File size: 44,965 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 |
# mypy: allow-untyped-defs
import abc
import copy
import operator
from collections import defaultdict
from copy import deepcopy
from enum import Enum
from typing import Any, cast, Dict, List, Optional, Set, Tuple, Union
import torch
import torch.fx._pytree as fx_pytree
import torch.utils._pytree as pytree
from torch._library.fake_class_registry import FakeScriptObject
from torch.export._tree_utils import reorder_kwargs
from torch.export.exported_program import (
ConstantArgument,
ExportedProgram,
InputKind,
ModuleCallSignature,
SymIntArgument,
TensorArgument,
)
from torch.fx._symbolic_trace import is_fx_tracing
from torch.utils._pytree import GetAttrKey, SequenceKey
__all__ = ["InterpreterModule", "UnflattenedModule", "unflatten", "FlatArgsAdapter"]
class _AttrKind(Enum):
PARAMETER = "parameter"
BUFFER = "buffer"
CONSTANT = "constant"
# Assign attribute 'from_obj' to the qualified name 'target' on 'to_module
# This installs empty Modules where none exist yet if they are subpaths of target
def _assign_attr(
from_obj: Union[torch.Tensor, torch.ScriptObject],
to_module: torch.nn.Module,
target: str,
attr_kind: _AttrKind,
persistent: bool = True,
):
*prefix, field = target.split(".")
for item in prefix:
t = getattr(to_module, item, None)
if t is None:
t = torch.nn.Module()
setattr(to_module, item, t)
to_module = t
if attr_kind == _AttrKind.PARAMETER:
assert isinstance(from_obj, torch.nn.Parameter)
to_module.register_parameter(field, from_obj)
elif attr_kind == _AttrKind.BUFFER:
assert isinstance(from_obj, torch.Tensor)
to_module.register_buffer(field, from_obj, persistent=persistent)
elif attr_kind == _AttrKind.CONSTANT:
assert not isinstance(
from_obj, FakeScriptObject
), "FakeScriptObject should only exist during tracing."
assert isinstance(
from_obj,
(
torch.Tensor,
torch.ScriptObject,
),
)
setattr(to_module, field, from_obj)
class InterpreterModule(torch.nn.Module):
"""A module that uses torch.fx.Interpreter to execute instead of the usual
codegen that GraphModule uses. This provides better stack trace information
and makes it easier to debug execution.
"""
def __init__(
self,
graph: torch.fx.Graph,
):
super().__init__()
self.graph = graph
self.graph.owning_module = self
def forward(self, *args, **kwargs):
assert self.graph_module is not None, "Didn't finalize this InterpreterModule"
if torch.compiler.is_dynamo_compiling():
# Dynamo cannot trace through torch.fx.Interpreter, so fall back to
# GraphModule codegen in this instance.
return self.graph_module(*args, **kwargs)
else:
if kwargs:
# Handle **kwargs. FX only natively supports positional
# arguments (through placeholders). So in order to pass in
# kwargs, we must correspond the names of the placeholders with
# the keys in the kwarg dict.
arg_list = list(args)
kwarg_names = self.arg_names[len(arg_list) :]
for kwarg_name in kwarg_names:
if kwarg_name in kwargs:
arg_list.append(kwargs[kwarg_name])
# Assert that the kwargs passed in exactly match the positional
# arguments specified by the GraphModule. This should be
# guaranteed by the unflattening process.
assert len(kwarg_names) == len(kwargs)
assert len(arg_list) == len(self.arg_names)
args = tuple(arg_list)
return torch.fx.Interpreter(self, graph=self.graph).run(
*args, enable_io_processing=False
)
def finalize(self):
# We need to "finalize" because GraphModule populates its own state_dict
# based on the get_attrs observed in the graph. So we need to fully
# construct the graph and call _sink_params before generating this
# GraphModule.
# need to set `graph_module` directly on the dict to avoid it getting
# registered as a submodule.
self.__dict__["graph_module"] = torch.fx.GraphModule(self, self.graph)
self.graph.lint()
# Cache arg names for kwarg handling (see forward())
self.arg_names = []
for node in self.graph.nodes:
if node.op == "placeholder":
self.arg_names.append(node.target)
class FlatArgsAdapter(abc.ABC):
"""
Adapts input arguments with ``input_spec`` to align ``target_spec``.
"""
@abc.abstractmethod
def adapt(
self,
target_spec: pytree.TreeSpec,
input_spec: pytree.TreeSpec,
input_args: List[Any],
) -> List[Any]:
"""NOTE: This adapter may mutate given ``input_args_with_path``."""
...
class UnflattenedModule(torch.nn.Module):
def __init__(
self,
export_module: ExportedProgram,
flat_args_adapter: Optional[FlatArgsAdapter] = None,
):
super().__init__()
if export_module.graph_signature.backward_signature is not None:
raise ValueError("Unflattening on JointExportModule NYI")
fqn_list = [entry.fqn for entry in export_module.module_call_graph]
assert fqn_list[0] == ""
export_graph = deepcopy(export_module.graph)
self.graph_signature = deepcopy(export_module.graph_signature)
self.graph = torch.fx.Graph()
self.module_call_graph = deepcopy(export_module.module_call_graph)
self.flat_args_adapter = flat_args_adapter
# Flag to indicate whether args have been adapted.
self.adapted = False
_inplace_buffer_mutations(export_graph, self.graph_signature)
_outline_submodules(export_graph, self)
self.range_constraints = export_module.range_constraints
self.equality_constraints: List = []
# aliasing/unused param or buffer issues:
# in strict-mode export, dynamo export will deduplicate aliased tensors,
# and ignore unused tensors. For aliasing, this causes issues when some aliases
# are unused, and we're unable to match the placeholder node to the correct FQN.
# This leads to the graph signature potentially having the wrong target FQN,
# and downstream issues where parameters are assigned to the wrong target attribute,
# mismatching the relevant placeholder node in the unflattened module.
# To resolve this we restore (_assign_attr) all aliased/unused tensors in
# the state_dict as module attributes, but only keep the used tensors in the
# graph's forward pass (_sink_params).
state_dict = export_module.state_dict
assigned_params: Set[str] = set() # tracking unused params
id_to_param: Dict[int, torch.nn.Parameter] = {} # handling weight-sharing
for name in self.graph_signature.parameters: # this loop adds used params
param = state_dict[name]
if id(param) not in id_to_param:
id_to_param[id(param)] = torch.nn.Parameter(param.clone())
_assign_attr(
id_to_param[id(param)],
self,
name,
attr_kind=_AttrKind.PARAMETER,
)
assigned_params.add(name)
non_persistent_buffers = set(self.graph_signature.non_persistent_buffers)
assigned_buffers: Set[str] = set() # tracking unused buffers
id_to_buffer: Dict[
int, Tuple[torch.nn.Parameter, bool]
] = {} # handle weight-sharing
for name in self.graph_signature.buffers: # this loop adds used buffers
if name in non_persistent_buffers:
persistent = False
buffer = export_module.constants[name]
else:
persistent = True
buffer = state_dict[name]
if id(buffer) not in id_to_buffer:
id_to_buffer[id(buffer)] = (buffer.clone(), persistent)
_assign_attr(
id_to_buffer[id(buffer)][0],
self,
name,
attr_kind=_AttrKind.BUFFER,
persistent=persistent,
)
assigned_buffers.add(name)
# restore aliased/unused params and buffers
# these appear in state dict but not graph signature
for name, tensor in state_dict.items():
if name in assigned_params or name in assigned_buffers: # already assigned
continue
is_buffer = False
if id(tensor) in id_to_buffer or not isinstance(
tensor, torch.nn.Parameter
): # aliased buffer
is_buffer = True
if is_buffer:
if (
id(tensor) not in id_to_buffer
): # this is completely unused (not weight-sharing)
id_to_buffer[id(tensor)] = (
tensor,
True,
) # assign to respect original model
_assign_attr(
id_to_buffer[id(tensor)][0],
self,
name,
attr_kind=_AttrKind.BUFFER,
persistent=True,
)
else:
if id(tensor) not in id_to_param: # this is unused
id_to_param[id(tensor)] = tensor
_assign_attr(
id_to_param[id(tensor)],
self,
name,
attr_kind=_AttrKind.PARAMETER,
)
# use id map so we don't double-clone aliased constants
id_to_const: Dict[int, Union[torch.Tensor, torch._C.ScriptObject]] = {}
for fqn, constant in export_module.constants.items():
if id(constant) not in id_to_const:
if isinstance(constant, torch.Tensor):
constant = constant.clone()
id_to_const[id(constant)] = constant
_constant = id_to_const[id(constant)]
_assign_attr(
_constant,
self,
fqn,
attr_kind=_AttrKind.CONSTANT,
)
# This is to handle parameters/buffers that point to the same tensor
# object id -> list of (node_name, target_name)
consts_map: Dict[int, List[Tuple[str, str]]] = defaultdict(list)
consts_targets: Set[str] = set()
def add_to_consts_map(obj_id, node_name, target_name):
name_list = consts_map[obj_id]
name_list.append((node_name, target_name))
added_params_buffers: Set[str] = set() # track aliased/unused params, buffers
for s in self.graph_signature.input_specs:
if s.kind == InputKind.PARAMETER or (
s.kind == InputKind.BUFFER and s.persistent
):
assert hasattr(s.arg, "name")
assert isinstance(s.target, str)
add_to_consts_map(
id(export_module.state_dict[s.target]), s.arg.name, s.target
)
consts_targets.add(s.target)
added_params_buffers.add(s.target)
elif (
(s.kind == InputKind.BUFFER and not s.persistent)
or s.kind == InputKind.CONSTANT_TENSOR
or s.kind == InputKind.CUSTOM_OBJ
):
assert hasattr(s.arg, "name")
assert isinstance(s.target, str)
add_to_consts_map(
id(export_module.constants[s.target]), s.arg.name, s.target
)
consts_targets.add(s.target)
# add constants that are aliased and don't appear in graph signature
for const_name, const in export_module.constants.items():
if const_name not in consts_targets:
assert (
id(const) in consts_map
), "Constants should be either aliased or appear in graph signature"
ph_name, _ = consts_map[id(const)][0]
add_to_consts_map(id(const), ph_name, const_name)
added_params_buffers.add(s.target)
# add aliased/unused params and buffers that don't appear in graph signature
for fqn, tensor in export_module.state_dict.items():
if fqn not in added_params_buffers:
if id(tensor) not in consts_map:
# completely unused (no weight-sharing), ignore.
# this weight doesn't appear in graph module,
# so won't cause FQN assignment issues
continue
ph_name, _ = consts_map[id(tensor)][0]
add_to_consts_map(id(tensor), ph_name, fqn)
# node name -> list of possible targets
inputs_to_state: Dict[str, List[str]] = {}
for node_target in consts_map.values():
targets = [t[1] for t in node_target]
for n, _ in node_target:
inputs_to_state[n] = targets
_sink_params(self, inputs_to_state, [])
# Helper function to check input nodes of `module` has been processed.
def check_module_inputs(module, scope):
if hasattr(module, "graph"):
for node in module.graph.nodes:
# sink_params() should turn placeholders into get_attr nodes
# for attributes that are within scope of the current
# module. We allow attributes to remain as placeholders if
# they are inputs in the original module signature, meaning
# they are a parent module's attribute, and therefore out of
# scope of the current module.
if (
node.op == "placeholder"
and node.name in inputs_to_state
and any(
fqn.split(".")[: len(scope)] == scope
for fqn in inputs_to_state[node.name]
) # matching scope to avoid wrong assert
):
raise AssertionError(
f"{node.name} was not sunk into the module {scope} which has the graph: {module.graph}"
)
# Recursively check the submodules.
for name, submod in module.named_children():
scope.append(name)
check_module_inputs(submod, scope)
# Recurively check all input nodes have been processed.
check_module_inputs(self, [])
# Cache so we don't have to compute this every time.
# NOTE: this needs to be kept in sync with the placeholders in
# self.graph, but currently we have no way to guarantee that.
self.input_placeholders = [
node for node in self.graph.nodes if node.op == "placeholder"
]
self.check_input_constraints = True
# TODO(zhxchen17) We can register modules ahead of time instead of reorder later.
fqn_order = {fqn: i for i, fqn in enumerate(fqn_list)}
# In the case of legacy IR, we might be missing some modules from metadata.
for name, _ in self.named_modules(remove_duplicate=False):
if name not in fqn_order:
fqn_order[name] = len(fqn_order)
_reorder_submodules(self, fqn_order)
assert [fqn for fqn, _ in self.named_modules(remove_duplicate=False)] == list(
fqn_order.keys()
)
def _print_graph(self):
for fqn, mod in self.named_modules():
print(fqn + ":")
if hasattr(mod, "graph") and isinstance(mod.graph, torch.fx.Graph):
print(mod.graph)
def forward(self, *args, **kwargs):
signature = self.module_call_graph[0].signature
reordered_kwargs = reorder_kwargs(kwargs, signature.in_spec)
flat_args_with_path, in_spec = pytree.tree_flatten_with_path(
(args, reordered_kwargs)
)
flat_args = [x[1] for x in flat_args_with_path]
if is_fx_tracing():
return_val = torch.fx.Interpreter(self, graph=self.graph).run(
*flat_args, enable_io_processing=False
)
# For scalar return value, fx.Graph wraps in a tuple
if isinstance(return_val, tuple) and len(return_val) == 1:
return return_val[0]
return return_val
if in_spec != signature.in_spec:
if not self.adapted:
print(
"Input treespec does not match with exported module's: \n"
f"Input treespec: {in_spec}. ",
f"Exported module treespec: {signature.in_spec}",
)
if self.flat_args_adapter is None:
raise TypeError(
"There is no flat args adapter sepcified. "
"Are you sure you are calling this with the right arguments? "
)
else:
if not self.adapted:
print("Adapting flat arg to match exported module's treespec")
flat_args = self.flat_args_adapter.adapt(
target_spec=signature.in_spec,
input_spec=in_spec,
input_args=flat_args,
)
self.adapted = True
if len(flat_args) != signature.in_spec.num_leaves:
raise TypeError(
f"Flat args adaption failed, number of args mismatch "
f"Adatped: {len(flat_args)} \n"
f"Exported module: {signature.in_spec.num_leaves}"
)
if self.check_input_constraints:
# Import here to avoid an unfortunate circular dependency.
# TODO(suo): untangle this.
from torch._export.utils import _check_input_constraints_for_graph
if self.adapted is True:
# TODO(suo): The FlatArgsAdapter returns a list of flat args,
# which we don't have keypaths for. For now, just create a dummy
# keypath to associate with the arg.
new_flat_args_with_path = [ # type: ignore[var-annotated]
((SequenceKey(idx=0), GetAttrKey(name="<unknown location>")), arg)
for arg in flat_args
]
else:
new_flat_args_with_path = flat_args_with_path # type: ignore[assignment]
_check_input_constraints_for_graph(
self.input_placeholders, new_flat_args_with_path, self.range_constraints
)
tree_out = torch.fx.Interpreter(self, graph=self.graph).run(
*flat_args, enable_io_processing=False
)
return pytree.tree_unflatten(tree_out, signature.out_spec)
def unflatten(
module: ExportedProgram, flat_args_adapter: Optional[FlatArgsAdapter] = None
) -> UnflattenedModule:
"""Unflatten an ExportedProgram, producing a module with the same module
hierarchy as the original eager module. This can be useful if you are trying
to use :mod:`torch.export` with another system that expects a module
hierachy instead of the flat graph that :mod:`torch.export` usually produces.
.. note:: The args/kwargs of unflattened modules will not necessarily match
the eager module, so doing a module swap (e.g. :code:`self.submod =
new_mod`) will not necessarily work. If you need to swap a module out, you
need to set the :code:`preserve_module_call_signature` parameter of
:func:`torch.export.export`.
Args:
module (ExportedProgram): The ExportedProgram to unflatten.
flat_args_adapter (Optional[FlatArgsAdapter]): Adapt flat args if input TreeSpec does not match with exported module's.
Returns:
An instance of :class:`UnflattenedModule`, which has the same module
hierarchy as the original eager module pre-export.
"""
return UnflattenedModule(module, flat_args_adapter)
def _inplace_buffer_mutations(graph: torch.fx.Graph, graph_signature) -> None:
"""Transform buffer mutations from their functionalized form into a copy_
node in the graph.
Functionalization represents buffer mutation by passing the buffer as an input and output. So for example, the eager code:
def forward(self, x):
self.buffer += x
return x * x
Will become a graph that looks like:
def forward(self, buffer, x):
mutated_buffer = aten.add(buffer, x)
mul = aten.mul(x, x)
return (mutated_buffer, mul)
We want to inplace this into something that looks like the original eager code:
def forward(self, buffer, x):
mutated_buffer = aten.add(buffer, x)
buffer.copy_(mutated_buffer)
mul = aten.mul(x, x)
return (mul,)
"""
output_node = next(iter(reversed(graph.nodes)))
assert output_node.op == "output" and len(output_node.args) == 1
return_args = output_node.args[0]
mutation_node_to_buffer = graph_signature.buffers_to_mutate
mutations = return_args[: len(mutation_node_to_buffer)]
buffers_to_inputs = {v: k for k, v in graph_signature.inputs_to_buffers.items()}
input_name_to_node = {
node.name: node for node in graph.nodes if node.op == "placeholder"
}
for mutation in mutations:
buffer_name = mutation_node_to_buffer[mutation.name]
input_name = buffers_to_inputs[buffer_name]
input_node = input_name_to_node[input_name]
with graph.inserting_after(mutation):
new_node = graph.create_node(
"call_function", torch.ops.aten.copy_, (input_node, mutation)
)
for k, v in mutation.meta.items():
new_node.meta[k] = v
# Replace all uses of the previously functional mutation with our copy_ output.
mutation.replace_all_uses_with(new_node, lambda x: x is not new_node)
# Remove the mutated buffer from the graph outputs, since we don't need to
# thread it through anymore. We don't need to handle the inputs, which will
# be handled by _sink_params.
user_outputs = tuple(
return_args[len(mutation_node_to_buffer) :],
)
output_node.args = ((user_outputs),)
def _is_prefix(candidate, target):
"""Check whether `candidate` is a prefix of `target`."""
return len(candidate) < len(target) and target[: len(candidate)] == candidate
def _compute_accessor(parent_fqn: str, child_fqn: str) -> str:
if parent_fqn == "":
# Handle the root module correctly.
return child_fqn
parent_split = parent_fqn.split(".")
child_split = child_fqn.split(".")
assert (
child_split[: len(parent_split)] == parent_split
), f"Child module '{child_fqn}' is not a descendant of parent module '{parent_fqn}'"
return ".".join(child_split[len(parent_split) :])
def _verify_graph_equivalence(x: torch.nn.Module, y: torch.nn.Module):
def graph_dump(graph: torch.fx.Graph) -> str:
ret = []
nodes_idx: Dict[int, int] = {}
def arg_dump(arg) -> str:
if isinstance(arg, torch.fx.Node):
return "%" + str(nodes_idx[id(arg)])
return str(arg)
for i, node in enumerate(graph.nodes):
args_dump = [str(arg) for arg in pytree.tree_map(arg_dump, node.args)]
args_dump += [
f"{key}={value}"
for key, value in pytree.tree_map(arg_dump, node.kwargs).items()
]
target = node.target if node.op == "call_function" else ""
ret.append(f"{i}: {node.op}[{target}]({', '.join(args_dump)})")
nodes_idx[id(node)] = i
return "\n".join(ret)
assert graph_dump(x.graph) == graph_dump(y.graph)
def _add_spec(gm: torch.nn.Module, spec) -> str:
i = 0
while hasattr(gm, f"_spec_{i}"):
i += 1
name = f"_spec_{i}"
setattr(gm, name, spec)
return name
def _generate_flatten(gm: torch.nn.Module, node, spec) -> torch.fx.Node:
name = _add_spec(gm, spec)
spec_node = gm.graph.get_attr(name)
return gm.graph.call_function(fx_pytree.tree_flatten_spec, (node, spec_node))
def _generate_unflatten(gm: torch.nn.Module, nodes, spec) -> torch.fx.Node:
name = _add_spec(gm, spec)
spec_node = gm.graph.get_attr(name)
return gm.graph.call_function(pytree.tree_unflatten, (nodes, spec_node))
def _get_submodule(mod: torch.nn.Module, target: str):
*prefix, field = target.split(".")
for item in prefix:
submod = getattr(mod, item, None)
if submod is None:
return None
if not isinstance(submod, torch.nn.Module):
return None
mod = submod
return getattr(mod, field, None)
def _add_submodule(mod: torch.nn.Module, target: str, module_to_add: torch.nn.Module):
*prefix, field = target.split(".")
for item in prefix:
submod = getattr(mod, item, None)
if submod is None:
submod = torch.nn.Module()
setattr(mod, item, submod)
if not isinstance(submod, torch.nn.Module):
return False
mod = submod
mod.add_module(field, module_to_add)
class _ModuleFrame:
def __init__(
self,
flat_graph,
nodes,
seen_nodes,
seen_modules,
parent,
module_stack,
module_id,
module_call_graph: Dict[str, ModuleCallSignature],
module: Optional[torch.nn.Module] = None,
):
self.flat_graph = flat_graph
self.nodes = nodes
self.seen_nodes = seen_nodes
self.seen_modules = seen_modules
self.parent = parent
self.module_stack = module_stack
self.module_id = module_id
self.module_call_graph = module_call_graph
self.verbose = False
self.fqn = self.module_stack[-1]
if module is not None:
self.module = module
else:
self.module = InterpreterModule(torch.fx.Graph())
if self.module_id in self.seen_modules:
self.cached_graph_module = self.seen_modules[self.module_id]
else:
self.cached_graph_module = None
self.seen_modules[self.module_id] = self.module
self.graph = self.module.graph
# Mapping of nodes in the flat graph to nodes in this graph.
self.node_map: Dict[torch.fx.Node, torch.fx.Node] = {}
self.node_to_placeholder = {}
self.parent_call_module: Optional[torch.fx.Node] = None
if parent is not None:
accessor = _compute_accessor(parent.fqn, self.fqn)
_add_submodule(
parent.module,
accessor,
(
self.module
if self.cached_graph_module is None
else self.cached_graph_module
),
)
self.parent_call_module = parent.graph.call_module(accessor)
signature = module_call_graph.get(self.fqn)
if signature is not None and self.parent is not None:
assert signature.in_spec.num_children == 2
args_spec = signature.in_spec.children_specs[0]
kwargs_spec = signature.in_spec.children_specs[1]
assert args_spec.context is None
assert kwargs_spec.context is not None
with self.graph.inserting_after(None):
arg_nodes = []
for idx in range(args_spec.num_children):
arg_nodes.append(self.graph.placeholder(f"_positional_arg_{idx}"))
kwarg_nodes = {}
for name in kwargs_spec.context:
kwarg_nodes[name] = self.graph.placeholder(name)
flat_args = _generate_flatten(
self.module,
(tuple(arg_nodes), kwarg_nodes),
signature.in_spec,
)
for idx, arg in enumerate(signature.inputs):
flat_arg_node = self.graph.create_node(
op="call_function",
target=operator.getitem,
args=(flat_args, idx),
name=(
arg.name
if not isinstance(arg, ConstantArgument)
else f"_constant_{idx}"
),
)
if isinstance(arg, ConstantArgument):
continue
flat_arg_node.meta = copy.copy(self.seen_nodes[arg.name].meta)
self.node_to_placeholder[self.seen_nodes[arg.name]] = flat_arg_node
with self.parent.graph.inserting_before(self.parent_call_module):
input_nodes: List[Optional[torch.fx.Node]] = []
for input in signature.inputs:
if isinstance(input, ConstantArgument) and input.value is None:
input_nodes.append(None)
else:
assert isinstance(input, (TensorArgument, SymIntArgument))
input_nodes.append(
self.parent.remap_input(self.seen_nodes[input.name])
)
inputs_node = _generate_unflatten(
self.parent.module,
input_nodes,
signature.in_spec,
)
args_node = self.parent.graph.call_function(
operator.getitem, (inputs_node, 0)
)
kwargs_node = self.parent.graph.call_function(
operator.getitem, (inputs_node, 1)
)
arg_nodes = [
self.parent.graph.call_function(operator.getitem, (args_node, i))
for i in range(args_spec.num_children)
]
kwarg_nodes = {
k: self.parent.graph.call_function(
operator.getitem, (kwargs_node, k)
)
for k in kwargs_spec.context
}
assert self.parent_call_module is not None
self.parent_call_module.args = tuple(arg_nodes)
self.parent_call_module.kwargs = kwarg_nodes
def add_placeholder(self, x):
assert self.fqn != "", f"Cannot add placeholder {x} to root module"
assert x.graph is self.flat_graph
# x is not in subgraph, create a new placeholder for subgraph
with self.graph.inserting_before(None):
placeholder_node = self.graph.placeholder(x.name, type_expr=x.type)
# copy all meta fields, even if some fields might be irrelvant for
# the placeholder node
placeholder_node.meta = copy.copy(x.meta)
self.node_to_placeholder[x] = placeholder_node
def remap_input(self, x):
assert x.graph is self.flat_graph
if x in self.node_map:
return self.node_map[x]
if x not in self.node_to_placeholder:
self.add_placeholder(x)
if self.parent_call_module is not None:
# Important to *prepend* the output to match how we are
# inserting placeholder nodes.
self.parent_call_module.insert_arg(0, self.parent.remap_input(x))
return self.node_to_placeholder[x]
def finalize_outputs(self):
orig_outputs = []
signature = self.module_call_graph.get(self.fqn)
if signature is not None and self.parent is not None:
for output in signature.outputs:
if isinstance(output, (TensorArgument, SymIntArgument)):
orig_outputs.append(self.seen_nodes[output.name])
else:
raise RuntimeError(
f"Unsupported data type for output node: {output}"
)
tree_out_node = _generate_unflatten(
self.module,
tuple(
self.node_map[self.seen_nodes[output.name]]
for output in orig_outputs
),
signature.out_spec,
)
parent_out: Optional[torch.fx.Node] = _generate_flatten(
self.parent.module, self.parent_call_module, signature.out_spec
)
graph_outputs: Union[torch.fx.Node, List[torch.fx.Node]] = tree_out_node
else:
graph_outputs = []
# Iterate through nodes we have copied into self.graph.
for orig_node in self.node_map.keys():
for user_node in orig_node.users:
if user_node.name not in self.seen_nodes:
# external user node, need to expose as an output
orig_outputs.append(orig_node)
graph_outputs.append(self.node_map[orig_node])
break
parent_out = self.parent_call_module
if len(graph_outputs) == 1:
graph_outputs = graph_outputs[0]
assert isinstance(graph_outputs, (list, torch.fx.Node))
self.graph.output(graph_outputs)
# Rewrite outputs in parent module
if parent_out is None:
return
parent_out.meta["val"] = (
graph_outputs.meta.get("val")
if isinstance(graph_outputs, torch.fx.Node)
else [o.meta.get("val") for o in graph_outputs]
)
if len(orig_outputs) == 1 and signature is None:
self.parent.node_map[orig_outputs[0]] = parent_out
else:
for i, orig_output in enumerate(orig_outputs):
# Use Proxy to record getitem access.
proxy_out = torch.fx.Proxy(parent_out)[i].node # type: ignore[index]
proxy_out.meta["val"] = orig_output.meta.get("val")
self.parent.node_map[orig_output] = proxy_out
if self.cached_graph_module is not None:
_verify_graph_equivalence(self.cached_graph_module, self.module)
def copy_node(self, node):
self.print("copying", node.format_node())
self.node_map[node] = self.graph.node_copy(node, self.remap_input)
self.seen_nodes[node.name] = node
def run_outer(self):
i = 0
for node in self.flat_graph.nodes:
self.print(i, node.meta.get("nn_module_stack"), node.format_node())
i += 1
# Copy all graph inputs
node_idx: int = 0
node = self.nodes[node_idx]
while node.op == "placeholder":
self.copy_node(node)
node_idx += 1
node = self.nodes[node_idx]
self.run_from(node_idx)
# Copy graph outputs
for node in self.flat_graph.nodes:
if node.op == "output":
self.copy_node(node)
def print(self, *args, **kwargs):
if self.verbose:
print(*args, **kwargs)
def run_from(self, node_idx):
module_idx = 0
# Walk through the graph, building up a new graph with the right submodules
while node_idx < len(self.nodes):
node = self.nodes[node_idx]
assert node.op != "placeholder"
self.print()
self.print("STEP", node_idx, node.format_node())
self.print(self.module_stack)
if node.op == "output":
if len(self.module_stack) == 1:
# We want the output node of the original graph to be handled
# specially by the outermost stack frame (in run_outer). So
# skip finalization here.
return node_idx
# We've reached the end of the graph. Wrap up all the existing stack frames.
self.finalize_outputs()
return node_idx
if len(node.meta.get("nn_module_stack", {})) == 0:
raise RuntimeError(f"Unable to find nn_module_stack for node {node}")
nn_module_stack = node.meta["nn_module_stack"]
from torch._export.passes._node_metadata_hook import (
_EMPTY_NN_MODULE_STACK_KEY,
)
if (
len(nn_module_stack) == 1
and _EMPTY_NN_MODULE_STACK_KEY in nn_module_stack
):
# Empty case from the node_metadata_hook
node_module_stack = self.module_stack
else:
node_module_stack = [
path for path, ty in node.meta["nn_module_stack"].values()
]
if node_module_stack[: len(self.module_stack)] != self.module_stack:
# This means that the current module is done executing and the
# current node is the beginning of a new module.
#
# In this case, we should finalize this module and return without
# incrementing the node counter.
self.finalize_outputs()
self.print("outlining", self.fqn)
self.print(self.graph)
return node_idx
assert node_module_stack is not None
if _is_prefix(self.module_stack, node_module_stack):
# This means that the current node represents the execution of a new
# module.
next_module = node_module_stack[len(self.module_stack)]
self.print("Creating new stack frame for", next_module)
# Run a nested version of module outliner from the current node
# counter. Once it is complete, continue from that point.
node_idx = _ModuleFrame(
self.flat_graph,
self.nodes,
self.seen_nodes,
self.seen_modules,
self,
self.module_stack + [next_module],
list(node.meta["nn_module_stack"].keys())[len(self.module_stack)],
self.module_call_graph,
).run_from(node_idx)
module_idx += 1
continue
# The only remaining possibility is that we are in the right stack
# frame. Copy the node into this frame's graph and increment the node counter.
assert node_module_stack == self.module_stack
self.copy_node(node)
node_idx += 1
def _outline_submodules(orig_graph: torch.fx.Graph, root_module: UnflattenedModule):
seen_nodes: Dict[str, torch.fx.Node] = {}
seen_modules: Dict[int, torch.nn.Module] = {}
_ModuleFrame(
orig_graph,
tuple(orig_graph.nodes),
seen_nodes,
seen_modules,
None,
[""],
"",
{
entry.fqn: entry.signature
for entry in root_module.module_call_graph
if entry.signature
},
module=root_module,
).run_outer()
def _reorder_submodules(
parent: torch.nn.Module, fqn_order: Dict[str, int], prefix: str = ""
):
# TODO Can be optimized by adding submodules ahead of time.
if prefix == "":
for fqn in list(fqn_order.keys())[1:]:
if _get_submodule(parent, fqn) is None:
_add_submodule(parent, fqn, torch.nn.Module())
children = []
for name, child in list(parent._modules.items()):
if child is None:
continue
fqn = prefix + name
_reorder_submodules(child, fqn_order, prefix=fqn + ".")
delattr(parent, name)
children.append((fqn_order[fqn], name, child))
children.sort(key=operator.itemgetter(0))
for _, name, child in children:
parent.register_module(name, child)
def _sink_params(
module: torch.nn.Module,
inputs_to_state: Dict[str, List[str]],
scope: List[str],
):
"""Sink params, buffers, and constants from graph inputs into get_attr nodes.
Exported modules are purely functional, so they pass their parameters and
buffers in as inputs to the graph.
To replicate eager's semantics, we need to get them from the module state
via get_attr instead.
module: GraphModule, potentially containining nested submodules.
inputs_to_state: mapping graph input names to the corresponding key in the state_dict.
scope: tracks where we are in the module hierarchy, so that we can emit the
right `getattr(self, "foo.bar")` calls, etc.
"""
# This dict records inputs removed by child modules.
# Maps the module object id to the list of placeholder node names
# in the child module that were removed.
module_id_to_inputs_removed: Dict[int, List[str]] = defaultdict(list)
# We need to use _modules here instead of named_children(), because we
# explicitly want duplicate modules to show up in the traversal.
for name, submodule in module._modules.items():
submod_id_to_inputs_removed = _sink_params(
cast(torch.nn.Module, submodule), inputs_to_state, scope + [name]
)
for k, v in submod_id_to_inputs_removed.items():
module_id_to_inputs_removed[k].extend(v)
if not hasattr(module, "graph"):
# Not all modules have graphs defined, if they are empty modules with no operations (like ParameterList)
return module_id_to_inputs_removed
graph = module.graph
inputs = list(filter(lambda n: n.op == "placeholder", graph.nodes))
the_last_input = inputs[-1]
# Also remove from call_module nodes
call_module_nodes = filter(lambda n: n.op == "call_module", graph.nodes)
for node in call_module_nodes:
submodule = _recursive_getattr(module, node.target.split("."))
# remove placeholder from call_module node arguments, only if we've
# erased the placeholder node in the corresponding _sink_params() call
if submodule is not None and id(submodule) in module_id_to_inputs_removed:
node.args = tuple(
filter(
lambda n: n.name not in module_id_to_inputs_removed[id(submodule)],
node.args,
)
)
# Filter out inputs_to_state corresponding to current scope.
inputs_to_state_of_scope: Dict[torch.fx.Node, list[str]] = {}
for node in inputs:
if node.name not in inputs_to_state:
continue
state_name = None
for sn in inputs_to_state[node.name]:
sn_split = sn.split(".")
if sn_split[: len(scope)] == scope:
state_name = sn_split
break
# If there's a mismatch beteewn scope name and state name, then
# there must be multuple scopes pointing to the same state name,
# meaning some modules are shared. In such case, we can simply skip
# updating the current node because another later iteration will
# take care of this input node when the unique match between scope
# and state name occurs. To make sure this always happen, we should
# enforce the invariant that no placeholder node in the unflattened
# graph appears in inputs_to_state dict, which means all the extra
# input nodes have been handled.
if state_name is None:
continue
inputs_to_state_of_scope[node] = state_name
# Record name of remove inputs for return purpose.
inputs_removed: List[str] = []
for node, state_name in inputs_to_state_of_scope.items():
if len(node.users) > 0:
attr_path = state_name[len(scope) :]
state_attr = _recursive_getattr(module, attr_path)
assert isinstance(state_attr, (torch.Tensor, torch.ScriptObject))
# Make sure the newly created get_attr node is placed after the last placeholder node
with graph.inserting_after(the_last_input):
new_node = graph.create_node("get_attr", ".".join(attr_path))
node.replace_all_uses_with(new_node, propagate_meta=True)
graph.erase_node(node)
inputs_removed.append(node.name)
if isinstance(module, InterpreterModule):
module.finalize()
return {id(module): inputs_removed}
def _recursive_getattr(obj, attr_path):
for attr in attr_path:
if not hasattr(obj, attr):
return None
obj = getattr(obj, attr)
return obj
|