File size: 44,965 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
# mypy: allow-untyped-defs
import abc
import copy
import operator
from collections import defaultdict
from copy import deepcopy
from enum import Enum
from typing import Any, cast, Dict, List, Optional, Set, Tuple, Union

import torch
import torch.fx._pytree as fx_pytree
import torch.utils._pytree as pytree
from torch._library.fake_class_registry import FakeScriptObject
from torch.export._tree_utils import reorder_kwargs
from torch.export.exported_program import (
    ConstantArgument,
    ExportedProgram,
    InputKind,
    ModuleCallSignature,
    SymIntArgument,
    TensorArgument,
)
from torch.fx._symbolic_trace import is_fx_tracing
from torch.utils._pytree import GetAttrKey, SequenceKey

__all__ = ["InterpreterModule", "UnflattenedModule", "unflatten", "FlatArgsAdapter"]


class _AttrKind(Enum):
    PARAMETER = "parameter"
    BUFFER = "buffer"
    CONSTANT = "constant"


# Assign attribute 'from_obj' to the qualified name 'target' on 'to_module
# This installs empty Modules where none exist yet if they are subpaths of target
def _assign_attr(
    from_obj: Union[torch.Tensor, torch.ScriptObject],
    to_module: torch.nn.Module,
    target: str,
    attr_kind: _AttrKind,
    persistent: bool = True,
):
    *prefix, field = target.split(".")
    for item in prefix:
        t = getattr(to_module, item, None)

        if t is None:
            t = torch.nn.Module()
            setattr(to_module, item, t)
        to_module = t

    if attr_kind == _AttrKind.PARAMETER:
        assert isinstance(from_obj, torch.nn.Parameter)
        to_module.register_parameter(field, from_obj)
    elif attr_kind == _AttrKind.BUFFER:
        assert isinstance(from_obj, torch.Tensor)
        to_module.register_buffer(field, from_obj, persistent=persistent)
    elif attr_kind == _AttrKind.CONSTANT:
        assert not isinstance(
            from_obj, FakeScriptObject
        ), "FakeScriptObject should only exist during tracing."
        assert isinstance(
            from_obj,
            (
                torch.Tensor,
                torch.ScriptObject,
            ),
        )
        setattr(to_module, field, from_obj)


class InterpreterModule(torch.nn.Module):
    """A module that uses torch.fx.Interpreter to execute instead of the usual
    codegen that GraphModule uses. This provides better stack trace information
    and makes it easier to debug execution.
    """

    def __init__(
        self,
        graph: torch.fx.Graph,
    ):
        super().__init__()
        self.graph = graph
        self.graph.owning_module = self

    def forward(self, *args, **kwargs):
        assert self.graph_module is not None, "Didn't finalize this InterpreterModule"
        if torch.compiler.is_dynamo_compiling():
            # Dynamo cannot trace through torch.fx.Interpreter, so fall back to
            # GraphModule codegen in this instance.
            return self.graph_module(*args, **kwargs)
        else:
            if kwargs:
                # Handle **kwargs. FX only natively supports positional
                # arguments (through placeholders). So in order to pass in
                # kwargs, we must correspond the names of the placeholders with
                # the keys in the kwarg dict.
                arg_list = list(args)
                kwarg_names = self.arg_names[len(arg_list) :]
                for kwarg_name in kwarg_names:
                    if kwarg_name in kwargs:
                        arg_list.append(kwargs[kwarg_name])

                # Assert that the kwargs passed in exactly match the positional
                # arguments specified by the GraphModule. This should be
                # guaranteed by the unflattening process.
                assert len(kwarg_names) == len(kwargs)
                assert len(arg_list) == len(self.arg_names)
                args = tuple(arg_list)

            return torch.fx.Interpreter(self, graph=self.graph).run(
                *args, enable_io_processing=False
            )

    def finalize(self):
        # We need to "finalize" because GraphModule populates its own state_dict
        # based on the get_attrs observed in the graph. So we need to fully
        # construct the graph and call _sink_params before generating this
        # GraphModule.

        # need to set `graph_module` directly on the dict to avoid it getting
        # registered as a submodule.
        self.__dict__["graph_module"] = torch.fx.GraphModule(self, self.graph)
        self.graph.lint()

        # Cache arg names for kwarg handling (see forward())
        self.arg_names = []
        for node in self.graph.nodes:
            if node.op == "placeholder":
                self.arg_names.append(node.target)


class FlatArgsAdapter(abc.ABC):
    """
    Adapts input arguments with ``input_spec`` to align ``target_spec``.
    """

    @abc.abstractmethod
    def adapt(
        self,
        target_spec: pytree.TreeSpec,
        input_spec: pytree.TreeSpec,
        input_args: List[Any],
    ) -> List[Any]:
        """NOTE: This adapter may mutate given ``input_args_with_path``."""
        ...


class UnflattenedModule(torch.nn.Module):
    def __init__(
        self,
        export_module: ExportedProgram,
        flat_args_adapter: Optional[FlatArgsAdapter] = None,
    ):
        super().__init__()
        if export_module.graph_signature.backward_signature is not None:
            raise ValueError("Unflattening on JointExportModule NYI")

        fqn_list = [entry.fqn for entry in export_module.module_call_graph]
        assert fqn_list[0] == ""
        export_graph = deepcopy(export_module.graph)
        self.graph_signature = deepcopy(export_module.graph_signature)
        self.graph = torch.fx.Graph()
        self.module_call_graph = deepcopy(export_module.module_call_graph)
        self.flat_args_adapter = flat_args_adapter
        # Flag to indicate whether args have been adapted.
        self.adapted = False

        _inplace_buffer_mutations(export_graph, self.graph_signature)
        _outline_submodules(export_graph, self)

        self.range_constraints = export_module.range_constraints
        self.equality_constraints: List = []

        # aliasing/unused param or buffer issues:
        # in strict-mode export, dynamo export will deduplicate aliased tensors,
        # and ignore unused tensors. For aliasing, this causes issues when some aliases
        # are unused, and we're unable to match the placeholder node to the correct FQN.
        # This leads to the graph signature potentially having the wrong target FQN,
        # and downstream issues where parameters are assigned to the wrong target attribute,
        # mismatching the relevant placeholder node in the unflattened module.
        # To resolve this we restore (_assign_attr) all aliased/unused tensors in
        # the state_dict as module attributes, but only keep the used tensors in the
        # graph's forward pass (_sink_params).
        state_dict = export_module.state_dict
        assigned_params: Set[str] = set()  # tracking unused params
        id_to_param: Dict[int, torch.nn.Parameter] = {}  # handling weight-sharing
        for name in self.graph_signature.parameters:  # this loop adds used params
            param = state_dict[name]
            if id(param) not in id_to_param:
                id_to_param[id(param)] = torch.nn.Parameter(param.clone())

            _assign_attr(
                id_to_param[id(param)],
                self,
                name,
                attr_kind=_AttrKind.PARAMETER,
            )
            assigned_params.add(name)

        non_persistent_buffers = set(self.graph_signature.non_persistent_buffers)
        assigned_buffers: Set[str] = set()  # tracking unused buffers
        id_to_buffer: Dict[
            int, Tuple[torch.nn.Parameter, bool]
        ] = {}  # handle weight-sharing
        for name in self.graph_signature.buffers:  # this loop adds used buffers
            if name in non_persistent_buffers:
                persistent = False
                buffer = export_module.constants[name]
            else:
                persistent = True
                buffer = state_dict[name]

            if id(buffer) not in id_to_buffer:
                id_to_buffer[id(buffer)] = (buffer.clone(), persistent)

            _assign_attr(
                id_to_buffer[id(buffer)][0],
                self,
                name,
                attr_kind=_AttrKind.BUFFER,
                persistent=persistent,
            )
            assigned_buffers.add(name)

        # restore aliased/unused params and buffers
        # these appear in state dict but not graph signature
        for name, tensor in state_dict.items():
            if name in assigned_params or name in assigned_buffers:  # already assigned
                continue

            is_buffer = False
            if id(tensor) in id_to_buffer or not isinstance(
                tensor, torch.nn.Parameter
            ):  # aliased buffer
                is_buffer = True

            if is_buffer:
                if (
                    id(tensor) not in id_to_buffer
                ):  # this is completely unused (not weight-sharing)
                    id_to_buffer[id(tensor)] = (
                        tensor,
                        True,
                    )  # assign to respect original model
                _assign_attr(
                    id_to_buffer[id(tensor)][0],
                    self,
                    name,
                    attr_kind=_AttrKind.BUFFER,
                    persistent=True,
                )
            else:
                if id(tensor) not in id_to_param:  # this is unused
                    id_to_param[id(tensor)] = tensor
                _assign_attr(
                    id_to_param[id(tensor)],
                    self,
                    name,
                    attr_kind=_AttrKind.PARAMETER,
                )

        # use id map so we don't double-clone aliased constants
        id_to_const: Dict[int, Union[torch.Tensor, torch._C.ScriptObject]] = {}
        for fqn, constant in export_module.constants.items():
            if id(constant) not in id_to_const:
                if isinstance(constant, torch.Tensor):
                    constant = constant.clone()
                id_to_const[id(constant)] = constant
            _constant = id_to_const[id(constant)]
            _assign_attr(
                _constant,
                self,
                fqn,
                attr_kind=_AttrKind.CONSTANT,
            )

        # This is to handle parameters/buffers that point to the same tensor
        # object id -> list of (node_name, target_name)
        consts_map: Dict[int, List[Tuple[str, str]]] = defaultdict(list)
        consts_targets: Set[str] = set()

        def add_to_consts_map(obj_id, node_name, target_name):
            name_list = consts_map[obj_id]
            name_list.append((node_name, target_name))

        added_params_buffers: Set[str] = set()  # track aliased/unused params, buffers
        for s in self.graph_signature.input_specs:
            if s.kind == InputKind.PARAMETER or (
                s.kind == InputKind.BUFFER and s.persistent
            ):
                assert hasattr(s.arg, "name")
                assert isinstance(s.target, str)
                add_to_consts_map(
                    id(export_module.state_dict[s.target]), s.arg.name, s.target
                )
                consts_targets.add(s.target)
                added_params_buffers.add(s.target)
            elif (
                (s.kind == InputKind.BUFFER and not s.persistent)
                or s.kind == InputKind.CONSTANT_TENSOR
                or s.kind == InputKind.CUSTOM_OBJ
            ):
                assert hasattr(s.arg, "name")
                assert isinstance(s.target, str)
                add_to_consts_map(
                    id(export_module.constants[s.target]), s.arg.name, s.target
                )
                consts_targets.add(s.target)

        # add constants that are aliased and don't appear in graph signature
        for const_name, const in export_module.constants.items():
            if const_name not in consts_targets:
                assert (
                    id(const) in consts_map
                ), "Constants should be either aliased or appear in graph signature"
                ph_name, _ = consts_map[id(const)][0]
                add_to_consts_map(id(const), ph_name, const_name)
                added_params_buffers.add(s.target)

        # add aliased/unused params and buffers that don't appear in graph signature
        for fqn, tensor in export_module.state_dict.items():
            if fqn not in added_params_buffers:
                if id(tensor) not in consts_map:
                    # completely unused (no weight-sharing), ignore.
                    # this weight doesn't appear in graph module,
                    # so won't cause FQN assignment issues
                    continue
                ph_name, _ = consts_map[id(tensor)][0]
                add_to_consts_map(id(tensor), ph_name, fqn)

        # node name -> list of possible targets
        inputs_to_state: Dict[str, List[str]] = {}
        for node_target in consts_map.values():
            targets = [t[1] for t in node_target]
            for n, _ in node_target:
                inputs_to_state[n] = targets

        _sink_params(self, inputs_to_state, [])

        # Helper function to check input nodes of `module` has been processed.
        def check_module_inputs(module, scope):
            if hasattr(module, "graph"):
                for node in module.graph.nodes:
                    # sink_params() should turn placeholders into get_attr nodes
                    # for attributes that are within scope of the current
                    # module. We allow attributes to remain as placeholders if
                    # they are inputs in the original module signature, meaning
                    # they are a parent module's attribute, and therefore out of
                    # scope of the current module.
                    if (
                        node.op == "placeholder"
                        and node.name in inputs_to_state
                        and any(
                            fqn.split(".")[: len(scope)] == scope
                            for fqn in inputs_to_state[node.name]
                        )  # matching scope to avoid wrong assert
                    ):
                        raise AssertionError(
                            f"{node.name} was not sunk into the module {scope} which has the graph: {module.graph}"
                        )
            # Recursively check the submodules.
            for name, submod in module.named_children():
                scope.append(name)
                check_module_inputs(submod, scope)

        # Recurively check all input nodes have been processed.
        check_module_inputs(self, [])

        # Cache so we don't have to compute this every time.
        # NOTE: this needs to be kept in sync with the placeholders in
        # self.graph, but currently we have no way to guarantee that.
        self.input_placeholders = [
            node for node in self.graph.nodes if node.op == "placeholder"
        ]
        self.check_input_constraints = True
        # TODO(zhxchen17) We can register modules ahead of time instead of reorder later.
        fqn_order = {fqn: i for i, fqn in enumerate(fqn_list)}
        # In the case of legacy IR, we might be missing some modules from metadata.
        for name, _ in self.named_modules(remove_duplicate=False):
            if name not in fqn_order:
                fqn_order[name] = len(fqn_order)
        _reorder_submodules(self, fqn_order)
        assert [fqn for fqn, _ in self.named_modules(remove_duplicate=False)] == list(
            fqn_order.keys()
        )

    def _print_graph(self):
        for fqn, mod in self.named_modules():
            print(fqn + ":")
            if hasattr(mod, "graph") and isinstance(mod.graph, torch.fx.Graph):
                print(mod.graph)

    def forward(self, *args, **kwargs):
        signature = self.module_call_graph[0].signature

        reordered_kwargs = reorder_kwargs(kwargs, signature.in_spec)

        flat_args_with_path, in_spec = pytree.tree_flatten_with_path(
            (args, reordered_kwargs)
        )
        flat_args = [x[1] for x in flat_args_with_path]
        if is_fx_tracing():
            return_val = torch.fx.Interpreter(self, graph=self.graph).run(
                *flat_args, enable_io_processing=False
            )
            # For scalar return value, fx.Graph wraps in a tuple
            if isinstance(return_val, tuple) and len(return_val) == 1:
                return return_val[0]
            return return_val

        if in_spec != signature.in_spec:
            if not self.adapted:
                print(
                    "Input treespec does not match with exported module's: \n"
                    f"Input treespec: {in_spec}. ",
                    f"Exported module treespec: {signature.in_spec}",
                )
            if self.flat_args_adapter is None:
                raise TypeError(
                    "There is no flat args adapter sepcified. "
                    "Are you sure you are calling this with the right arguments? "
                )
            else:
                if not self.adapted:
                    print("Adapting flat arg to match exported module's treespec")
                flat_args = self.flat_args_adapter.adapt(
                    target_spec=signature.in_spec,
                    input_spec=in_spec,
                    input_args=flat_args,
                )
                self.adapted = True
                if len(flat_args) != signature.in_spec.num_leaves:
                    raise TypeError(
                        f"Flat args adaption failed, number of args mismatch "
                        f"Adatped: {len(flat_args)} \n"
                        f"Exported module: {signature.in_spec.num_leaves}"
                    )

        if self.check_input_constraints:
            # Import here to avoid an unfortunate circular dependency.
            # TODO(suo): untangle this.
            from torch._export.utils import _check_input_constraints_for_graph

            if self.adapted is True:
                # TODO(suo): The FlatArgsAdapter returns a list of flat args,
                # which we don't have keypaths for. For now, just create a dummy
                # keypath to associate with the arg.
                new_flat_args_with_path = [  # type: ignore[var-annotated]
                    ((SequenceKey(idx=0), GetAttrKey(name="<unknown location>")), arg)
                    for arg in flat_args
                ]
            else:
                new_flat_args_with_path = flat_args_with_path  # type: ignore[assignment]

            _check_input_constraints_for_graph(
                self.input_placeholders, new_flat_args_with_path, self.range_constraints
            )
        tree_out = torch.fx.Interpreter(self, graph=self.graph).run(
            *flat_args, enable_io_processing=False
        )
        return pytree.tree_unflatten(tree_out, signature.out_spec)


def unflatten(
    module: ExportedProgram, flat_args_adapter: Optional[FlatArgsAdapter] = None
) -> UnflattenedModule:
    """Unflatten an ExportedProgram, producing a module with the same module
    hierarchy as the original eager module. This can be useful if you are trying
    to use :mod:`torch.export` with another system that expects a module
    hierachy instead of the flat graph that :mod:`torch.export` usually produces.

    .. note:: The args/kwargs of unflattened modules will not necessarily match
        the eager module, so doing a module swap (e.g. :code:`self.submod =
        new_mod`) will not necessarily work. If you need to swap a module out, you
        need to set the :code:`preserve_module_call_signature` parameter of
        :func:`torch.export.export`.

    Args:
        module (ExportedProgram): The ExportedProgram to unflatten.
        flat_args_adapter (Optional[FlatArgsAdapter]): Adapt flat args if input TreeSpec does not match with exported module's.

    Returns:
        An instance of :class:`UnflattenedModule`, which has the same module
        hierarchy as the original eager module pre-export.
    """
    return UnflattenedModule(module, flat_args_adapter)


def _inplace_buffer_mutations(graph: torch.fx.Graph, graph_signature) -> None:
    """Transform buffer mutations from their functionalized form into a copy_
    node in the graph.

    Functionalization represents buffer mutation by passing the buffer as an input and output. So for example, the eager code:
        def forward(self, x):
            self.buffer += x
            return x * x

    Will become a graph that looks like:
        def forward(self, buffer, x):
            mutated_buffer = aten.add(buffer, x)
            mul = aten.mul(x, x)
            return (mutated_buffer, mul)

    We want to inplace this into something that looks like the original eager code:
        def forward(self, buffer, x):
            mutated_buffer = aten.add(buffer, x)
            buffer.copy_(mutated_buffer)
            mul = aten.mul(x, x)
            return (mul,)
    """
    output_node = next(iter(reversed(graph.nodes)))
    assert output_node.op == "output" and len(output_node.args) == 1
    return_args = output_node.args[0]

    mutation_node_to_buffer = graph_signature.buffers_to_mutate
    mutations = return_args[: len(mutation_node_to_buffer)]
    buffers_to_inputs = {v: k for k, v in graph_signature.inputs_to_buffers.items()}
    input_name_to_node = {
        node.name: node for node in graph.nodes if node.op == "placeholder"
    }

    for mutation in mutations:
        buffer_name = mutation_node_to_buffer[mutation.name]
        input_name = buffers_to_inputs[buffer_name]
        input_node = input_name_to_node[input_name]

        with graph.inserting_after(mutation):
            new_node = graph.create_node(
                "call_function", torch.ops.aten.copy_, (input_node, mutation)
            )
            for k, v in mutation.meta.items():
                new_node.meta[k] = v
        # Replace all uses of the previously functional mutation with our copy_ output.
        mutation.replace_all_uses_with(new_node, lambda x: x is not new_node)

    # Remove the mutated buffer from the graph outputs, since we don't need to
    # thread it through anymore. We don't need to handle the inputs, which will
    # be handled by _sink_params.
    user_outputs = tuple(
        return_args[len(mutation_node_to_buffer) :],
    )
    output_node.args = ((user_outputs),)


def _is_prefix(candidate, target):
    """Check whether `candidate` is a prefix of `target`."""
    return len(candidate) < len(target) and target[: len(candidate)] == candidate


def _compute_accessor(parent_fqn: str, child_fqn: str) -> str:
    if parent_fqn == "":
        # Handle the root module correctly.
        return child_fqn

    parent_split = parent_fqn.split(".")
    child_split = child_fqn.split(".")

    assert (
        child_split[: len(parent_split)] == parent_split
    ), f"Child module '{child_fqn}' is not a descendant of parent module '{parent_fqn}'"
    return ".".join(child_split[len(parent_split) :])


def _verify_graph_equivalence(x: torch.nn.Module, y: torch.nn.Module):
    def graph_dump(graph: torch.fx.Graph) -> str:
        ret = []
        nodes_idx: Dict[int, int] = {}

        def arg_dump(arg) -> str:
            if isinstance(arg, torch.fx.Node):
                return "%" + str(nodes_idx[id(arg)])
            return str(arg)

        for i, node in enumerate(graph.nodes):
            args_dump = [str(arg) for arg in pytree.tree_map(arg_dump, node.args)]
            args_dump += [
                f"{key}={value}"
                for key, value in pytree.tree_map(arg_dump, node.kwargs).items()
            ]
            target = node.target if node.op == "call_function" else ""
            ret.append(f"{i}: {node.op}[{target}]({', '.join(args_dump)})")
            nodes_idx[id(node)] = i
        return "\n".join(ret)

    assert graph_dump(x.graph) == graph_dump(y.graph)


def _add_spec(gm: torch.nn.Module, spec) -> str:
    i = 0
    while hasattr(gm, f"_spec_{i}"):
        i += 1
    name = f"_spec_{i}"
    setattr(gm, name, spec)
    return name


def _generate_flatten(gm: torch.nn.Module, node, spec) -> torch.fx.Node:
    name = _add_spec(gm, spec)
    spec_node = gm.graph.get_attr(name)
    return gm.graph.call_function(fx_pytree.tree_flatten_spec, (node, spec_node))


def _generate_unflatten(gm: torch.nn.Module, nodes, spec) -> torch.fx.Node:
    name = _add_spec(gm, spec)
    spec_node = gm.graph.get_attr(name)
    return gm.graph.call_function(pytree.tree_unflatten, (nodes, spec_node))


def _get_submodule(mod: torch.nn.Module, target: str):
    *prefix, field = target.split(".")

    for item in prefix:
        submod = getattr(mod, item, None)

        if submod is None:
            return None

        if not isinstance(submod, torch.nn.Module):
            return None

        mod = submod

    return getattr(mod, field, None)


def _add_submodule(mod: torch.nn.Module, target: str, module_to_add: torch.nn.Module):
    *prefix, field = target.split(".")

    for item in prefix:
        submod = getattr(mod, item, None)

        if submod is None:
            submod = torch.nn.Module()
            setattr(mod, item, submod)

        if not isinstance(submod, torch.nn.Module):
            return False

        mod = submod

    mod.add_module(field, module_to_add)


class _ModuleFrame:
    def __init__(
        self,
        flat_graph,
        nodes,
        seen_nodes,
        seen_modules,
        parent,
        module_stack,
        module_id,
        module_call_graph: Dict[str, ModuleCallSignature],
        module: Optional[torch.nn.Module] = None,
    ):
        self.flat_graph = flat_graph
        self.nodes = nodes
        self.seen_nodes = seen_nodes
        self.seen_modules = seen_modules
        self.parent = parent
        self.module_stack = module_stack
        self.module_id = module_id

        self.module_call_graph = module_call_graph
        self.verbose = False

        self.fqn = self.module_stack[-1]
        if module is not None:
            self.module = module
        else:
            self.module = InterpreterModule(torch.fx.Graph())
        if self.module_id in self.seen_modules:
            self.cached_graph_module = self.seen_modules[self.module_id]
        else:
            self.cached_graph_module = None
            self.seen_modules[self.module_id] = self.module

        self.graph = self.module.graph

        # Mapping of nodes in the flat graph to nodes in this graph.
        self.node_map: Dict[torch.fx.Node, torch.fx.Node] = {}
        self.node_to_placeholder = {}

        self.parent_call_module: Optional[torch.fx.Node] = None
        if parent is not None:
            accessor = _compute_accessor(parent.fqn, self.fqn)
            _add_submodule(
                parent.module,
                accessor,
                (
                    self.module
                    if self.cached_graph_module is None
                    else self.cached_graph_module
                ),
            )
            self.parent_call_module = parent.graph.call_module(accessor)

        signature = module_call_graph.get(self.fqn)
        if signature is not None and self.parent is not None:
            assert signature.in_spec.num_children == 2
            args_spec = signature.in_spec.children_specs[0]
            kwargs_spec = signature.in_spec.children_specs[1]
            assert args_spec.context is None
            assert kwargs_spec.context is not None

            with self.graph.inserting_after(None):
                arg_nodes = []
                for idx in range(args_spec.num_children):
                    arg_nodes.append(self.graph.placeholder(f"_positional_arg_{idx}"))
                kwarg_nodes = {}
                for name in kwargs_spec.context:
                    kwarg_nodes[name] = self.graph.placeholder(name)
                flat_args = _generate_flatten(
                    self.module,
                    (tuple(arg_nodes), kwarg_nodes),
                    signature.in_spec,
                )
                for idx, arg in enumerate(signature.inputs):
                    flat_arg_node = self.graph.create_node(
                        op="call_function",
                        target=operator.getitem,
                        args=(flat_args, idx),
                        name=(
                            arg.name
                            if not isinstance(arg, ConstantArgument)
                            else f"_constant_{idx}"
                        ),
                    )
                    if isinstance(arg, ConstantArgument):
                        continue
                    flat_arg_node.meta = copy.copy(self.seen_nodes[arg.name].meta)
                    self.node_to_placeholder[self.seen_nodes[arg.name]] = flat_arg_node

            with self.parent.graph.inserting_before(self.parent_call_module):
                input_nodes: List[Optional[torch.fx.Node]] = []
                for input in signature.inputs:
                    if isinstance(input, ConstantArgument) and input.value is None:
                        input_nodes.append(None)
                    else:
                        assert isinstance(input, (TensorArgument, SymIntArgument))
                        input_nodes.append(
                            self.parent.remap_input(self.seen_nodes[input.name])
                        )

                inputs_node = _generate_unflatten(
                    self.parent.module,
                    input_nodes,
                    signature.in_spec,
                )

                args_node = self.parent.graph.call_function(
                    operator.getitem, (inputs_node, 0)
                )
                kwargs_node = self.parent.graph.call_function(
                    operator.getitem, (inputs_node, 1)
                )
                arg_nodes = [
                    self.parent.graph.call_function(operator.getitem, (args_node, i))
                    for i in range(args_spec.num_children)
                ]
                kwarg_nodes = {
                    k: self.parent.graph.call_function(
                        operator.getitem, (kwargs_node, k)
                    )
                    for k in kwargs_spec.context
                }
            assert self.parent_call_module is not None
            self.parent_call_module.args = tuple(arg_nodes)
            self.parent_call_module.kwargs = kwarg_nodes

    def add_placeholder(self, x):
        assert self.fqn != "", f"Cannot add placeholder {x} to root module"
        assert x.graph is self.flat_graph
        # x is not in subgraph, create a new placeholder for subgraph
        with self.graph.inserting_before(None):
            placeholder_node = self.graph.placeholder(x.name, type_expr=x.type)
        # copy all meta fields, even if some fields might be irrelvant for
        # the placeholder node
        placeholder_node.meta = copy.copy(x.meta)
        self.node_to_placeholder[x] = placeholder_node

    def remap_input(self, x):
        assert x.graph is self.flat_graph
        if x in self.node_map:
            return self.node_map[x]
        if x not in self.node_to_placeholder:
            self.add_placeholder(x)
            if self.parent_call_module is not None:
                # Important to *prepend* the output to match how we are
                # inserting placeholder nodes.
                self.parent_call_module.insert_arg(0, self.parent.remap_input(x))
        return self.node_to_placeholder[x]

    def finalize_outputs(self):
        orig_outputs = []

        signature = self.module_call_graph.get(self.fqn)
        if signature is not None and self.parent is not None:
            for output in signature.outputs:
                if isinstance(output, (TensorArgument, SymIntArgument)):
                    orig_outputs.append(self.seen_nodes[output.name])
                else:
                    raise RuntimeError(
                        f"Unsupported data type for output node: {output}"
                    )

            tree_out_node = _generate_unflatten(
                self.module,
                tuple(
                    self.node_map[self.seen_nodes[output.name]]
                    for output in orig_outputs
                ),
                signature.out_spec,
            )
            parent_out: Optional[torch.fx.Node] = _generate_flatten(
                self.parent.module, self.parent_call_module, signature.out_spec
            )
            graph_outputs: Union[torch.fx.Node, List[torch.fx.Node]] = tree_out_node
        else:
            graph_outputs = []
            # Iterate through nodes we have copied into self.graph.
            for orig_node in self.node_map.keys():
                for user_node in orig_node.users:
                    if user_node.name not in self.seen_nodes:
                        # external user node, need to expose as an output
                        orig_outputs.append(orig_node)
                        graph_outputs.append(self.node_map[orig_node])
                        break

            parent_out = self.parent_call_module
            if len(graph_outputs) == 1:
                graph_outputs = graph_outputs[0]

        assert isinstance(graph_outputs, (list, torch.fx.Node))

        self.graph.output(graph_outputs)

        # Rewrite outputs in parent module
        if parent_out is None:
            return

        parent_out.meta["val"] = (
            graph_outputs.meta.get("val")
            if isinstance(graph_outputs, torch.fx.Node)
            else [o.meta.get("val") for o in graph_outputs]
        )

        if len(orig_outputs) == 1 and signature is None:
            self.parent.node_map[orig_outputs[0]] = parent_out
        else:
            for i, orig_output in enumerate(orig_outputs):
                # Use Proxy to record getitem access.
                proxy_out = torch.fx.Proxy(parent_out)[i].node  # type: ignore[index]
                proxy_out.meta["val"] = orig_output.meta.get("val")
                self.parent.node_map[orig_output] = proxy_out

        if self.cached_graph_module is not None:
            _verify_graph_equivalence(self.cached_graph_module, self.module)

    def copy_node(self, node):
        self.print("copying", node.format_node())
        self.node_map[node] = self.graph.node_copy(node, self.remap_input)
        self.seen_nodes[node.name] = node

    def run_outer(self):
        i = 0
        for node in self.flat_graph.nodes:
            self.print(i, node.meta.get("nn_module_stack"), node.format_node())
            i += 1

        # Copy all graph inputs
        node_idx: int = 0
        node = self.nodes[node_idx]
        while node.op == "placeholder":
            self.copy_node(node)
            node_idx += 1
            node = self.nodes[node_idx]

        self.run_from(node_idx)

        # Copy graph outputs
        for node in self.flat_graph.nodes:
            if node.op == "output":
                self.copy_node(node)

    def print(self, *args, **kwargs):
        if self.verbose:
            print(*args, **kwargs)

    def run_from(self, node_idx):
        module_idx = 0
        # Walk through the graph, building up a new graph with the right submodules
        while node_idx < len(self.nodes):
            node = self.nodes[node_idx]
            assert node.op != "placeholder"

            self.print()
            self.print("STEP", node_idx, node.format_node())
            self.print(self.module_stack)
            if node.op == "output":
                if len(self.module_stack) == 1:
                    # We want the output node of the original graph to be handled
                    # specially by the outermost stack frame (in run_outer). So
                    # skip finalization here.
                    return node_idx

                # We've reached the end of the graph. Wrap up all the existing stack frames.
                self.finalize_outputs()
                return node_idx

            if len(node.meta.get("nn_module_stack", {})) == 0:
                raise RuntimeError(f"Unable to find nn_module_stack for node {node}")

            nn_module_stack = node.meta["nn_module_stack"]
            from torch._export.passes._node_metadata_hook import (
                _EMPTY_NN_MODULE_STACK_KEY,
            )

            if (
                len(nn_module_stack) == 1
                and _EMPTY_NN_MODULE_STACK_KEY in nn_module_stack
            ):
                # Empty case from the node_metadata_hook
                node_module_stack = self.module_stack
            else:
                node_module_stack = [
                    path for path, ty in node.meta["nn_module_stack"].values()
                ]

            if node_module_stack[: len(self.module_stack)] != self.module_stack:
                # This means that the current module is done executing and the
                # current node is the beginning of a new module.
                #
                # In this case, we should finalize this module and return without
                # incrementing the node counter.
                self.finalize_outputs()
                self.print("outlining", self.fqn)
                self.print(self.graph)
                return node_idx

            assert node_module_stack is not None

            if _is_prefix(self.module_stack, node_module_stack):
                # This means that the current node represents the execution of a new
                # module.
                next_module = node_module_stack[len(self.module_stack)]
                self.print("Creating new stack frame for", next_module)
                # Run a nested version of module outliner from the current node
                # counter. Once it is complete, continue from that point.
                node_idx = _ModuleFrame(
                    self.flat_graph,
                    self.nodes,
                    self.seen_nodes,
                    self.seen_modules,
                    self,
                    self.module_stack + [next_module],
                    list(node.meta["nn_module_stack"].keys())[len(self.module_stack)],
                    self.module_call_graph,
                ).run_from(node_idx)
                module_idx += 1
                continue

            # The only remaining possibility is that we are in the right stack
            # frame. Copy the node into this frame's graph and increment the node counter.
            assert node_module_stack == self.module_stack
            self.copy_node(node)
            node_idx += 1


def _outline_submodules(orig_graph: torch.fx.Graph, root_module: UnflattenedModule):
    seen_nodes: Dict[str, torch.fx.Node] = {}
    seen_modules: Dict[int, torch.nn.Module] = {}
    _ModuleFrame(
        orig_graph,
        tuple(orig_graph.nodes),
        seen_nodes,
        seen_modules,
        None,
        [""],
        "",
        {
            entry.fqn: entry.signature
            for entry in root_module.module_call_graph
            if entry.signature
        },
        module=root_module,
    ).run_outer()


def _reorder_submodules(
    parent: torch.nn.Module, fqn_order: Dict[str, int], prefix: str = ""
):
    # TODO Can be optimized by adding submodules ahead of time.
    if prefix == "":
        for fqn in list(fqn_order.keys())[1:]:
            if _get_submodule(parent, fqn) is None:
                _add_submodule(parent, fqn, torch.nn.Module())

    children = []
    for name, child in list(parent._modules.items()):
        if child is None:
            continue
        fqn = prefix + name
        _reorder_submodules(child, fqn_order, prefix=fqn + ".")
        delattr(parent, name)
        children.append((fqn_order[fqn], name, child))
    children.sort(key=operator.itemgetter(0))
    for _, name, child in children:
        parent.register_module(name, child)


def _sink_params(
    module: torch.nn.Module,
    inputs_to_state: Dict[str, List[str]],
    scope: List[str],
):
    """Sink params, buffers, and constants from graph inputs into get_attr nodes.

    Exported modules are purely functional, so they pass their parameters and
    buffers in as inputs to the graph.

    To replicate eager's semantics, we need to get them from the module state
    via get_attr instead.

    module: GraphModule, potentially containining nested submodules.
    inputs_to_state: mapping graph input names to the corresponding key in the state_dict.
    scope: tracks where we are in the module hierarchy, so that we can emit the
        right `getattr(self, "foo.bar")` calls, etc.
    """
    # This dict records inputs removed by child modules.
    # Maps the module object id to the list of placeholder node names
    # in the child module that were removed.
    module_id_to_inputs_removed: Dict[int, List[str]] = defaultdict(list)

    # We need to use _modules here instead of named_children(), because we
    # explicitly want duplicate modules to show up in the traversal.
    for name, submodule in module._modules.items():
        submod_id_to_inputs_removed = _sink_params(
            cast(torch.nn.Module, submodule), inputs_to_state, scope + [name]
        )
        for k, v in submod_id_to_inputs_removed.items():
            module_id_to_inputs_removed[k].extend(v)

    if not hasattr(module, "graph"):
        # Not all modules have graphs defined, if they are empty modules with no operations (like ParameterList)
        return module_id_to_inputs_removed

    graph = module.graph
    inputs = list(filter(lambda n: n.op == "placeholder", graph.nodes))
    the_last_input = inputs[-1]

    # Also remove from call_module nodes
    call_module_nodes = filter(lambda n: n.op == "call_module", graph.nodes)
    for node in call_module_nodes:
        submodule = _recursive_getattr(module, node.target.split("."))
        # remove placeholder from call_module node arguments, only if we've
        # erased the placeholder node in the corresponding _sink_params() call
        if submodule is not None and id(submodule) in module_id_to_inputs_removed:
            node.args = tuple(
                filter(
                    lambda n: n.name not in module_id_to_inputs_removed[id(submodule)],
                    node.args,
                )
            )

    # Filter out inputs_to_state corresponding to current scope.
    inputs_to_state_of_scope: Dict[torch.fx.Node, list[str]] = {}
    for node in inputs:
        if node.name not in inputs_to_state:
            continue

        state_name = None
        for sn in inputs_to_state[node.name]:
            sn_split = sn.split(".")
            if sn_split[: len(scope)] == scope:
                state_name = sn_split
                break

        # If there's a mismatch beteewn scope name and state name, then
        # there must be multuple scopes pointing to the same state name,
        # meaning some modules are shared. In such case, we can simply skip
        # updating the current node because another later iteration will
        # take care of this input node when the unique match between scope
        # and state name occurs.  To make sure this always happen, we should
        # enforce the invariant that no placeholder node in the unflattened
        # graph appears in inputs_to_state dict, which means all the extra
        # input nodes have been handled.
        if state_name is None:
            continue

        inputs_to_state_of_scope[node] = state_name

    # Record name of remove inputs for return purpose.
    inputs_removed: List[str] = []

    for node, state_name in inputs_to_state_of_scope.items():
        if len(node.users) > 0:
            attr_path = state_name[len(scope) :]
            state_attr = _recursive_getattr(module, attr_path)
            assert isinstance(state_attr, (torch.Tensor, torch.ScriptObject))

            # Make sure the newly created get_attr node is placed after the last placeholder node
            with graph.inserting_after(the_last_input):
                new_node = graph.create_node("get_attr", ".".join(attr_path))

            node.replace_all_uses_with(new_node, propagate_meta=True)

        graph.erase_node(node)
        inputs_removed.append(node.name)

    if isinstance(module, InterpreterModule):
        module.finalize()

    return {id(module): inputs_removed}


def _recursive_getattr(obj, attr_path):
    for attr in attr_path:
        if not hasattr(obj, attr):
            return None
        obj = getattr(obj, attr)

    return obj