File size: 32,194 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
# mypy: allow-untyped-defs
# Copyright (c) Meta Platforms, Inc. and affiliates
import logging
import math
import threading
from typing import Dict, List, Optional, Tuple, TYPE_CHECKING, Union

import torch

from torch.distributed import is_available

from ..utils._typing_utils import not_none

__all__ = ["init_device_mesh", "DeviceMesh"]


if not is_available():
    import sys

    # We need to create the stubs when distributed is not available.
    # Otherwise, we would fail the doc tests (```./.ci/pytorch/docs-test.sh```),
    # since it would try to import ``torch.distributed.device_mesh`` or
    # ``torch.distributed.init_device_mesh`` but cannot find them.

    class _DeviceMeshStub:
        pass

    def _init_device_mesh_stub():
        pass

    sys.modules["torch.distributed.device_mesh"].DeviceMesh = _DeviceMeshStub  # type: ignore[attr-defined]
    sys.modules[
        "torch.distributed.device_mesh"
    ].init_device_mesh = _init_device_mesh_stub  # type: ignore[attr-defined]


else:
    from torch.distributed.distributed_c10d import (
        _find_pg_by_ranks_and_tag,
        _get_default_group,
        _get_group_tag,
        get_process_group_ranks,
        get_rank,
        get_world_size,
        init_process_group,
        is_initialized,
        new_group,
        ProcessGroup,
    )

    logger = logging.getLogger(__name__)

    # only import numpy typing when type checking
    if TYPE_CHECKING:
        try:
            from numpy.typing import ArrayLike
        except ImportError:
            logger.warning(
                "DeviceMesh requires numpy >= 1.21 to be installed for type checking"
            )

    class _MeshEnv(threading.local):
        def __init__(self) -> None:
            self.mesh_stack: List[DeviceMesh] = []
            self.child_to_parent_mapping: Dict[DeviceMesh, DeviceMesh] = {}
            self.mesh_dim_group_options: Dict[
                int, Tuple[str, Optional[ProcessGroup.Options]]
            ] = {}

        def get_current_mesh(self) -> "DeviceMesh":
            if len(self.mesh_stack) == 0:
                raise RuntimeError("No device mesh is currently active!")
            return self.mesh_stack[-1]

        def create_child_mesh(
            self, parent_mesh: "DeviceMesh", submesh_dim_names: Tuple[str, ...]
        ) -> "DeviceMesh":
            # submesh_dims are the mesh dimension of the submesh in the parent mesh.
            submesh_dims = [
                not_none(parent_mesh.mesh_dim_names).index(mesh_dim_name)
                for mesh_dim_name in submesh_dim_names
            ]
            submesh_dim_sizes = [
                parent_mesh.mesh.size(mesh_dim) for mesh_dim in submesh_dims
            ]

            mesh_dims_remained = list(range(parent_mesh.mesh.ndim))
            for submesh_dim in submesh_dims:
                mesh_dims_remained.remove(submesh_dim)

            # pg_ranks_by_dim is the size of [number of local ranks of the outermost submesh dimension, *sub_mesh_dims]
            # This means on each local rank of the outermost slice mesh dim, we have a tensor of submesh size with
            # the pg ranks of the submesh. From this, we can extract the submesh mesh tensor contains the current rank.
            pg_ranks_by_dim = parent_mesh.mesh.permute(
                *mesh_dims_remained, *submesh_dims
            ).reshape(-1, *submesh_dim_sizes)

            cur_rank = parent_mesh.get_rank()
            for mesh_nd in pg_ranks_by_dim:
                submesh = DeviceMesh(
                    parent_mesh.device_type,
                    mesh_nd,
                    mesh_dim_names=submesh_dim_names,
                    _init_backend=False,
                )
                if cur_rank in mesh_nd:
                    res_submesh = submesh

            res_submesh._parent_mesh = parent_mesh  # type: ignore[possibly-undefined]
            res_submesh._dim_group_infos = [
                parent_mesh._dim_group_infos[mesh_dim] for mesh_dim in submesh_dims  # type: ignore[possibly-undefined]
            ]
            self.child_to_parent_mapping[res_submesh] = parent_mesh

            return res_submesh

        def get_parent_mesh(self, device_mesh: "DeviceMesh") -> Optional["DeviceMesh"]:
            return self.child_to_parent_mapping.get(device_mesh, None)

        def get_parent_mesh_dim(self, device_mesh: "DeviceMesh") -> Optional[int]:
            """
            Return the index of the mesh dim in the parent mesh.
            The device_mesh passed in needs to be sliced out from a parent mesh.
            """
            parent_mesh = self.get_parent_mesh(device_mesh)
            child_mesh_dim_names = device_mesh.mesh_dim_names
            if parent_mesh and child_mesh_dim_names:
                assert (
                    len(child_mesh_dim_names) == 1
                ), "The child mesh can only be a 1D mesh."
                child_mesh_dim_name = child_mesh_dim_names[0]
                return self.get_mesh_dim_by_name(parent_mesh, child_mesh_dim_name)
            return None

        @staticmethod
        def num_devices_per_host(device_type: str) -> int:
            return _get_device_handle(device_type).device_count()

        @staticmethod
        def num_hosts(device_type: str) -> int:
            # ProcessGroup can't tell us this info so we have to infer it, assume
            # homogeneous hardware for now
            return get_world_size() // _MeshEnv.num_devices_per_host(device_type)

        def get_mesh_dim_by_name(
            self, device_mesh: "DeviceMesh", mesh_dim_name: str
        ) -> int:
            if (
                device_mesh.mesh_dim_names is None
                or len(device_mesh.mesh_dim_names) == 0
            ):
                raise KeyError(
                    "No `mesh_dim_names` found.",
                )
            if mesh_dim_name not in device_mesh.mesh_dim_names:
                raise KeyError(
                    f"Mesh dimension '{mesh_dim_name}' does not exist.",
                    f"Available mesh dimensions are: mesh_dim_names={device_mesh.mesh_dim_names}",
                )
            return not_none(device_mesh.mesh_dim_names.index(mesh_dim_name))

        def _set_mesh_dim_group_options(
            self,
            dim: int,
            backend: str,
            pg_options: Optional[ProcessGroup.Options] = None,
        ) -> None:
            self.mesh_dim_group_options[dim] = (backend, pg_options)

    _mesh_resources: _MeshEnv = _MeshEnv()

    def _get_device_handle(device_type: str = "cuda"):
        """
        Get the module corresponding to the device_type which is cuda or cuda-like device.
        For example, when the device_type is cuda, the module `torch.cuda` is returned.
        Return None when there is no corresponding module for device_type, otherwise
        return the corresponding module.
        """
        return getattr(torch, device_type, None)

    class DeviceMesh:
        """
        DeviceMesh represents a mesh of devices, where layout of devices could be
        represented as a n-d dimension array, and each value of the n-d dimensional
        array is the global id of the default process group ranks.

        DeviceMesh could be used to describe the layout of devices across the cluster,
        and serves as a proxy for communication among the device lists within the cluster.

        DeviceMesh can be used as a context manager.

        .. note::
            DeviceMesh follows SPMD programming model, which means the same PyTorch Python program
            is running on all processes/ranks in the cluster. Therefore, users need to make sure the
            `mesh` array (which describes the layout of devices) should be identical across all ranks.
            Inconsistent `mesh` will lead to silent hang.

        Args:
            device_type (str): The device type of the mesh. Currently supports: "cpu", "cuda/cuda-like".
            mesh (ndarray): A multi-dimensional array or an integer tensor describing the layout
                of devices, where the IDs are global IDs of the default process group.

        Returns:
            DeviceMesh: A :class:`DeviceMesh` object representing the device layout.

        The following program runs on each process/rank in an SPMD manner. In this example, we have 2
        hosts with 4 GPUs each.
        A reduction over the first dimension of mesh will reduce across
        columns (0, 4), .. and (3, 7), a reduction over the second dimension
        of mesh reduces across rows (0, 1, 2, 3) and (4, 5, 6, 7).

        Example::
            >>> # xdoctest: +SKIP("no rank")
            >>> from torch.distributed.device_mesh import DeviceMesh
            >>>
            >>> # Initialize device mesh as (2, 4) to represent the topology
            >>> # of cross-host(dim 0), and within-host (dim 1).
            >>> mesh = DeviceMesh(device_type="cuda", mesh=[[0, 1, 2, 3],[4, 5, 6, 7]])
        """

        device_type: str
        mesh: torch.Tensor
        mesh_dim_names: Optional[Tuple[str, ...]]

        def __init__(
            self,
            device_type: str,
            mesh: Union[torch.Tensor, "ArrayLike"],
            *,
            mesh_dim_names: Optional[Tuple[str, ...]] = None,
            _init_backend: bool = True,
        ) -> None:
            self.device_type = device_type
            if isinstance(mesh, torch.Tensor) and mesh.device.type != "cpu":
                raise ValueError(f"`mesh` must be a CPU tensor, got {mesh}")
            self.mesh = (
                mesh.detach().to(dtype=torch.int)
                if isinstance(mesh, torch.Tensor)
                else torch.tensor(mesh, device="cpu", dtype=torch.int)
            )
            self.mesh_dim_names = tuple(mesh_dim_names) if mesh_dim_names else None

            # private field to pre-generate DeviceMesh's hash
            self._flatten_mesh_list = tuple(self.mesh.flatten().tolist())
            self._parent_mesh: Optional[DeviceMesh] = None
            self._thread_id = threading.get_ident()

            # Skip process group initialization if xla device or init backend is False
            # TODO(yeounoh) implement DeviceMesh backend and register XLA backend.
            if device_type != "xla":
                # always try to create default (world) pg, even if it is not initialized
                # already. The world pg is used for device mesh identity (rank) on each
                # process (we need to know if the current global rank is in the mesh or not).
                if _init_backend:
                    self._get_or_create_default_group()
                    self._init_process_groups()

                # calculate the coordinates of the current global rank on the mesh
                rank_coords = (self.mesh == get_rank()).nonzero()
                assert rank_coords.size(0) in (0, 1)
                self._coordinate_on_dim: Optional[List[int]] = (
                    rank_coords[0].tolist() if rank_coords.size(0) > 0 else None
                )

        def _get_or_create_default_group(self):
            default_initialized = is_initialized()
            if not default_initialized:
                init_process_group()

            world_size = get_world_size()
            if self.mesh.numel() > world_size:
                raise RuntimeError(
                    f"Mesh should not be bigger than default world size, but found {self.mesh.numel()} ranks!"
                )

            device_handle = _get_device_handle(self.device_type)
            # TODO: if user want to pass pg_options, offer a way to do it
            if not default_initialized and device_handle:
                # automatically set the current cuda/cuda-like device base on num of gpu devices available in each host
                # NOTE: This device selection would only work for homogeneous hardware.
                num_devices_per_host = device_handle.device_count()
                if (
                    world_size > num_devices_per_host
                    and world_size % num_devices_per_host != 0
                ):
                    raise RuntimeError(
                        f"DeviceMesh only support homogeneous hardware, but found "
                        f"{world_size} ranks and {num_devices_per_host} {self.device_type} devices!"
                    )
                device_handle.set_device(get_rank() % num_devices_per_host)

            return _get_default_group()

        def _init_process_groups(self):
            # tag/ranks/group_name associated with each mesh dimension, each
            # mesh dimension should have one sub-group per rank
            #
            # TODO(yifu): remove tag and ranks once we fully migrate to native
            # functional collectives. See details in:
            # https://github.com/pytorch/pytorch/issues/93173#issuecomment-1907095208
            dim_group_infos: List[Tuple[str, List[int], str]] = []

            if self.mesh.ndim == 1 and self.mesh.numel() == get_world_size():
                # if the mesh is the same as world_pg, we just append the default
                # pg to the first dim groups, as new_group cannot have the exact
                # same ranks as world
                dim_group_infos.append(
                    (
                        _get_group_tag(_get_default_group()),
                        list(range(get_world_size())),
                        _get_default_group().group_name,
                    )
                )
            else:
                # create sub pgs base on the mesh argument specified
                for dim in range(self.mesh.ndim):
                    # swap the current dim to the last dim
                    # then reshape to flatten out other dims
                    pg_ranks_by_dim = self.mesh.swapdims(-1, dim).reshape(
                        -1, self.mesh.size(dim)
                    )
                    # multi-dim mesh, create subgroups by looping over the pg_ranks
                    # for each dim and append the groups
                    for dim_mesh in pg_ranks_by_dim:
                        subgroup_ranks = dim_mesh.tolist()

                        # Respect dim group options specified via _MeshEnv.set_dim_group_options().
                        # Inherit from the parent group if no options are specified for the group.
                        if dim in _mesh_resources.mesh_dim_group_options:
                            (
                                backend,
                                pg_options,
                            ) = _mesh_resources.mesh_dim_group_options[dim]
                        else:
                            backend, pg_options = None, None

                        # We temporarily revert the re-use subgroup, since it breaks two internal tests.
                        # Temporarily reverting to resolve test timeout while root-causing.
                        # TODO: Add two tests to cover internal tests scenarios and re-enable reuse subgroup if exists.
                        dim_group = new_group(
                            ranks=subgroup_ranks,
                            backend=backend,
                            pg_options=pg_options,
                        )

                        # only add to dim_groups if the current rank in the subgroup
                        if self.get_rank() in subgroup_ranks:
                            if len(dim_group_infos) > dim:
                                raise RuntimeError(
                                    f"Each device mesh dimension should get only one process group, but got {self.get_rank} "
                                    f"in {subgroup_ranks}!"
                                )
                            dim_group_infos.append(
                                (
                                    _get_group_tag(not_none(dim_group)),
                                    subgroup_ranks,
                                    dim_group.group_name,
                                )
                            )
            self._dim_group_infos = dim_group_infos

        def __enter__(self) -> "DeviceMesh":
            # set this mesh as the current mesh in mesh env
            _mesh_resources.mesh_stack.append(self)
            return self

        # pyre-fixme[2]: Parameter must be annotated.
        def __exit__(self, exc_type, exc_value, exc_traceback) -> None:
            # pop this mesh from mesh env
            _mesh_resources.mesh_stack.pop()

        def __repr__(self) -> str:
            device_mesh_repr = (
                f"DeviceMesh({self.mesh.tolist()})"
                if not self.mesh_dim_names
                else f"DeviceMesh({self.mesh.tolist()}, mesh_dim_names={self.mesh_dim_names})"
            )
            return device_mesh_repr

        def __hash__(self):
            # lazily compute hash
            self._hash = getattr(self, "_hash", None)
            if not self._hash:
                self._hash = hash(
                    (
                        self._flatten_mesh_list,
                        self.mesh.shape,
                        self.device_type,
                        self.mesh_dim_names,
                        self._parent_mesh,
                        self._thread_id,
                    )
                )
            return self._hash

        def __eq__(self, other: object) -> bool:
            if not isinstance(other, DeviceMesh):
                return False
            if id(self) == id(other):
                return True
            else:
                return (
                    self._flatten_mesh_list == other._flatten_mesh_list
                    and self.mesh.shape == other.mesh.shape
                    and self.device_type == other.device_type
                    and self.mesh_dim_names == other.mesh_dim_names
                    and self._parent_mesh == other._parent_mesh
                    and self._thread_id == other._thread_id
                )

        def __getitem__(
            self, mesh_dim_names: Union[str, Tuple[str, ...]]
        ) -> "DeviceMesh":
            """
            Slice the current DeviceMesh based on the mesh_dim_name given to create a child
            DeviceMesh.

            Args:
                mesh_dim_name (Union[str, Tuple[str]]): the name or the tuple of names of the
                mesh dimension of the parent DeviceMesh to create the child DeviceMesh for.
            Returns:
                A :class:`DeviceMesh` object

            The following program runs on each process/rank in an SPMD manner. In this example, we have 2
            hosts with 4 GPUs each.
            Calling mesh["tp"] on rank 0, 1, 2, 3 would return a 1D child DeviceMesh:([0, 1, 2, 3]).
            Calling mesh["tp"] on rank 4, 5, 6, 7 would return a 1D child DeviceMesh:([4, 5, 6, 7]).
            Calling mesh["dp"] on rank 0, 4 would return a 1D child DeviceMesh:([0, 4]).
            Calling mesh["dp"] on rank 1, 5 would return a 1D child DeviceMesh:([1, 5]).
            Calling mesh["dp"] on rank 2, 6 would return a 1D child DeviceMesh:([2, 6]).
            Calling mesh["dp"] on rank 3, 7 would return a 1D child DeviceMesh:([3, 7]).

            Example::
                >>> # xdoctest: +SKIP("no rank")
                >>> from torch.distributed.device_mesh import DeviceMesh
                >>>
                >>> # Initialize device mesh as (2, 4) to represent the topology
                >>> # of cross-host(dim 0), and within-host (dim 1).
                >>> mesh = DeviceMesh(device_type="cuda", mesh=[[0, 1, 2, 3],[4, 5, 6, 7]])
            """
            if not self.mesh_dim_names:
                raise RuntimeError("Cannot slice a DeviceMesh without mesh_dim_names!")

            mesh_dim_names = (
                (mesh_dim_names,) if isinstance(mesh_dim_names, str) else mesh_dim_names
            )

            error_msg = (
                f"Invalid mesh_dim_name {mesh_dim_names} specified. "
                f"Valid mesh_dim_names should be a contiguous subsequence of {self.mesh_dim_names}."
            )

            if mesh_dim_names == self.mesh_dim_names:
                return self
            elif len(mesh_dim_names) > len(self.mesh_dim_names) or not all(
                mesh_dim_name in self.mesh_dim_names for mesh_dim_name in mesh_dim_names
            ):
                raise KeyError(error_msg)
            # Check if the user-provided slicing is a valid contiguous subsequence of the mesh_dim_names
            # of the current DeviceMesh.
            else:
                outermost_dim_name = mesh_dim_names[0]
                outermost_dim_idx = self.mesh_dim_names.index(outermost_dim_name)
                for i, j in zip(
                    mesh_dim_names,
                    self.mesh_dim_names[outermost_dim_idx : len(mesh_dim_names)],
                ):
                    if i != j:
                        raise KeyError(error_msg)

            submesh = _mesh_resources.create_child_mesh(self, mesh_dim_names)
            return submesh

        def get_group(self, mesh_dim: Optional[Union[int, str]] = None) -> ProcessGroup:
            """
            Returns the single ProcessGroup specified by mesh_dim, or, if mesh_dim is not specified and the
            DeviceMesh is 1-dimensional, returns the only ProcessGroup in the mesh.

            Args:
                mesh_dim (str/int, optional): it can be the name of the mesh dimension or the index
                of the mesh dimension. Default is None.

            Returns:
                A :class:`ProcessGroup` object.
            """
            if not hasattr(self, "_dim_group_infos"):
                raise RuntimeError("DeviceMesh process groups not initialized!")

            if self.mesh.ndim > 1 and mesh_dim is None:
                raise RuntimeError(
                    f"Found the DeviceMesh have {self.mesh.ndim} dimensions",
                    "Optional kwarg `mesh_dim` needs to be specified when device_mesh.ndim > 1.",
                    "If you want to get the list of all the ProcessGroups in the DeviceMesh,"
                    "please use `get_all_groups()` instead.",
                )

            if self.mesh.ndim == 1 and mesh_dim is None:
                mesh_dim = 0
            else:
                mesh_dim = (
                    _mesh_resources.get_mesh_dim_by_name(self, mesh_dim)
                    if isinstance(mesh_dim, str)
                    else mesh_dim
                )

            return not_none(
                _find_pg_by_ranks_and_tag(*self._dim_group_infos[mesh_dim][:2])  # type: ignore[index]
            )

        def get_all_groups(self) -> List[ProcessGroup]:
            """
            Returns a list of ProcessGroups for all mesh dimensions.

            Returns:
                A list of :class:`ProcessGroup` object.
            """
            return [self.get_group(i) for i in range(self.mesh.ndim)]

        @staticmethod
        def from_group(
            group: Union[ProcessGroup, List[ProcessGroup]],
            device_type: str,
            mesh: Optional[Union[torch.Tensor, "ArrayLike"]] = None,
            *,
            mesh_dim_names: Optional[Tuple[str, ...]] = None,
        ) -> "DeviceMesh":
            """
            Contstructs a :class:`DeviceMesh` with ``device_type`` from an
            existing :class:`ProcessGroup`.

            The constructed device mesh has number of dimensions equal to the
            number of groups passed. If more than one group is passed, then the
            ``mesh`` argument is required.
            """
            if isinstance(group, ProcessGroup):
                group_ranks = get_process_group_ranks(group)
                if (
                    isinstance(mesh, torch.Tensor) and mesh.tolist() != group_ranks
                ) or (mesh is not None and mesh != group_ranks):
                    raise ValueError(
                        f"Invalid mesh {str(mesh)} for ProcessGroup with ranks {group_ranks}"
                    )
                mesh = torch.tensor(group_ranks, device="cpu", dtype=torch.int)
                device_mesh = DeviceMesh(
                    device_type,
                    mesh,
                    mesh_dim_names=mesh_dim_names,
                    _init_backend=False,
                )
                device_mesh._dim_group_infos = [
                    (_get_group_tag(group), group_ranks, group.group_name)
                ]
                return device_mesh
            groups = list(group)
            if len(groups) == 0:
                raise ValueError("Expects at least one ProcessGroup to be passed")
            if mesh is None:
                raise ValueError("Must pass mesh if passing multiple ProcessGroups")
            mesh = (
                mesh.detach().to(dtype=torch.int, device="cpu")
                if isinstance(mesh, torch.Tensor)
                else torch.tensor(mesh, device="cpu", dtype=torch.int)
            )
            if mesh.ndim != len(groups):
                raise ValueError(
                    "Expects mesh with ndim equal to number of ProcessGroups but got "
                    f"mesh {mesh.tolist()} and {len(groups)} ProcessGroups"
                )
            device_mesh = DeviceMesh(
                device_type, mesh, mesh_dim_names=mesh_dim_names, _init_backend=False
            )
            device_mesh._dim_group_infos = [
                (
                    _get_group_tag(group),
                    get_process_group_ranks(group),
                    group.group_name,
                )
                for group in groups
            ]
            return device_mesh

        def size(self, mesh_dim: Optional[int] = None) -> int:
            return self.mesh.numel() if mesh_dim is None else self.mesh.size(mesh_dim)

        @property
        def ndim(self) -> int:
            return self.mesh.ndim

        @property
        def shape(self) -> Tuple[int, ...]:
            return tuple(self.mesh.shape)

        def get_rank(self) -> int:
            """
            Returns the current global rank.
            """
            return get_rank()

        def get_local_rank(self, mesh_dim: Optional[Union[int, str]] = None) -> int:
            """
            Returns the local rank of the given mesh_dim of the DeviceMesh.

            Args:
                mesh_dim (str/int, optional): it can be the name of the mesh dimension or the index
                of the mesh dimension. Default is None.

            Returns:
                An integer denotes the local rank.

            The following program runs on each process/rank in an SPMD manner. In this example, we have 2
            hosts with 4 GPUs each.
            Calling mesh_2d.get_local_rank(mesh_dim=0) on rank 0, 1, 2, 3 would return 0.
            Calling mesh_2d.get_local_rank(mesh_dim=0) on rank 4, 5, 6, 7 would return 1.
            Calling mesh_2d.get_local_rank(mesh_dim=1) on rank 0, 4 would return 0.
            Calling mesh_2d.get_local_rank(mesh_dim=1) on rank 1, 5 would return 1.
            Calling mesh_2d.get_local_rank(mesh_dim=1) on rank 2, 6 would return 2.
            Calling mesh_2d.get_local_rank(mesh_dim=1) on rank 3, 7 would return 3.

            Example::
                >>> # xdoctest: +SKIP("no rank")
                >>> from torch.distributed.device_mesh import DeviceMesh
                >>>
                >>> # Initialize device mesh as (2, 4) to represent the topology
                >>> # of cross-host(dim 0), and within-host (dim 1).
                >>> mesh = DeviceMesh(device_type="cuda", mesh=[[0, 1, 2, 3],[4, 5, 6, 7]])
            """
            if self.ndim > 1 and mesh_dim is None:
                raise RuntimeError(
                    f"Found the DeviceMesh have {self.mesh.ndim} dimensions",
                    "Optional kwarg `mesh_dim` needs to be specified when device_mesh.ndim > 1.",
                )
            elif mesh_dim is None:
                mesh_dim = 0

            mesh_dim_group = not_none(self.get_group(mesh_dim))
            assert isinstance(
                mesh_dim_group, ProcessGroup
            ), "We expect ProcessGroup before calling `get_rank`!"
            return not_none(get_rank(mesh_dim_group))

        def get_coordinate(self) -> Optional[List[int]]:
            """
            Return the relative indices of this rank relative to all
            dimensions of the mesh. If this rank is not part of the mesh, return None.
            """
            return self._coordinate_on_dim if self._coordinate_on_dim else None

    def init_device_mesh(
        device_type: str,
        mesh_shape: Tuple[int, ...],
        *,
        mesh_dim_names: Optional[Tuple[str, ...]] = None,
    ) -> DeviceMesh:
        """
        Initializes a `DeviceMesh` based on `device_type`, `mesh_shape`, and `mesh_dim_names` parameters.

        This creates a DeviceMesh with an n-dimensional array layout, where `n` is the length of `mesh_shape`.
        If `mesh_dim_names` is provided, each dimension is labeled as `mesh_dim_names[i]`.

        .. note::
            `init_device_mesh` follows SPMD programming model, meaning the same PyTorch Python program
            runs on all processes/ranks in the cluster. Ensure `mesh_shape` (the dimensions of the nD array
            describing device layout) is identical across all ranks. Inconsistent `mesh_shape` may lead to hanging.

        .. note::
            If no process group is found, init_device_mesh will initialize distributed process group/groups
            required for distributed communications behind the scene.

        Args:
            device_type (str): The device type of the mesh. Currently supports: "cpu", "cuda/cuda-like".
                Passing in a device type with a GPU index, such as "cuda:0", is not allowed.
            mesh_shape (Tuple[int]): A tuple defining the dimensions of the multi-dimensional array
                describing the layout of devices.
            mesh_dim_names (Tuple[str], optional): A tuple of mesh dimension names to assign to each dimension
                of the multi-dimensional array describing the layout of devices. Its length must match the length
                of `mesh_shape`. Each string in `mesh_dim_names` must be unique.

        Returns:
            DeviceMesh: A :class:`DeviceMesh` object representing the device layout.

        Example::
            >>> # xdoctest: +SKIP("no rank")
            >>> from torch.distributed.device_mesh import init_device_mesh
            >>>
            >>> mesh_1d = init_device_mesh("cuda", mesh_shape=(8,))
            >>> mesh_2d = init_device_mesh("cuda", mesh_shape=(2, 8), mesh_dim_names=("dp", "tp"))

        """
        if mesh_dim_names is not None:
            if len(set(mesh_dim_names)) != len(mesh_dim_names):
                raise RuntimeError(
                    "Each mesh_dim_name must be unique.",
                    f"Found repeated mesh_dim_name in mesh_dim_names {mesh_dim_names}",
                )

            if len(mesh_shape) != len(mesh_dim_names):
                raise RuntimeError(
                    "mesh_shape and mesh_dim_names should have same length!",
                    f"Found len(mesh_dim_names): {len(mesh_dim_names)} and len(mesh_shape):{len(mesh_shape)}.",
                )

        # assume valid device types are all letters
        if device_type and not device_type.isalpha():
            raise RuntimeError(
                f"Device type with GPU index is not supported but got {device_type}. ",
                "If you maintained a 'torch.device' object, it's recommended to pass in 'device.type'.",
            )

        # Always initialize the mesh's tensor on CPU, regardless of what the
        # external device type has been set to be (e.g. meta)
        with torch.device("cpu"):
            mesh = torch.arange(math.prod(mesh_shape), dtype=torch.int).view(mesh_shape)
        device_mesh = DeviceMesh(
            device_type=device_type,
            mesh=mesh,
            mesh_dim_names=mesh_dim_names,
        )

        return device_mesh