File size: 20,446 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
#pragma once

#include <ATen/cuda/ApplyGridUtils.cuh>
#include <ATen/cuda/detail/IndexUtils.cuh>
#include <ATen/core/TensorBase.h>
#include <ATen/ceil_div.h>
#include <ATen/cuda/Atomic.cuh>
#include <ATen/cuda/CUDAContext.h>
#include <c10/macros/Macros.h>
#include <ATen/native/Copy.h>

#include <math.h>

//
// This file contains pointwise operation functions and kernels that
// work on both contiguous and non-contiguous tensor arguments of
// arbitrary (up to MAX_CUTORCH_DIMS) dimensioned arguments without
// copying or temporary storage.
//

/*
  NOTE [ CUDA_tensor_applyN helpers ]

  The following CUDA_tensor_applyN (where N currently can be 1, 2, 3, or 4)
  functions apply a pointwise operator to N tensor(s).

  The calling convention is

  1. The template arguments should be, sequentially,
    - First N typename args specify the scalar types of each of the N tensors.
    - (Optional) `int step` arg specifies the number of elements processed
      together at the same time.
      Default is 1.
    - A usually omitted (i.e., inferred) typename arg specifies the type of the
      function/functor applied on `N * step` values  in each iteration of each
      CUDA thread.
  2. The arguments should be, sequentially,
    - N tensors
    - op: a function/functor that processes `N * step` values at the same time.
      - If `step == 1`, it must have signature
        `void(*)(scalar1_t&, scalar2_t&, ..., scalarN_t&)`, where
        `scalar*_t`s are the first N typename template args, and the inputs
        are the `N` values from the `N` tensors retrieved at a common index.
      - Otherwise, it must must have signature
          void(*)(int n, scalar1_t&, scalar1_t&, ..., scalar1_t&,  // repeat `step` times
                         scalar2_t&, scalar2_t&, ..., scalar2_t&,  // repeat `step` times
                         ...,
                         scalarN_t&, scalarN_t&, ..., scalarN_t&)  // repeat `step` times
        Different from `step == 1` case, it processes `N * step` values taken
        from `step` common indices. Moreover, the first input `n` represents the
        number of valid indices (it will always have `0 < n <= step`). It will
        almost always be `step`, but at the boundary we may not have full `step`
        elements and `n` can be a lesser value.

        E.g., if `step == 4` and `N == 2`, `op` could be

          [](int n, scalar1_t &u1, scalar1_t &u2, scalar1_t &u3, scalar1_t &u4,
                    scalar2_t &v1, scalar2_t &v2, scalar2_t &v3, scalar2_t &v4) {
            // Only process u1, ..., un and v1, ..., vn.
            // So if `n == 3`, `u4` and `v4` need not to be considered.
          }

      In both cases, the references can actually be const, but at least one of
      them should be non-const in order to write the output.
    - (Optional, but recommended) N TensorArgType args that specify for each
      tensor whether `op` reads AND writes ] (i.e., TensorArgType::ReadWrite),
      or only reads (i.e., TensorArgType::ReadOnly).
      Default is TensorArgType::ReadWrite for first Tensor, and
                 TensorArgType::ReadOnly  for the rest.

  E.g.,

  to compute a = b^2 for a and b of same dtype, we can call

  CUDA_tensor_apply2<scalar, scalar>(
    a, b,
    [] __device__ (scalar &a_val, const scalar &b_val) { a_val = b_val * b_val; }
  );

  to work on 2 values at the same time, we can call

  CUDA_tensor_apply2<scalar1, scalar2, 2>(
    a, b,
    [] __device__ (int n, scalar1 &a_val1, scalar1 &a_val2,
                          const scalar2 &b_val1, const scalar2 &b_val2) {
      // call special vectorized op here, or just do elementwise and enjoy unrolling...
      // if n == 1, only process a_val1 and b_val1
    }
  );
*/

namespace at::cuda {

// TODO: combine with TensorArg?  So far that's been for debugging, and this is functional...
enum class TensorArgType { ReadWrite, ReadOnly };

namespace {

// Rearrange dimensions for pointwise operations so that strides are in
// decreasing order as much as possible, so that kernels have better memory
// access patterns.
//
// For example, consider a binary operation on two "transposed" 2-dim tensors:
//    sizes:          256 512
//    aInfo->strides:   1 256
//    bInfo->strides:   1 256
//
// Given this, each concurrent memory access inside kernelPointwiseApply2() is
// exactly 256 elements apart, resulting in poor performance.
//
// This function exchanges dimensions so that memory access is contiguous:
//    sizes:          512 256
//    aInfo->strides: 256   1
//    bInfo->strides: 256   1
//
// (Actually, it becomes even better because now collapseDims() can turn each
// input into one contiguous array.)
//
// In general, given M (<=4) TensorInfo's with N dimensions, we can view each
// strides[i] (0 <= i < N) as an M-tuple.  Given each pair i < j, we exchange
// strides[i] and [j] if
//    (1) strides[i][k] < strides[j][k] for some k (0 <= k < M)
//        (exchanging them will benefit input #k), and
//    (2) strides[i][k] <= strieds[j][k] for all k
//        (exchanging them will not make any input worse).
template <typename T1, typename IndexType,
          typename T2 = void, typename T3 = void, typename T4 = void>
inline void rearrangeDims(detail::TensorInfo<T1, IndexType>* aInfo,
                          detail::TensorInfo<T2, IndexType>* bInfo = nullptr,
                          detail::TensorInfo<T3, IndexType>* cInfo = nullptr,
                          detail::TensorInfo<T4, IndexType>* dInfo = nullptr) {
  int numInfos = 1;
  int dims = aInfo->dims;
  IndexType *sizes[4] = { aInfo->sizes, };
  IndexType *strides[4] = { aInfo->strides, };

  if (bInfo != nullptr) {
    ++numInfos;
    if (bInfo->dims != dims) return;
    sizes[1] = bInfo->sizes;
    strides[1] = bInfo->strides;
  }

  if (cInfo != nullptr) {
    ++numInfos;
    if (cInfo->dims != dims) return;
    sizes[2] = cInfo->sizes;
    strides[2] = cInfo->strides;
  }

  if (dInfo != nullptr) {
    ++numInfos;
    if (dInfo->dims != dims) return;
    sizes[3] = dInfo->sizes;
    strides[3] = dInfo->strides;
  }

  // Bail out if sizes do not match: we are using "deprecated pointwise
  // behavior" among tensors of different shapes but same number of elements.
  for (int i = 1; i < numInfos; ++i) {
    for (int j = 0; j < dims; ++j) {
      if (sizes[i][j] != sizes[0][j]) return;
    }
  }

  for (int i = 0; i < dims - 1; ++i) {
    // No need to consider dimensions of size 1.
    if (sizes[0][i] == 1) continue;

    for (int j = i + 1; j < dims; ++j) {
      if (sizes[0][j] == 1) continue;

      // Compare the relative sizes of strides between dim #i and dim #j.
      bool hasIncreasingStrides = false;
      bool hasDecreasingStrides = false;

      for (int k = 0; k < numInfos; k++) {
        IndexType stride_i = strides[k][i];
        IndexType stride_j = strides[k][j];
        if (stride_i < stride_j) {
          hasIncreasingStrides = true;
        } else if (stride_i > stride_j) {
          hasDecreasingStrides = true;
        }
      }

      if (hasIncreasingStrides && !hasDecreasingStrides) {
        for (int k = 0; k < numInfos; k++) {
          IndexType size = sizes[k][i];
          sizes[k][i] = sizes[k][j];
          sizes[k][j] = size;

          IndexType stride = strides[k][i];
          strides[k][i] = strides[k][j];
          strides[k][j] = stride;
        }
      }
    }
  }
}

// The `remaining_steps` argument is used to support Op that operates on
// multiple elements at the same time. Generally, the strategy of ApplyOpN is to
//  1. Initialize `remaining_steps = step`, where `step` is the template arg of
//     CUDA_tensor_applyN helpers. The input arg `n` to `apply()` represents the
//     number of elements in bound for this call. It will almost always equal to
//     `step` except at boundaries.
//  2. If `remaining_steps > 0` convert the current linearIndex to offset (if in
//     bound), and recursively call `ApplyOpN` with `remaining_steps - 1`.
//  3. At `remaining_steps = 0`,
//       if `step = 1`, call `op(tensor1_val, tensor2_val, ...)`;
//       if `step > 1`, call `op(n, tensor1_val1, tensor1_val2, ..., tesor1_valstep,
//                                  tensor2_val1, tensor2_val2, ..., tesor2_valstep,
//                                       ...
//                                  tensorN_val1, tensorN_val2, ..., tesorN_valstep);`
//
// See NOTE [ CUDA_tensor_applyN helpers ] above for how Op may look like.

template <typename Op,
          typename scalar,
          typename IndexType,
          int ADims,
          int remaining_steps,
          typename... Offsets>
struct ApplyOp1 {
__device__ __forceinline__
static void apply(detail::TensorInfo<scalar, IndexType> &a, const Op &op, int n,
                  IndexType linearIndex, Offsets... aOffsets) {
  // Convert `linearIndex` into an offset of `a`
  const IndexType aOffset = sizeof...(Offsets) < n ?
    detail::IndexToOffset<scalar, IndexType, ADims>::get(linearIndex, a) : 0;

  ApplyOp1<Op, scalar, IndexType, ADims, remaining_steps - 1, const IndexType, Offsets...>::apply(
    a, op, n, linearIndex + 1, aOffsets..., aOffset
  );
}
};

// Specialize `step=1` case (i.e., `remaining_steps=0` and `len(Offsets)=1`).
// We don't need to pass in how many elements need to processed in this case.
template <typename Op,
          typename scalar,
          typename IndexType,
          int ADims,
          typename Offset>
struct ApplyOp1<Op, scalar, IndexType, ADims, 0, Offset> {
__device__ __forceinline__
static void apply(detail::TensorInfo<scalar, IndexType> &a, const Op &op,
                  int n, IndexType linearIndex, Offset offset) {
  op(a.data[offset]);
}
};

template <typename Op,
          typename scalar,
          typename IndexType,
          int ADims,
          typename... Offsets>
struct ApplyOp1<Op, scalar, IndexType, ADims, 0, Offsets...> {
__device__ __forceinline__
static void apply(detail::TensorInfo<scalar, IndexType> &a, const Op &op, int n,
                 IndexType linearIndex, Offsets... offsets) {
  op(n, a.data[offsets]...);
}
};

template <typename Op,
          typename scalar,
          typename IndexType,
          int ADims,
          int step>
#if __CUDA_ARCH__ >= 350 || defined(USE_ROCM)
C10_LAUNCH_BOUNDS_2(AT_APPLY_THREADS_PER_BLOCK, AT_APPLY_BLOCKS_PER_SM)
#endif
__global__ void kernelPointwiseApply1(detail::TensorInfo<scalar, IndexType> a,
                                      IndexType totalElements, const Op op) {
  for (IndexType linearIndex = (blockIdx.x * blockDim.x + threadIdx.x) * step;
       linearIndex < totalElements;
       linearIndex += gridDim.x * blockDim.x * step) {
    ApplyOp1<Op, scalar, IndexType, ADims, step>::apply(
      a, op, ::min(step, static_cast<int>(totalElements - linearIndex)), linearIndex);
  }
}


template <typename Op,
          typename scalar1,
          typename scalar2,
          typename IndexType,
          int ADims,
          int BDims,
          int remaining_steps,
          typename... Offsets>
struct ApplyOp2 {
__device__ __forceinline__
static void apply(detail::TensorInfo<scalar1, IndexType> &a,
                  detail::TensorInfo<scalar2, IndexType> &b,
                  const Op &op, int64_t n, IndexType linearIndex,
                  Offsets... aOffsets, Offsets... bOffsets) {
  // Convert `linearIndex` into an offset of `a`
  const IndexType aOffset = static_cast<int64_t>(sizeof...(Offsets)) < n ?
    detail::IndexToOffset<scalar1, IndexType, ADims>::get(linearIndex, a) : 0;

  // Convert `linearIndex` into an offset of `b`
  const IndexType bOffset = static_cast<int64_t>(sizeof...(Offsets)) < n ?
    detail::IndexToOffset<scalar2, IndexType, BDims>::get(linearIndex, b) : 0;

  ApplyOp2<Op, scalar1, scalar2, IndexType, ADims, BDims, remaining_steps - 1, const IndexType, Offsets...>::apply(
    a, b, op, n, linearIndex + 1, aOffsets..., aOffset, bOffsets..., bOffset
  );
}
};

// Specialize `step=1` case (i.e., `remaining_steps=0` and `len(Offsets)=1`).
// We don't need to pass in how many elements need to processed in this case.
template <typename Op,
          typename scalar1,
          typename scalar2,
          typename IndexType,
          int ADims,
          int BDims,
          typename Offset>
struct ApplyOp2<Op, scalar1, scalar2, IndexType, ADims, BDims, 0, Offset> {
__device__ __forceinline__
static void apply(detail::TensorInfo<scalar1, IndexType> &a,
                  detail::TensorInfo<scalar2, IndexType> &b,
                  const Op &op, int /*n*/, IndexType /*linearIndex*/,
                  Offset aOffset, Offset bOffset) {
  op(a.data[aOffset], b.data[bOffset]);
}
};

template <typename Op,
          typename scalar1,
          typename scalar2,
          typename IndexType,
          int ADims,
          int BDims,
          typename... Offsets>
struct ApplyOp2<Op, scalar1, scalar2, IndexType, ADims, BDims, 0, Offsets...> {
__device__ __forceinline__
static void apply(detail::TensorInfo<scalar1, IndexType> &a,
                  detail::TensorInfo<scalar2, IndexType> &b,
                  const Op &op, int n, IndexType linearIndex,
                  Offsets... aOffsets, Offsets... bOffsets) {
  op(n, a.data[aOffsets]..., b.data[bOffsets]...);
}
};

template <typename Op,
          typename scalar1,
          typename scalar2,
          typename IndexType,
          int ADims, int BDims,
          int step,
          int max_threads_per_block=AT_APPLY_THREADS_PER_BLOCK,
          int min_blocks_per_sm=AT_APPLY_BLOCKS_PER_SM>
#if __CUDA_ARCH__ >= 350 || defined(USE_ROCM)
C10_LAUNCH_BOUNDS_2(max_threads_per_block, min_blocks_per_sm)
#endif
__global__ void
kernelPointwiseApply2(detail::TensorInfo<scalar1, IndexType> a,
                      detail::TensorInfo<scalar2, IndexType> b,
                      IndexType totalElements,
                      const Op op) {
  for (IndexType linearIndex = (blockIdx.x * blockDim.x + threadIdx.x) * step;
       linearIndex < totalElements;
       linearIndex += gridDim.x * blockDim.x * step) {
    ApplyOp2<Op, scalar1, scalar2, IndexType, ADims, BDims, step>::apply(
      a, b, op, ::min(step, static_cast<int>(totalElements - linearIndex)),
      linearIndex);
  }
}

} // anonymous namespace

template <typename scalar1, typename scalar2, int step, typename Op,
          int max_threads_per_block=AT_APPLY_THREADS_PER_BLOCK,
          int min_blocks_per_sm=AT_APPLY_BLOCKS_PER_SM>
inline bool CUDA_tensor_apply2(at::TensorBase a,
                               at::TensorBase b,
                               const Op op,
                               TensorArgType aType = TensorArgType::ReadWrite,
                               TensorArgType bType = TensorArgType::ReadOnly) {
  TORCH_CHECK(a.device().is_cuda() && b.device().is_cuda(),
              "CUDA_tensor_apply2: Expected tensors to have CUDA DeviceType, but got "
              "tensors with type ", a.device().type(), " and ", b.device().type());
  int64_t totalElements = a.numel();

  if (totalElements != b.numel()) {
    return false;
  }

  if (a.dim() > MAX_TENSORINFO_DIMS ||
      b.dim() > MAX_TENSORINFO_DIMS) {
    return false;
  }

  if (a.numel() == 0) {
    // Empty tensor; do nothing
    return true;
  }
  const dim3 block = getApplyBlock(max_threads_per_block);

  dim3 grid;
  auto curDevice = current_device();
  if (curDevice == -1) return false;
  if (!getApplyGrid<step>(totalElements, grid, curDevice, max_threads_per_block)) {
    return false;
  }

  /*
  Expands readable/writable tensors whose indices may be "overlapped."
  This ensures that each element of the tensor is operated on once and only
  once.
  */
  TensorBase oldA;
  TensorBase oldB;

  if (aType == TensorArgType::ReadWrite && detail::maybeOverlappingIndices(a)) {
    // Must perform in contiguous space
    oldA = std::exchange(a, a.contiguous());
  }
  if (bType == TensorArgType::ReadWrite && detail::maybeOverlappingIndices(b)) {
    // Must perform in contiguous space
    oldB = std::exchange(b, b.contiguous());
  }

  // It is possible that the tensor dimensions are able to be collapsed,
  // and thus we can reduce the actual code complexity of the copy by
  // exploiting this knowledge statically, since the div/mod is the
  // most expensive part of the operation, more so than memory accesses.
  // For instance, when copying a non-contiguous to a contiguous tensor
  // (or vice versa), the contiguous tensor can be collapsed to one
  // dimension, and the loop to translate the linear index to the array
  // index can be similarly collapsed. That is what this unrolling is for.

#define HANDLE_CASE(TYPE, A, B)                                        \
  kernelPointwiseApply2<Op,                                            \
                        scalar1,                                       \
                        scalar2,                                       \
                        TYPE, A, B, step,                              \
                        max_threads_per_block,                         \
                        min_blocks_per_sm>                             \
   <<<grid, block, 0, at::cuda::getCurrentCUDAStream(curDevice)>>>(    \
       aInfo, bInfo, static_cast<TYPE>(totalElements), op);            \
  C10_CUDA_KERNEL_LAUNCH_CHECK();

#define HANDLE_B_CASE(TYPE, A, B) {         \
  switch (B) {                              \
    case 1:                                 \
      HANDLE_CASE(TYPE, A, 1);              \
      break;                                \
    case 2:                                 \
      HANDLE_CASE(TYPE, A, 2);              \
      break;                                \
    default:                                \
      HANDLE_CASE(TYPE, A, -1);             \
      break;                                \
  }                                         \
}

#define HANDLE_A_CASE(TYPE, A, B) {         \
  switch (A) {                              \
    case 1:                                 \
      HANDLE_B_CASE(TYPE, 1, B);            \
      break;                                \
    case 2:                                 \
      HANDLE_B_CASE(TYPE, 2, B);            \
      break;                                \
    default:                                \
      HANDLE_B_CASE(TYPE, -1, B);           \
      break;                                \
  }                                         \
}

  if (detail::canUse32BitIndexMath(a) &&
      detail::canUse32BitIndexMath(b)) {
    detail::TensorInfo<scalar1, unsigned int> aInfo =
      detail::getTensorInfo<scalar1, unsigned int>(a);

    detail::TensorInfo<scalar2, unsigned int> bInfo =
      detail::getTensorInfo<scalar2, unsigned int>(b);
    rearrangeDims(&aInfo, &bInfo);
    aInfo.collapseDims();
    bInfo.collapseDims();

    HANDLE_A_CASE(unsigned int, aInfo.dims, bInfo.dims);
  } else {
    detail::TensorInfo<scalar1, uint64_t> aInfo =
      detail::getTensorInfo<scalar1, uint64_t>(a);

    detail::TensorInfo<scalar2, uint64_t> bInfo =
      detail::getTensorInfo<scalar2, uint64_t>(b);
    rearrangeDims(&aInfo, &bInfo);
    aInfo.collapseDims();
    bInfo.collapseDims();

    /*
    Only instantiates the all 1D special case and the fallback all nD case for
    large (64-bit indexed) tensors to reduce compilation time.
    */
    if (aInfo.dims == 1 && bInfo.dims == 1) {
      HANDLE_CASE(uint64_t, 1, 1);
    } else {
      HANDLE_CASE(uint64_t, -1, -1);
    }
  }
#undef HANDLE_CASE
#undef HANDLE_B_CASE
#undef HANDLE_A_CASE

  if (oldA.defined()) {
    at::native::copy_ignoring_overlaps(oldA, a);
  }

  if (oldB.defined()) {
    at::native::copy_ignoring_overlaps(oldB, b);
  }

  return true;
}

/* Provides default step = 1 to CUDA_tensor_apply2. */
template <typename scalar1, typename scalar2, typename Op,
          int max_threads_per_block=AT_APPLY_THREADS_PER_BLOCK,
          int min_blocks_per_sm=AT_APPLY_BLOCKS_PER_SM>
inline bool CUDA_tensor_apply2(const at::TensorBase &a,
                               const at::TensorBase &b,
                               const Op op,
                               TensorArgType aType = TensorArgType::ReadWrite,
                               TensorArgType bType = TensorArgType::ReadOnly) {
  return CUDA_tensor_apply2<scalar1, scalar2, 1, Op,
                            max_threads_per_block, min_blocks_per_sm>(a, b, op, aType, bType);
}

} // namespace at::cuda