len(prefix) :]
new_state_dict[new_fqn] = state_dict[fqn]
state_dict = new_state_dict
if info.ignore_frozen_params:
for key, param in model.named_parameters():
if param.requires_grad:
continue
fqns = _get_fqns(model, key)
for fqn in fqns:
state_dict.pop(fqn)
for key, p in list(state_dict.items()):
if torch.is_tensor(p) and p.is_meta:
state_dict.pop(key)
return _maybe_full_or_cpu_state_dict(state_dict, info)
def _load_model_state_dict(
model: nn.Module,
state_dict: Dict[str, ValueType],
info: _StateDictInfo,
) -> _IncompatibleKeys:
if not info.handle_model or (not state_dict and not info.broadcast_from_rank0):
return _IncompatibleKeys({}, {})
local_state_dict = {}
for key, value in _iterate_valid_model_state(model):
fqns = _get_fqns(model, key)
fqns_with_prefix = _get_fqns(
model, key, skip_ddp_prefix=False, skip_compiler_prefix=False
)
for fqn, fqn_with_prefix in zip(fqns, fqns_with_prefix):
if (
not info.broadcast_from_rank0 or dist.get_rank() == 0
) and fqn != fqn_with_prefix:
state_dict[fqn_with_prefix] = state_dict.pop(fqn)
local_state_dict[fqn_with_prefix] = value
if info.broadcast_from_rank0:
device = None
for key, value in local_state_dict.items():
if torch.is_tensor(value) and value.dim() > 0:
if device is None:
device = value.device
else:
assert device == value.device
assert device is not None
_broadcast_state_dict(
state_dict, local_state_dict, device=device, strict=info.strict
)
for fqn, local_state in local_state_dict.items():
state_dict[fqn] = local_state
with info.fsdp_context():
return cast(
_IncompatibleKeys,
_state_dict_fn(model, "load_state_dict")(
state_dict=state_dict, strict=info.strict
),
)
def _init_optim_state(optim: torch.optim.Optimizer) -> None:
"""
Initialize optim states by calling the step() with zero grads.
"""
if optim.state:
# The optimizer state is initialized.
return
for param_group in optim.param_groups:
for param in param_group[_PARAMS]:
if param.grad is not None:
raise RuntimeError(
"state_dict can only be used if the optimizer "
"states are initialized (usually after one step() with "
"gradients) or gradients are None. For the later case, "
"state_dict will fake the gradients as zero "
"to initialize the optimizer states. However, the "
"gradients are not None."
)
if param.requires_grad:
param.grad = torch.zeros_like(param)
# Some optimizers will update parameters regardless of grads due to lr, so
# make lr to zero when calling `step()`.
lrs = []
for param_group in optim.param_groups:
if "lr" in param_group:
lrs.append(param_group["lr"])
param_group["lr"] = 0.0
optim.step(closure=None)
# Whether to recover the "lr" should not matter too much as we will
# restore checkpointing later.
for param_group in optim.param_groups:
if "lr" in param_group:
param_group["lr"] = lrs.pop(0)
optim.zero_grad(set_to_none=True)
def _flatten_optim_state_dict(state_dict: OptimizerStateType) -> Dict[str, ValueType]:
"""
This API flattens the optimizer state_dict to support optimizer resharding for
MPMD, e.g., pipeline parallelism.
Without the API, the original optimizer state_dict looks like:
{
"state": {
"layer1.weight": {
"step": 10, "exp_avg": SomeTensor, "exp_avg_sq": SomeTensor
},
"layer2.weight": {
"step": 10, "exp_avg": SomeTensor, "exp_avg_sq": SomeTensor
},
},
"param_group": [
{
"lr": 0.0,
"betas": (0.9, 0.95), ...,
"params": ["layer1.weight", "layer2.weight"]
}
]
}
With this API, the optimizer state_dict looks like:
{
"state.layer1.weight.step": 10,
"state.layer2.weight.step": 10,
"state.layer1.weight.exp_avg": SomeTensor,
"state.layer2.weight.exp_avg": SomeTensor,
"state.layer1.weight.exp_avg_sq": SomeTensor,
"state.layer2.weight.exp_avg_sq": SomeTensor,
"param_group.layer1.weight.lr" : 0.1,
"param_group.layer2.weight.lr" : 0.1,
"param_group.layer1.weight.betas" : (0.9, 0.95),
"param_group.layer2.weight.betas" : (0.9, 0.95),
}
Note that if any of the value is a container, like the betas in the example,
this API won't flattent it.
"""
def _raise_if_type_not_supported(v):
if not isinstance(v, (torch.Tensor, int, float)):
raise NotImplementedError(
"Flattening optimizer state_dict only supports "
"tensor, int, float states now. "
f"Type is {type(v)}."
)
ret: Dict[str, ValueType] = {}
for fqn, state in cast(DictValueType, state_dict[_STATE]).items():
for k, v in cast(DictValueType, state).items():
_raise_if_type_not_supported(v)
ret[f"{_STATE}.{fqn}.{k}"] = v
for param_group in cast(ListDictValueType, state_dict[_PG]):
fqns = param_group.pop(_PARAMS)
for fqn in cast(List[str], fqns):
for k, v in param_group.items():
ret[f"{_PG}.{fqn}.{k}"] = v
return ret
def _unflatten_optim_state_dict(
optim: torch.optim.Optimizer,
state_dict: Dict[str, ValueType],
info: _StateDictInfo,
) -> OptimizerStateType:
"""
This API unflattens the state_dict generated by _flatten_optim_state_dict().
See the docstring of _flatten_optim_state_dict() for more detail.
"""
state: DictValueType = {}
pg_state: ListDictValueType = []
return_osd: OptimizerStateType = {_STATE: state, _PG: pg_state}
for param_group in optim.param_groups:
pg_state.append({_PARAMS: []})
for param in param_group[_PARAMS]:
for fqn in info.fqn_param_mapping[param]:
params = pg_state[-1][_PARAMS]
assert isinstance(params, list) # typing
params.append(fqn)
if not param.requires_grad:
continue
state[fqn] = {}
for state_name in optim.state[param].keys():
cast(DictValueType, state[fqn])[state_name] = state_dict[
f"{_STATE}.{fqn}.{state_name}"
]
first_param_fqn = cast(List[str], pg_state[-1][_PARAMS])[0]
for k in param_group.keys():
if k == _PARAMS:
continue
value = state_dict[f"{_PG}.{first_param_fqn}.{k}"]
if k not in pg_state[-1]:
pg_state[-1][k] = value
elif pg_state[-1][k] != value:
raise RuntimeError(
"All the parameters in the same parameter group should have "
f"the same saved param_group value. But {first_param_fqn}.{k} "
f"is {value} while other(s) is {pg_state[-1][k]}."
)
return return_osd
def _get_optim_state_dict(
model: nn.Module,
optimizers: Tuple[torch.optim.Optimizer, ...],
info: _StateDictInfo,
) -> OptimizerStateType:
if not info.handle_optim:
return {}
optim_state_dict: OptimizerStateType = {_STATE: {}, _PG: []}
for optim in optimizers:
_init_optim_state(optim)
osd = _state_dict_fn(optim, "state_dict")()
if info.fsdp_modules:
with info.fsdp_context():
osd = FSDP.optim_state_dict(model, optim, osd)
# We need to specially handle FlatParameter FSDP as
# FlatParameter FSDP converts the FQNs.
# There are no easy ways to do this conversion systematically.
# We can only use a string replacment without correctness check.
if not osd:
continue
for k in list(osd[_STATE].keys()):
if "_orig_mod" in k:
osd[_STATE][k.replace("_orig_mod.", "")] = osd[_STATE].pop(k)
for g in osd[_PG]:
params = [k.replace("_orig_mod.", "") for k in g[_PARAMS]]
g[_PARAMS] = params
else:
params = list(chain.from_iterable(g[_PARAMS] for g in optim.param_groups))
param_pid_mapping = dict(zip(params, range(len(params))))
fqn_pid_mapping = {}
for key, param in model.named_parameters():
fqns = _get_fqns(model, key)
assert len(fqns) == 1
fqn = next(iter(fqns))
if param not in param_pid_mapping:
continue
pid = param_pid_mapping[param]
fqn_pid_mapping[fqn] = pid
fqn_pid_mapping[pid] = fqn
for key in list(osd[_STATE].keys()):
fqn = fqn_pid_mapping[key]
osd[_STATE][fqn] = osd[_STATE].pop(key)
for group in osd[_PG]:
group[_PARAMS] = [fqn_pid_mapping[pid] for pid in group[_PARAMS]]
if not osd:
continue
cast(DictValueType, optim_state_dict[_STATE]).update(osd[_STATE])
cast(ListDictValueType, optim_state_dict[_PG]).extend(osd[_PG])
if info.flatten_optimizer_state_dict:
optim_state_dict = cast(
OptimizerStateType, _flatten_optim_state_dict(optim_state_dict)
)
return _maybe_full_or_cpu_state_dict(optim_state_dict, info)
def _split_optim_state_dict(
model: nn.Module,
optim: torch.optim.Optimizer,
optim_state_dict: OptimizerStateType,
info: _StateDictInfo,
) -> OptimizerStateType:
"""
Extract the corresponding optim state_dict from ``optim_state_dict`` for
``optim`` and return the result optim state_dict.
Args:
model (nn.Module): the root model.
optim (torch.optim.Optimizer): the optimizer.
optim_state_dict (Dict[str, ValueType]): the superset optim state_dict that
contains the optim state_dict of ``optim``.
info (_StateDictInfo): state dict information.
Returns:
The optim state_dict of ``optim``.
"""
state: DictValueType = {}
pg_state: ListDictValueType = []
return_osd: OptimizerStateType = {_STATE: state, _PG: pg_state}
pg_mapping: Dict[int, int] = {}
if all(
isinstance(k, int) for k in cast(DictValueType, optim_state_dict[_STATE]).keys()
):
return optim_state_dict
for param_group in optim.param_groups:
pg_state.append({_PARAMS: []})
for param in param_group[_PARAMS]:
for fqn in info.fqn_param_mapping[param]:
if fqn in info.shared_params_mapping:
in_params = False
for loaded_param_group in cast(
ListDictValueType, optim_state_dict[_PG]
):
if fqn in cast(List[str], loaded_param_group[_PARAMS]):
in_params = True
break
else:
in_params = True
if not in_params:
continue
params = pg_state[-1][_PARAMS]
assert isinstance(params, list)
params.append(fqn)
if param.requires_grad:
state[fqn] = cast(DictValueType, optim_state_dict[_STATE])[fqn]
for loaded_param_group in cast(
ListDictValueType, optim_state_dict[_PG]
):
if fqn in cast(List[str], loaded_param_group[_PARAMS]):
pg_mapping[id(loaded_param_group)] = len(return_osd[_PG]) - 1
for param_group in cast(ListDictValueType, optim_state_dict[_PG]):
idx = pg_mapping.get(id(param_group), -1)
if idx == -1:
continue
for key, value in param_group.items():
if key == _PARAMS:
continue
# TODO: check if value is the same if exists.
pg_state[idx][key] = value
return return_osd
def _load_optim_state_dict(
model: nn.Module,
optimizers: Tuple[torch.optim.Optimizer, ...],
state_dict: OptimizerStateType,
info: _StateDictInfo,
) -> None:
if not info.handle_optim:
return
for optim in optimizers:
_init_optim_state(optim)
if state_dict:
if _STATE in state_dict:
optim_state_dict = _split_optim_state_dict(
model, optim, state_dict, info
)
else:
optim_state_dict = _unflatten_optim_state_dict(
optim, cast(Dict[str, ValueType], state_dict), info
)
else:
optim_state_dict = {}
if info.fsdp_modules:
# We need to specially handle FlatParameter FSDP as
# FlatParameter FSDP converts the FQNs.
for original_fqn, _ in model.named_parameters():
fqns = _get_fqns(model, original_fqn)
fqns_with_compiler = _get_fqns(
model, original_fqn, skip_compiler_prefix=False
)
if fqns == fqns_with_compiler:
continue
assert len(fqns) == 1
fqn = fqns.pop()
fqn_with_compiler = fqns_with_compiler.pop()
for g in optim_state_dict[_PG]:
val = cast(Dict[str, Any], g)
params = [
key.replace(fqn, fqn_with_compiler) for key in val[_PARAMS]
]
val[_PARAMS] = params
osd_state = cast(DictValueType, optim_state_dict[_STATE])
for k in list(osd_state.keys()):
if fqn in k:
osd_state[k.replace(fqn, fqn_with_compiler)] = osd_state.pop(k)
with info.fsdp_context():
optim_state_dict = FSDP.optim_state_dict_to_load(
model, optim, optim_state_dict
)
elif info.broadcast_from_rank0:
info.full_state_dict = False
local_state_dict = _get_optim_state_dict(model, (optim,), info)
info.full_state_dict = True
device = None
def _device(t):
if t.dim() > 0:
nonlocal device
if device is None:
device = t.device
elif device != t.device:
raise ValueError("Device mismatch")
return t
_ = tree_map_only(torch.Tensor, _device, local_state_dict)
assert device is not None
flatten_osd, osd_mapping = _flatten_state_dict(optim_state_dict)
flatten_local_osd, local_osd_mapping = _flatten_state_dict(local_state_dict)
_broadcast_state_dict(flatten_osd, flatten_local_osd, device=device)
# The modifications listed seek to address the problem where optim might possess
# dissimilar parameters in comparison to optim_state_dict. This is achieved by
# incorporating differential parameters within local, which may result in optim
# having additional parameters ultimately.
for optim_key in flatten_osd.keys():
if optim_key not in flatten_local_osd:
assert optim_key in osd_mapping
flatten_local_osd[optim_key] = flatten_osd[optim_key]
local_osd_mapping[optim_key] = osd_mapping[optim_key]
optim_state_dict = _unflatten_state_dict(
flatten_local_osd, local_osd_mapping
)
# Note that we do not have to convert the FQN back to param id here if
# order in optim.param_groups[idx][_PARAMS] is the same as the one in
# optim_state_dict[_PG][idx][_PARAMS].
_state_dict_fn(optim, "load_state_dict")(state_dict=optim_state_dict)
def get_model_state_dict(
model: nn.Module,
*,
submodules: Optional[Set[nn.Module]] = None,
options: Optional[StateDictOptions] = None,
) -> Dict[str, ValueType]:
"""
Return the model state_dict of ``model``.
See ``get_state_dict`` for the detail usage.
Args:
model (nn.Module): the nn.Module to the model.
submodules (deprecated): Optional[Set[nn.Module]]: only return the model parameters
that belong to the submodules.
options (StateDictOptions): the options to control how
model state_dict and optimizer state_dict should be returned. See
`StateDictOptions` for the details.
Returns:
The state_dict for ``model``.
:rtype: typing.Dict[str, ValueType]
"""
with _gc_context():
info = _verify_options(
model,
tuple(),
optim_only=False,
submodules=submodules,
options=options,
)
model_state_dict = _get_model_state_dict(model, info)
_verify_state_dict(model_state_dict, {}, info)
return model_state_dict
def get_optimizer_state_dict(
model: nn.Module,
optimizers: Union[torch.optim.Optimizer, Iterable[torch.optim.Optimizer]],
*,
submodules: Optional[Set[nn.Module]] = None,
options: Optional[StateDictOptions] = None,
) -> OptimizerStateType:
"""
Return the combined state_dict for optimizers.
See ``get_state_dict`` for the detail usage.
Args:
model (nn.Module): the nn.Module to the model.
optimizers (Union[None, Optimizer, Iterable[Optimizer]]):
The optimizers that are used to optimize ``model``.
submodules (deprecated): Optional[Set[nn.Module]]: only return the model parameters
that belong to the submodules.
options (StateDictOptions): the options to control how
model state_dict and optimizer state_dict should be returned. See
`StateDictOptions` for the details.
Returns:
The state_dict for ``optimizers``.
:rtype: OptimizerStateType
"""
with _gc_context():
optimizers = (
(optimizers,)
if isinstance(optimizers, torch.optim.Optimizer)
else tuple(optimizers)
)
info = _verify_options(
model,
optimizers,
optim_only=True,
submodules=submodules,
options=options,
)
optim_state_dict = _get_optim_state_dict(model, optimizers, info)
_verify_state_dict({}, optim_state_dict, info)
return optim_state_dict
def get_state_dict(
model: nn.Module,
optimizers: Union[torch.optim.Optimizer, Iterable[torch.optim.Optimizer]],
*,
submodules: Optional[Set[nn.Module]] = None,
options: Optional[StateDictOptions] = None,
) -> Tuple[Dict[str, ValueType], OptimizerStateType]:
"""
Return the model state_dict and optimizers state_dict.
``get_state_dict`` can process any module that is parallelized by PyTorch
FSDP/fully_shard, DDP/replicate, tensor_parallel/parallelize_module, and any
combination of these parallelisms. The main functions of ``get_state_dict``
are: 1.) returning a model and optimizer state_dict that can be resharded
with a different number of trainers and/or different parallelisms.
2.) hiding the parallelism-specific state_dict APIs. Users don't have to call
these APIs.
3.) sanity checking the result state_dict.
The keys of the result state dictionary are the canonical FQNs (Fully
Qualified Names). A canonical FQN refers to the FQN based on a parameter's
position in an nn.Module hierarchy. More specifically, a canonical FQN to a
parameter is the FQN returned by ``module.named_parameters()`` or
``module.named_buffers()`` when the module is not distributed by any
parallelisms. Since the optimizer internally uses parameter IDs to represent
a parameter, there will be a conversion from the parameter IDs to the
canonical FQNs when calling this API.
``get_state_dict`` can also process a module that is not parallelized. In
such a case, ``get_state_dict`` only performs one function -- converting the
optimizer parameter IDs to the canonical FQNs.
Example:
>>> # xdoctest: +SKIP
>>> import torch
>>> from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
>>> from torch.nn.parallel import DistributedDataParallel as DDP
>>> from torch.distributed.checkpoint.state_dict import get_state_dict
>>> fsdp_model = FSDP(copy.deepcopy(model))
>>> fsdp_optim = torch.optim.Adam(model.parameters(), lr=1e-3)
>>> ddp_model = DDP(copy.deepcopy(model))
>>> ddp_optim = torch.optim.Adam(model.parameters(), lr=1e-3)
>>> ddp_state_dict, ddp_optim_state_dict = get_state_dict(ddp_model, ddp_optim)
>>> fsdp_state_dict, fsdp_optim_state_dict = get_state_dict(fsdp_model, fsdp_optim)
>>> # if we simply call ddp_model.state_dict() and fsdp_model.state_dict(),
>>> # the asserts will fail.
>>> assert ddp_state_dict == fsdp_state_dict
>>> assert ddp_optim_state == fsdp_optim_state_dict
Args:
model (nn.Module): the nn.Module to the model.
optimizers (Union[None, Optimizer, Iterable[Optimizer]]):
The optimizers that are used to optimize ``model``.
submodules (deprecated): Optional[Set[nn.Module]]: only return the model parameters
that belong to the submodules.
options (StateDictOptions): the options to control how
model state_dict and optimizer state_dict should be returned. See
`StateDictOptions` for the details.
Returns:
``Tuple`` that contain model state_dict and optimizer state_dict.
:rtype: typing.Tuple[typing.Dict[str, ValueType], OptimizerStateType]
"""
with _gc_context():
optimizers = (
(optimizers,)
if isinstance(optimizers, torch.optim.Optimizer)
else tuple(optimizers)
)
info = _verify_options(
model,
optimizers,
optim_only=False,
submodules=submodules,
options=options,
)
model_state_dict = _get_model_state_dict(model, info)
optim_state_dict = _get_optim_state_dict(model, optimizers, info)
_verify_state_dict(model_state_dict, optim_state_dict, info)
return model_state_dict, optim_state_dict
def _unflatten_model_state_dict(
model: nn.Module,
state_dict: Union[Dict[nn.Module, Dict[str, ValueType]], Dict[str, ValueType]],
) -> Dict[str, ValueType]:
if not state_dict:
return {}
if isinstance(next(iter(state_dict.keys())), nn.Module):
warnings.warn(
"Passing model_state_dict as a ``Dict[nn.Module, Dict[str, Any]]``"
"is deprecated and will be removed in 2.5. If you need this "
"feature, please preprocessing the model_state_dict to achieve the "
"same functionality.",
FutureWarning,
)
cast_state_dict = cast(Dict[nn.Module, Dict[str, ValueType]], state_dict)
new_state_dict: Dict[str, ValueType] = {}
for submodule, sub_state_dict in cast_state_dict.items():
for name, m in model.named_modules():
if m != submodule:
continue
fqns = _get_fqns(model, name)
assert len(fqns) == 1, "FQNs for a submodule should only have 1 element"
prefix = f"{next(iter(fqns))}."
new_state_dict.update(
{prefix + subfqn: value for subfqn, value in sub_state_dict.items()}
)
return new_state_dict
else:
return cast(Dict[str, ValueType], state_dict)
def set_model_state_dict(
model: nn.Module,
model_state_dict: Dict[str, ValueType],
*,
options: Optional[StateDictOptions] = None,
) -> _IncompatibleKeys:
"""Load the model state_dict.
The counterpart of ``get_model_state_dict`` to set the state_dict to the
model. See ``set_state_dict`` for the detail usage.
Args:
model (nn.Module): the nn.Module to the model.
model_state_dict: (Dict[str, ValueType]):
the model state_dict to load. If the key of the ``model_state_dict``
is nn.Module, the key is a submodule of ``model`` and the value should
be the state_dict of the submodule. When loading the state_dict,
the prefix of the submodule will be append to the state_dict.
options (StateDictOptions): the options to control how
model state_dict and optimizer state_dict should be loaded. See
`StateDictOptions` for the details.
Returns:
``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:
* **missing_keys** is a list of str containing the missing keys
* **unexpected_keys** is a list of str containing the unexpected keys
:type model_state_dict: typing.Dict[str, ValueType]
"""
model_state_dict: Dict[str, ValueType] = _unflatten_model_state_dict(
model, model_state_dict
)
with _gc_context():
info = _verify_options(model, tuple(), optim_only=False, options=options)
_verify_state_dict(model_state_dict, {}, info)
return _load_model_state_dict(model, model_state_dict, info)
def set_optimizer_state_dict(
model: nn.Module,
optimizers: Union[torch.optim.Optimizer, Iterable[torch.optim.Optimizer]],
optim_state_dict: OptimizerStateType,
*,
options: Optional[StateDictOptions] = None,
) -> None:
"""Load the optimizers state_dict.
The counterpart of ``get_optimizer_state_dict`` to set the state_dict to the
optimizers. See ``set_state_dict`` for the detail usage.
Args:
model (nn.Module): the nn.Module to the model.
optimizers (Union[Optimizer, Iterable[Optimizer]]):
The optimizers that are used to optimize ``model``.
optim_state_dict: OptimizerStateType:
the optimizer state_dict to load.
options (StateDictOptions): the options to control how
model state_dict and optimizer state_dict should be loaded. See
`StateDictOptions` for the details.
Returns:
None
:type optim_state_dict: typing.OptimizerStateType
"""
with _gc_context():
optimizers = (
(optimizers,)
if isinstance(optimizers, torch.optim.Optimizer)
else tuple(optimizers)
)
info = _verify_options(model, optimizers, optim_only=True, options=options)
_verify_state_dict({}, optim_state_dict, info)
_load_optim_state_dict(model, optimizers, optim_state_dict, info)
def set_state_dict(
model: nn.Module,
optimizers: Union[torch.optim.Optimizer, Iterable[torch.optim.Optimizer]],
*,
model_state_dict: Dict[str, ValueType],
optim_state_dict: OptimizerStateType,
options: Optional[StateDictOptions] = None,
) -> _IncompatibleKeys:
"""Load the model state_dict and optimizers state_dict.
The counterpart of ``get_state_dict`` to set the state_dict to the model and
optimizers. The given ``model_state_dict`` and ``optim_state_dict`` do not
have to be returned by ``get_state_dict`` but must meet the following
requirements: 1) all FQNs are canonical FQNs as defined in ``get_state_dict``,
2) if a tensor is sharded, it must be either a ShardedTensor or DTensor,
3) optimizer state_dict cannot contain the parameter IDs; the keys should be
the canonical FQNs.
Args:
model (nn.Module): the nn.Module to the model.
optimizers (Union[Optimizer, Iterable[Optimizer]]):
The optimizers that are used to optimize ``model``.
model_state_dict: (Union[Dict[nn.Module, Dict[str, ValueType]], Dict[str, ValueType]]):
the model state_dict to load. If the key of the ``model_state_dict``
is nn.Module, the key is a submodule of ``model`` and the value should
be the state_dict of the submodule. When loading the state_dict,
the prefix of the submodule will be append to the state_dict.
optim_state_dict: OptimizerStateType:
the optimizer state_dict to load.
options (StateDictOptions): the options to control how
model state_dict and optimizer state_dict should be loaded. See
`StateDictOptions` for the details.
Returns:
``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:
* **missing_keys** is a list of str containing the missing keys of the model state_dict.
* **unexpected_keys** is a list of str containing the unexpected keys of the model state_dict.
:type model_state_dict: typing.Dict[str, ValueType]
:type optim_state_dict: typing.OptimizerStateType
"""
model_state_dict: Dict[str, ValueType] = _unflatten_model_state_dict(
model, model_state_dict
)
with _gc_context():
optimizers = (
(optimizers,)
if isinstance(optimizers, torch.optim.Optimizer)
else tuple(optimizers)
)
info = _verify_options(
model, optimizers, optim_only=not model_state_dict, options=options
)
_verify_state_dict(model_state_dict, optim_state_dict, info)
_load_optim_state_dict(model, optimizers, optim_state_dict, info)
return _load_model_state_dict(model, model_state_dict, info)
# TODO: correct the state_dict function signature.
# TODO: this API is not yet fully tested. Make it private
@no_type_check
def _patch_model_state_dict(
model: nn.Module,
*,
options: Optional[StateDictOptions] = None,
) -> None:
"""Patch the ``state_dict`` and ``load_state_dict`` attributes of ``model``.
Patch the ``state_dict`` and ``load_state_dict`` attributes of ``model`` to
be a partial function to call ``get_state_dict`` and ``set_state_dict``.
Example:
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.checkpoint.state_dict import patch_model_state_dict
model = fsdp(model)
patch_model_state_dict(model)
Args:
model (nn.Module): the nn.Module to the model.
options (StateDictOptions): the options to control how
model state_dict and optimizer state_dict should be loaded. See
`StateDictOptions` for the details.
Returns:
None
"""
_state_dict_call = functools.partial(
get_model_state_dict,
model=model,
options=options,
)
def state_dict_call():
return _state_dict_call()
model.state_dict = state_dict_call
_load_state_dict_call = functools.partial(
set_model_state_dict,
model=model,
options=options,
)
def load_state_dict_call(state_dict: Dict[str, Any]):
_load_state_dict_call(model_state_dict=state_dict)
model.load_state_dict = load_state_dict_call
_patched_state_dict.add(state_dict_call)
_patched_state_dict.add(load_state_dict_call)
# TODO: correct the load_state_dict function signature.
# TODO: this API is not yet fully tested. Make it private
@no_type_check
def _patch_optimizer_state_dict(
model: nn.Module,
*,
optimizers: Tuple[torch.optim.Optimizer, ...],
options: Optional[StateDictOptions] = None,
) -> None:
"""Patch the ``state_dict`` and ``load_state_dict`` attributes of ``optimizers``.
Patch the ``state_dict`` and ``load_state_dict`` attributes of ``optimizers`` to
be a partial function to call ``get_state_dict`` and ``set_state_dict``.
Note that if there are multiple optimizers, all of the optimizers will be patched.
So users only need to call one of the state_dict() to get the full result.
Example:
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.checkpoint.state_dict import patch_model_state_dict
model = fsdp(model)
patch_model_state_dict(model)
Args:
model (nn.Module): the nn.Module to the model.
options (StateDictOptions): the options to control how
model state_dict and optimizer state_dict should be loaded. See
`StateDictOptions` for the details.
Returns:
None
"""
_state_dict_call = functools.partial(
get_optimizer_state_dict,
model=model,
optimizers=optimizers,
options=options,
)
def state_dict_call():
return _state_dict_call()
_load_state_dict_call = functools.partial(
set_optimizer_state_dict,
model=model,
optimizers=optimizers,
options=options,
)
def load_state_dict_call(state_dict: Dict[str, Any]):
_load_state_dict_call(optim_state_dict=state_dict)
_patched_state_dict.add(state_dict_call)
_patched_state_dict.add(load_state_dict_call)
optimizers = (
(optimizers,)
if isinstance(optimizers, torch.optim.Optimizer)
else tuple(optimizers)
)
for optim in optimizers:
optim.state_dict = state_dict_call
optim.load_state_dict = load_state_dict_call
|