File size: 39,761 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 |
# mypy: allow-untyped-defs
from ._ops import OpOverload
from typing import Any, Optional, Set, List, Union, Callable, Tuple, Dict, Sequence
from typing_extensions import deprecated
import traceback
import torch
import weakref
import functools
import inspect
import re
import contextlib
import sys
from torch._library.custom_ops import custom_op, _maybe_get_opdef, device_types_t, CustomOpDef
import torch._library as _library
__all__ = [
'Library',
'impl',
'define',
'fallthrough_kernel',
'impl_abstract',
'register_fake',
'get_ctx',
'custom_op',
]
# Set containing the combination of (namespace, operator, DispatchKey) for which a new kernel has been registered
# The keys in the set are of the form `namespace + "/" + op_name + "/" + dispatch_key`.
# This set is maintained to ensure that two libraries don't try to override the exact same functionality to avoid
# libraries calling into kernels not intended to be called.
_impls: Set[str] = set()
_defs: Set[str] = set()
# prim is reserved by TorchScript interpreter
_reserved_namespaces = ['prim']
def fallthrough_kernel():
"""
A dummy function to pass to ``Library.impl`` in order to register a fallthrough.
"""
raise NotImplementedError("fallthrough_kernel() should never be called.")
class Library:
"""
A class to create libraries that can be used to register new operators or
override operators in existing libraries from Python.
A user can optionally pass in a dispatch keyname if they only want to register
kernels corresponding to only one specific dispatch key.
To create a library to override operators in an existing library (with name ns), set the kind to "IMPL".
To create a new library (with name ns) to register new operators, set the kind to "DEF".
To create a fragment of a possibly existing library to register operators (and bypass
the limitation that there is only one library for a given namespace), set the kind to
"FRAGMENT".
Args:
ns: library name
kind: "DEF", "IMPL" (default: "IMPL"), "FRAGMENT"
dispatch_key: PyTorch dispatch key (default: "")
"""
def __init__(self, ns, kind, dispatch_key=""):
if kind not in ('IMPL', 'DEF', 'FRAGMENT'):
raise ValueError("Unsupported kind: ", kind)
if ns in _reserved_namespaces and (kind == "DEF" or kind == 'FRAGMENT'):
raise ValueError(ns, " is a reserved namespace. Please try creating a library with another name.")
frame = traceback.extract_stack(limit=3)[0]
filename, lineno = frame.filename, frame.lineno
self.m: Optional[Any] = torch._C._dispatch_library(kind, ns, dispatch_key, filename, lineno)
self.ns = ns
self._op_defs: Set[str] = set()
self._op_impls: Set[str] = set()
self._registration_handles: List[torch._library.utils.RegistrationHandle] = []
self.kind = kind
self.dispatch_key = dispatch_key
# Use a finalizer to setup the "destructor" instead of __del__.
# Python __del__ can lead to weird things (globals and locals may already
# be gone when __del__ actually gets called!). finalizers help the
# situation because it lets us capture references and keeps them alive
weakref.finalize(self, _del_library, _impls, self._op_impls, _defs, self._op_defs, self._registration_handles)
def __repr__(self):
return f"Library(kind={self.kind}, ns={self.ns}, dispatch_key={self.dispatch_key})>"
def define(self, schema, alias_analysis="", *, tags=()):
r'''Defines a new operator and its semantics in the ns namespace.
Args:
schema: function schema to define a new operator.
alias_analysis (optional): Indicates if the aliasing properties of the operator arguments can be
inferred from the schema (default behavior) or not ("CONSERVATIVE").
tags (Tag | Sequence[Tag]): one or more torch.Tag to apply to this
operator. Tagging an operator changes the operator's behavior
under various PyTorch subsystems; please read the docs for the
torch.Tag carefully before applying it.
Returns:
name of the operator as inferred from the schema.
Example::
>>> my_lib = Library("mylib", "DEF")
>>> my_lib.define("sum(Tensor self) -> Tensor")
'''
# This is added because we also want to disallow PURE_FUNCTION alias analysis which is a valid
# AliasAnalysis type in C++
if alias_analysis not in ["", "FROM_SCHEMA", "CONSERVATIVE"]:
raise RuntimeError(f"Invalid alias_analysis type {alias_analysis}")
assert self.m is not None
if isinstance(tags, torch.Tag):
tags = (tags,)
name = schema.split("(")[0]
packet_name = name.split(".")[0] if "." in name else name
has_preexisting_packet = hasattr(torch.ops, self.ns) and hasattr(getattr(torch.ops, self.ns), packet_name)
result = self.m.define(schema, alias_analysis, tuple(tags))
name = schema.split("(")[0]
qualname = self.ns + "::" + name
# If the OpOverloadPacket exists already, then this means we're adding a
# new OpOverload for it. Refresh the packet to include the new OpOverload.
if has_preexisting_packet:
ns = getattr(torch.ops, self.ns)
packet = getattr(ns, packet_name)
torch._ops._refresh_packet(packet)
self._op_defs.add(qualname)
_defs.add(qualname)
return result
def _register_fake(self, op_name, fn, _stacklevel=1):
r'''Registers the fake impl for an operator defined in the library.'''
source = torch._library.utils.get_source(_stacklevel + 1)
frame = sys._getframe(_stacklevel)
caller_module = inspect.getmodule(frame)
# Can be none if you call register_fake from somewhere there isn't a module
# (e.g. __main__)
caller_module_name = None if caller_module is None else caller_module.__name__
# TODO(rzou): We're gonna need to stage this change with torchvision,
# since torchvision is github first.
if caller_module_name is not None and caller_module_name.startswith("torchvision."):
caller_module_name = None
qualname = f"{self.ns}::{op_name}"
entry = torch._library.simple_registry.singleton.find(qualname)
if caller_module_name is not None:
func_to_register = _check_pystubs_once(fn, qualname, caller_module_name)
else:
func_to_register = fn
handle = entry.abstract_impl.register(func_to_register, source)
self._registration_handles.append(handle)
def _impl_with_aoti_compile(self, op_name, dispatch_key=''):
r'''Register the operator to use the AOTI-compiled implementation.
Args:
op_name: operator name (along with the overload) or OpOverload object.
dispatch_key: dispatch key that the input function should be registered for. By default, it uses
the dispatch key that the library was created with.
Example::
>>> my_lib = Library("aten", "IMPL")
>>> my_lib._impl_with_aoti_compile("div.Tensor", "CPU")
'''
if dispatch_key == '':
dispatch_key = self.dispatch_key
assert torch.DispatchKeySet(dispatch_key).has(torch._C.DispatchKey.Dense)
if isinstance(op_name, str):
name = op_name
elif isinstance(op_name, OpOverload):
name = op_name._schema.name
overload_name = op_name._schema.overload_name
if overload_name != '':
name = name + '.' + overload_name
else:
raise RuntimeError("_impl_with_aoti_compile should be passed either a name or an OpOverload object "
"as the first argument")
key = self.ns + "/" + name.split("::")[-1] + "/" + dispatch_key
if key in _impls:
# TODO: in future, add more info about where the existing function is registered (this info is
# today already returned by the C++ warning when _impl_with_aoti_compile is called but we error out before that)
raise RuntimeError("This is not allowed since there's already a kernel registered from python overriding {}"
"'s behavior for {} dispatch key and {} namespace.".
format(name.split("::")[-1], dispatch_key, self.ns))
assert self.m is not None
impl_fn: Callable = self.m.impl_with_aoti_compile
impl_fn(self.ns, name.split("::")[-1], dispatch_key)
_impls.add(key)
self._op_impls.add(key)
def impl(self, op_name, fn, dispatch_key='', *, with_keyset=False):
r'''Registers the function implementation for an operator defined in the library.
Args:
op_name: operator name (along with the overload) or OpOverload object.
fn: function that's the operator implementation for the input dispatch key or :func:`~fallthrough_kernel`
to register a fallthrough.
dispatch_key: dispatch key that the input function should be registered for. By default, it uses
the dispatch key that the library was created with.
Example::
>>> my_lib = Library("aten", "IMPL")
>>> def div_cpu(self, other):
>>> return self * (1 / other)
>>> my_lib.impl("div.Tensor", div_cpu, "CPU")
'''
if not callable(fn):
raise TypeError(f"Input function is required to be a callable but found type {type(fn)}")
if dispatch_key == '':
dispatch_key = self.dispatch_key
if isinstance(op_name, str):
name = op_name
elif isinstance(op_name, OpOverload):
name = op_name._schema.name
overload_name = op_name._schema.overload_name
if overload_name != '':
name = name + '.' + overload_name
else:
raise RuntimeError("impl should be passed either a name or an OpOverload object as the first argument")
key = self.ns + "/" + name.split("::")[-1] + "/" + dispatch_key
if key in _impls:
# TODO: in future, add more info about where the existing function is registered (this info is
# today already returned by the C++ warning when impl is called but we error out before that)
raise RuntimeError("This is not allowed since there's already a kernel registered from python overriding {}"
"'s behavior for {} dispatch key and {} namespace.".
format(name.split("::")[-1], dispatch_key, self.ns))
if dispatch_key == "Meta":
dispatcher_op_name = name
if '::' not in dispatcher_op_name:
dispatcher_op_name = f'{self.ns}::{dispatcher_op_name}'
# Internally, we shouldn't be registering meta kernels for any operators that
# have CompositeImplicitAutograd kernels.
# Instead, we should be letting those decompositions run, and writing meta kernels
# only for the base operators.
if torch._C._dispatch_has_kernel_for_dispatch_key(dispatcher_op_name, "CompositeImplicitAutograd"):
raise RuntimeError(
f"We should not register a meta kernel directly to the operator '{name}',"
" because it has a CompositeImplicitAutograd kernel in core."
" Instead we should let the operator decompose, and ensure that we have meta kernels"
" for the base ops that it decomposes into.")
assert self.m is not None
self.m.impl(name, dispatch_key if dispatch_key != "" else "CompositeImplicitAutograd", fn, with_keyset)
_impls.add(key)
self._op_impls.add(key)
def _destroy(self):
if self.m is not None:
self.m.reset()
self.m = None
for handle in self._registration_handles:
handle.destroy()
self._registration_handles.clear()
global _impls
_impls -= self._op_impls
for name in self._op_defs:
# Delete the cached torch.ops.ns.foo if it was registered.
# Otherwise, accessing it leads to a segfault.
# It's possible that we only registered an overload in this Library
# and another library owns an alive overload.
# That's OK - the next time torch.ops.ns.foo gets called, it'll be
# recomputed to point at the right collection of overloads.
ns, name_with_overload = name.split("::")
name = name_with_overload.split(".")[0]
if not hasattr(torch.ops, ns):
continue
namespace = getattr(torch.ops, ns)
if not hasattr(namespace, name):
continue
delattr(namespace, name)
def _del_library(captured_impls, op_impls, captured_defs, op_defs, registration_handles):
captured_impls -= op_impls
captured_defs -= op_defs
for handle in registration_handles:
handle.destroy()
@contextlib.contextmanager
def _scoped_library(*args, **kwargs):
try:
lib = Library(*args, **kwargs)
yield lib
finally:
lib._destroy()
_keep_alive: List[Library] = []
NAMELESS_SCHEMA = re.compile(r"\(.*\) -> .*")
@functools.singledispatch
def define(qualname, schema, *, lib=None, tags=()):
r"""Defines a new operator.
In PyTorch, defining an op (short for "operator") is a two step-process:
- we need to define the op (by providing an operator name and schema)
- we need to implement behavior for how the operator interacts with
various PyTorch subsystems, like CPU/CUDA Tensors, Autograd, etc.
This entrypoint defines the custom operator (the first step)
you must then perform the second step by calling various
``impl_*`` APIs, like :func:`torch.library.impl` or
:func:`torch.library.register_fake`.
Args:
qualname (str): The qualified name for the operator. Should be
a string that looks like "namespace::name", e.g. "aten::sin".
Operators in PyTorch need a namespace to
avoid name collisions; a given operator may only be created once.
If you are writing a Python library, we recommend the namespace to
be the name of your top-level module.
schema (str): The schema of the operator. E.g. "(Tensor x) -> Tensor"
for an op that accepts one Tensor and returns one Tensor. It does
not contain the operator name (that is passed in ``qualname``).
lib (Optional[Library]): If provided, the lifetime of this operator
will be tied to the lifetime of the Library object.
tags (Tag | Sequence[Tag]): one or more torch.Tag to apply to this
operator. Tagging an operator changes the operator's behavior
under various PyTorch subsystems; please read the docs for the
torch.Tag carefully before applying it.
Example::
>>> import torch
>>> import numpy as np
>>>
>>> # Define the operator
>>> torch.library.define("mylib::sin", "(Tensor x) -> Tensor")
>>>
>>> # Add implementations for the operator
>>> @torch.library.impl("mylib::sin", "cpu")
>>> def f(x):
>>> return torch.from_numpy(np.sin(x.numpy()))
>>>
>>> # Call the new operator from torch.ops.
>>> x = torch.randn(3)
>>> y = torch.ops.mylib.sin(x)
>>> assert torch.allclose(y, x.sin())
"""
if not isinstance(qualname, str):
raise ValueError(
f"define(qualname, schema): expected qualname "
f"to be instance of str, got {type(qualname)}")
namespace, name = torch._library.utils.parse_namespace(qualname)
if lib is None:
lib = Library(namespace, "FRAGMENT")
_keep_alive.append(lib)
if not NAMELESS_SCHEMA.fullmatch(schema):
raise ValueError(
f"define(qualname, schema, ...): expected schema "
f'to look like e.g. "(Tensor x) -> Tensor" but '
f'got "{schema}"')
lib.define(name + schema, alias_analysis="", tags=tags)
@define.register
def _(lib: Library, schema, alias_analysis=""):
"""The old torch.library.define.
We're keeping this around for BC reasons
"""
def wrap(f):
name = lib.define(schema, alias_analysis)
lib.impl(name, f)
return f
return wrap
@functools.singledispatch
def impl(qualname, types, func=None, *, lib=None):
"""Register an implementation for a device type for this operator.
You may pass "default" for ``types`` to register this implementation as the
default implementation for ALL device types.
Please only use this if the implementation truly supports all device types;
for example, this is true if it is a composition of built-in PyTorch operators.
Some valid types are: "cpu", "cuda", "xla", "mps", "ipu", "xpu".
Args:
qualname (str): Should be a string that looks like "namespace::operator_name".
types (str | Sequence[str]): The device types to register an impl to.
lib (Optional[Library]): If provided, the lifetime of this registration
will be tied to the lifetime of the Library object.
Examples:
>>> import torch
>>> import numpy as np
>>>
>>> # Define the operator
>>> torch.library.define("mylib::mysin", "(Tensor x) -> Tensor")
>>>
>>> # Add implementations for the cpu device
>>> @torch.library.impl("mylib::mysin", "cpu")
>>> def f(x):
>>> return torch.from_numpy(np.sin(x.numpy()))
>>>
>>> x = torch.randn(3)
>>> y = torch.ops.mylib.mysin(x)
>>> assert torch.allclose(y, x.sin())
"""
if isinstance(types, str):
types = (types,)
keys = set({})
for typ in types:
is_dispatch_key = torch._C._parse_dispatch_key(typ)
if is_dispatch_key:
# We also support passing a DispatchKey to impl. Please prefer using
# the higher-level torch.library APIs and only pass DispatchKey to
# torch.library.impl with caution (or even better, don't use this
# option and file an issue on GitHub for what you need).
# We don't advertise this to users because
# it is very easy to shoot yourself in the foot.
keys.add(typ)
else:
keys.add(_device_type_to_key(typ))
def register(func):
namespace, _ = torch._library.utils.parse_namespace(qualname)
if lib is None:
use_lib = Library(namespace, "FRAGMENT")
_keep_alive.append(use_lib)
else:
use_lib = lib
for key in keys:
use_lib.impl(qualname, func, key)
if func is None:
return register
else:
register(func)
def _device_type_to_key(device_type: str) -> str:
if device_type == "default":
# This is technically not correct, because although all device_type
# DispatchKeys are included in CompositeExplicitAutograd,
# not everything in CompositeExplicitAutograd is associated with a
# device_type. I don't really care that much about the difference.
return "CompositeExplicitAutograd"
return torch._C._dispatch_key_for_device(device_type)
@impl.register
def _(lib: Library, name, dispatch_key=""):
"""Legacy torch.library.impl API. Kept around for BC"""
def wrap(f):
lib.impl(name, f, dispatch_key)
return f
return wrap
@deprecated(
"`torch.library.impl_abstract` was renamed to `torch.library.register_fake`. Please use that "
"instead; we will remove `torch.library.impl_abstract` in a future version of PyTorch.",
category=FutureWarning,
)
def impl_abstract(qualname, func=None, *, lib=None, _stacklevel=1):
r"""This API was renamed to :func:`torch.library.register_fake` in PyTorch 2.4.
Please use that instead.
"""
if func is not None:
_stacklevel = _stacklevel + 1
return register_fake(qualname, func, lib=lib, _stacklevel=_stacklevel)
_op_identifier = Union[str, "torch._ops.OpOverload", "torch._library.custom_ops.CustomOpDef"]
def register_kernel(
op: _op_identifier,
device_types: device_types_t,
func: Optional[Callable] = None,
/,
*,
lib: Optional[Library] = None):
"""Register an implementation for a device type for this operator.
Some valid device_types are: "cpu", "cuda", "xla", "mps", "ipu", "xpu".
This API may be used as a decorator.
Args:
fn (Callable): The function to register as the implementation for
the given device types.
device_types (None | str | Sequence[str]): The device_types to register an impl to.
If None, we will register to all device types -- please only use
this option if your implementation is truly device-type-agnostic.
Examples::
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
>>> import torch
>>> from torch import Tensor
>>> from torch.library import custom_op
>>> import numpy as np
>>>
>>> # Create a custom op that works on cpu
>>> @custom_op("mylib::numpy_sin", mutates_args=(), device_types="cpu")
>>> def numpy_sin(x: Tensor) -> Tensor:
>>> x_np = x.numpy()
>>> y_np = np.sin(x_np)
>>> return torch.from_numpy(y_np)
>>>
>>> # Add implementations for the cuda device
>>> @torch.library.register_kernel("mylib::numpy_sin", "cuda")
>>> def _(x):
>>> x_np = x.cpu().numpy()
>>> y_np = np.sin(x_np)
>>> return torch.from_numpy(y_np).to(device=x.device)
>>>
>>> x_cpu = torch.randn(3)
>>> x_cuda = x_cpu.cuda()
>>> assert torch.allclose(numpy_sin(x_cpu), x_cpu.sin())
>>> assert torch.allclose(numpy_sin(x_cuda), x_cuda.sin())
"""
if not isinstance(op, (str, torch._ops.OpOverload, torch._library.custom_ops.CustomOpDef)):
raise ValueError("register_kernel(op): got unexpected type for op: {type(op)}")
if isinstance(op, torch._ops.OpOverload):
op = op._name
opdef = _maybe_get_opdef(op)
if opdef is not None:
return opdef.register_kernel(device_types, func)
assert isinstance(op, str)
if device_types is None:
device_types = "CompositeExplicitAutograd"
return impl(op, device_types, func, lib=lib)
def register_fake(
op: _op_identifier,
func: Optional[Callable] = None,
/,
*,
lib: Optional[Library] = None,
_stacklevel: int = 1):
r"""Register a FakeTensor implementation ("fake impl") for this operator.
Also sometimes known as a "meta kernel", "abstract impl".
An "FakeTensor implementation" specifies the behavior of this operator on
Tensors that carry no data ("FakeTensor"). Given some input Tensors with
certain properties (sizes/strides/storage_offset/device), it specifies
what the properties of the output Tensors are.
The FakeTensor implementation has the same signature as the operator.
It is run for both FakeTensors and meta tensors. To write a FakeTensor
implementation, assume that all Tensor inputs to the operator are
regular CPU/CUDA/Meta tensors, but they do not have storage, and
you are trying to return regular CPU/CUDA/Meta tensor(s) as output.
The FakeTensor implementation must consist of only PyTorch operations
(and may not directly access the storage or data of any input or
intermediate Tensors).
This API may be used as a decorator (see examples).
For a detailed guide on custom ops, please see
https://pytorch.org/tutorials/advanced/custom_ops_landing_page.html
Examples:
>>> import torch
>>> import numpy as np
>>> from torch import Tensor
>>>
>>> # Example 1: an operator without data-dependent output shape
>>> @torch.library.custom_op("mylib::custom_linear", mutates_args=())
>>> def custom_linear(x: Tensor, weight: Tensor, bias: Tensor) -> Tensor:
>>> raise NotImplementedError("Implementation goes here")
>>>
>>> @torch.library.register_fake("mylib::custom_linear")
>>> def _(x, weight, bias):
>>> assert x.dim() == 2
>>> assert weight.dim() == 2
>>> assert bias.dim() == 1
>>> assert x.shape[1] == weight.shape[1]
>>> assert weight.shape[0] == bias.shape[0]
>>> assert x.device == weight.device
>>>
>>> return (x @ weight.t()) + bias
>>>
>>> with torch._subclasses.fake_tensor.FakeTensorMode():
>>> x = torch.randn(2, 3)
>>> w = torch.randn(3, 3)
>>> b = torch.randn(3)
>>> y = torch.ops.mylib.custom_linear(x, w, b)
>>>
>>> assert y.shape == (2, 3)
>>>
>>> # Example 2: an operator with data-dependent output shape
>>> @torch.library.custom_op("mylib::custom_nonzero", mutates_args=())
>>> def custom_nonzero(x: Tensor) -> Tensor:
>>> x_np = x.numpy(force=True)
>>> res = np.stack(np.nonzero(x_np), axis=1)
>>> return torch.tensor(res, device=x.device)
>>>
>>> @torch.library.register_fake("mylib::custom_nonzero")
>>> def _(x):
>>> # Number of nonzero-elements is data-dependent.
>>> # Since we cannot peek at the data in an fake impl,
>>> # we use the ctx object to construct a new symint that
>>> # represents the data-dependent size.
>>> ctx = torch.library.get_ctx()
>>> nnz = ctx.new_dynamic_size()
>>> shape = [nnz, x.dim()]
>>> result = x.new_empty(shape, dtype=torch.int64)
>>> return result
>>>
>>> from torch.fx.experimental.proxy_tensor import make_fx
>>>
>>> x = torch.tensor([0, 1, 2, 3, 4, 0])
>>> trace = make_fx(torch.ops.mylib.custom_nonzero, tracing_mode="symbolic")(x)
>>> trace.print_readable()
>>>
>>> assert torch.allclose(trace(x), torch.ops.mylib.custom_nonzero(x))
"""
if not isinstance(op, (str, torch._ops.OpOverload, torch._library.custom_ops.CustomOpDef)):
raise ValueError("register_fake(op): got unexpected type for op: {type(op)}")
if isinstance(op, torch._ops.OpOverload):
op = op._name
opdef = _maybe_get_opdef(op)
if opdef is not None:
if func is None:
return opdef.register_fake
else:
return opdef.register_fake(func)
assert isinstance(op, str)
stacklevel = _stacklevel
def register(func):
namespace, op_name = torch._library.utils.parse_namespace(op)
if lib is None:
use_lib = Library(namespace, "FRAGMENT")
_keep_alive.append(use_lib)
else:
use_lib = lib
use_lib._register_fake(op_name, func, _stacklevel=stacklevel + 1)
return func
if func is None:
return register
else:
stacklevel += 1
return register(func)
def register_autograd(op: _op_identifier, backward: Callable, /, *, setup_context: Optional[Callable] = None, lib=None) -> None:
r"""Register a backward formula for this custom op.
In order for an operator to work with autograd, you need to register
a backward formula:
1. You must tell us how to compute gradients during the backward pass
by providing us a "backward" function.
2. If you need any values from the forward to compute gradients, you can
use `setup_context` to save values for backward.
``backward`` runs during the backward pass. It accepts ``(ctx, *grads)``:
- ``grads`` is one or more gradients. The number of gradients matches
the number of outputs of the operator.
The ``ctx`` object is `the same ctx object <context_method_mixins>`_ used by
:class:`torch.autograd.Function`. The semantics of ``backward_fn`` are the
same as :meth:`torch.autograd.Function.backward`.
``setup_context(ctx, inputs, output)`` runs during the forward pass.
Please save quantities needed for backward onto the ``ctx`` object via
either :meth:`torch.autograd.function.FunctionCtx.save_for_backward`
or assigning them as attributes of ``ctx``. If your custom op has
kwarg-only arguments, we expect the signature of ``setup_context``
to be ``setup_context(ctx, inputs, keyword_only_inputs, output)``.
Both ``setup_context_fn`` and ``backward_fn`` must be traceable. That is,
they may not directly access :meth:`torch.Tensor.data_ptr` and they must
not depend on or mutate global state. If you need a non-traceable backward,
you can make it a separate custom_op that you call inside ``backward_fn``.
Examples:
>>> import torch
>>> import numpy as np
>>> from torch import Tensor
>>>
>>> @torch.library.custom_op("mylib::numpy_sin", mutates_args=())
>>> def numpy_sin(x: Tensor) -> Tensor:
>>> x_np = x.cpu().numpy()
>>> y_np = np.sin(x_np)
>>> return torch.from_numpy(y_np).to(device=x.device)
>>>
>>> def setup_context(ctx, inputs, output) -> Tensor:
>>> x, = inputs
>>> ctx.save_for_backward(x)
>>>
>>> def backward(ctx, grad):
>>> x, = ctx.saved_tensors
>>> return grad * x.cos()
>>>
>>> torch.library.register_autograd("mylib::numpy_sin", backward, setup_context=setup_context)
>>>
>>> x = torch.randn(3, requires_grad=True)
>>> y = numpy_sin(x)
>>> grad_x, = torch.autograd.grad(y, x, torch.ones_like(y))
>>> assert torch.allclose(grad_x, x.cos())
>>>
>>> # Example with a keyword-only arg
>>> @torch.library.custom_op("mylib::numpy_mul", mutates_args=())
>>> def numpy_mul(x: Tensor, *, val: float) -> Tensor:
>>> x_np = x.cpu().numpy()
>>> y_np = x_np * val
>>> return torch.from_numpy(y_np).to(device=x.device)
>>>
>>> def setup_context(ctx, inputs, keyword_only_inputs, output) -> Tensor:
>>> ctx.val = keyword_only_inputs["val"]
>>>
>>> def backward(ctx, grad):
>>> return grad * ctx.val
>>>
>>> torch.library.register_autograd("mylib::numpy_mul", backward, setup_context=setup_context)
>>>
>>> x = torch.randn(3, requires_grad=True)
>>> y = numpy_mul(x, val=3.14)
>>> grad_x, = torch.autograd.grad(y, x, torch.ones_like(y))
>>> assert torch.allclose(grad_x, torch.full_like(x, 3.14))
"""
if not isinstance(op, (str, torch._ops.OpOverload, torch._library.custom_ops.CustomOpDef)):
raise ValueError(f"register_autograd(op): got unexpected type for op: {type(op)}")
if isinstance(op, torch._ops.OpOverload):
op = op._name
opdef = _maybe_get_opdef(op)
if opdef is not None:
opdef.register_autograd(backward, setup_context=setup_context)
return
assert isinstance(op, str)
qualname = op
op = torch._library.utils.lookup_op(qualname)
schema = op._schema
if not _library.utils.is_functional_schema(schema):
raise RuntimeError(
f"Cannot register autograd formula for non-functional operator "
f"{op} with schema {schema}. Please create "
f"a functional operator and register an autograd formula for that."
)
if _library.utils.has_kwarg_only_tensors(schema):
raise NotImplementedError(
f"register_autograd with kwarg-only Tensor args. In the original "
f"definition of the op, please make your tensors not kwarg-only. "
f"Got: {schema}")
info = _library.autograd.Info(backward, setup_context)
autograd_kernel = _library.autograd.make_autograd_impl(op, info)
namespace, opname = torch._library.utils.parse_namespace(qualname)
if lib is None:
lib = Library(namespace, "FRAGMENT")
_keep_alive.append(lib)
lib.impl(opname, autograd_kernel, "Autograd", with_keyset=True)
# If the op was defined in C++, then we want to make sure there was an
# m.set_python_module(module, ...) call and that the module is the
# same as the module that called torch.library.register_fake.
def _check_pystubs_once(func, qualname, actual_module_name):
checked = False
def inner(*args, **kwargs):
nonlocal checked
if checked:
return func(*args, **kwargs)
op = torch._library.utils.lookup_op(qualname)
if op._defined_in_python:
checked = True
return func(*args, **kwargs)
maybe_pystub = torch._C._dispatch_pystub(
op._schema.name,
op._schema.overload_name)
if maybe_pystub is None:
if torch._library.utils.requires_set_python_module():
namespace = op.namespace
cpp_filename = op._handle.debug()
raise RuntimeError(
f"Operator '{qualname}' was defined in C++ and has a Python "
f"fake impl. In this situation, we require there to also be a "
f'companion C++ `m.set_python_module("{actual_module_name}")` '
f"call, but we could not find one. Please add that to "
f"to the top of the C++ TORCH_LIBRARY({namespace}, ...) block the "
f"operator was registered in ({cpp_filename})")
else:
pystub_module = maybe_pystub[0]
if actual_module_name != pystub_module:
cpp_filename = op._handle.debug()
raise RuntimeError(
f"Operator '{qualname}' specified that its python fake impl "
f"is in the Python module '{pystub_module}' but it was actually found "
f"in '{actual_module_name}'. Please either move the fake impl "
f"or correct the m.set_python_module call ({cpp_filename})")
checked = True
return func(*args, **kwargs)
return inner
# NOTE [ctx inside the fake implementation]
# If a user has an operator with data-dependent output shape, then when writing
# a fake implementation they must query the current ctx and use methods on the
# ctx to construct a new unbacked symint.
#
# This is done via us setting the global_ctx_getter function every time a fake
# implementation is invoked.
def get_ctx() -> "torch._library.abstract_impl.AbstractImplCtx":
"""get_ctx() returns the current AbstractImplCtx object.
Calling ``get_ctx()`` is only valid inside of an fake impl
(see :func:`torch.library.register_fake` for more usage details.
"""
return torch._library.abstract_impl.global_ctx_getter()
_OPCHECK_DEFAULT_UTILS = (
"test_schema",
"test_autograd_registration",
"test_faketensor",
"test_aot_dispatch_dynamic",
)
def opcheck(
op: Union[torch._ops.OpOverload, torch._ops.OpOverloadPacket, CustomOpDef],
args: Tuple[Any, ...],
kwargs: Optional[Dict[str, Any]] = None,
*,
test_utils: Union[str, Sequence[str]] = _OPCHECK_DEFAULT_UTILS,
raise_exception: bool = True,
) -> Dict[str, str]:
"""Given an operator and some sample arguments, tests if the operator is
registered correctly.
That is, when you use the torch.library/TORCH_LIBRARY APIs to create a
custom op, you specified metadata (e.g. mutability info) about the custom op
and these APIs require that the functions you pass them satisfy certain
properties (e.g. no data pointer access in the fake/meta/abstract kernel)
``opcheck`` tests these metadata and properties.
Concretely, we test the following:
- test_schema: if the operator's schema is correct.
- test_autograd_registration: if autograd was registered correctly.
- test_faketensor: If the operator has a FakeTensor kernel
(and if it is correct). The FakeTensor kernel is necessary (
but not sufficient) for the operator to work with PyTorch compilation
APIs (torch.compile/export/FX).
- test_aot_dispatch_dynamic: If the operator has correct behavior
with PyTorch compilation APIs (torch.compile/export/FX).
This checks that the outputs (and gradients, if applicable) are the
same under eager-mode PyTorch and torch.compile.
This test is a superset of ``test_faketensor``.
For best results, please call ``opcheck`` multiple times with a
representative set of inputs. If your operator supports
autograd, please use ``opcheck`` with inputs with ``requires_grad = True``;
if your operator supports multiple devices (e.g. CPU and CUDA), please
use ``opcheck`` with inputs on all supported devices.
Args:
op: The operator. Must either be a function decorated with
:func:`torch.library.custom_op` or an OpOverload/OpOverloadPacket
found in torch.ops.* (e.g. torch.ops.aten.sin, torch.ops.mylib.foo)
args: The args to the operator
kwargs: The kwargs to the operator
test_utils: Tests that we should run. Default: all of them.
Example: ("test_schema", "test_faketensor")
raise_exception: If we should raise an exception on the first
error. If False, we will return a dict with information
on if each test passed or not.
.. warning::
opcheck and :func:`torch.autograd.gradcheck` test different things;
opcheck tests if your usage of torch.library APIs is correct while
:func:`torch.autograd.gradcheck` tests if your autograd formula is
mathematically correct. Use both to test custom ops that support
gradient computation.
Example:
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
>>> @torch.library.custom_op("mylib::numpy_mul", mutates_args=())
>>> def numpy_add(x: Tensor, y: float) -> Tensor:
>>> x_np = x.numpy(force=True)
>>> z_np = x_np + y
>>> return torch.from_numpy(z_np).to(x.device)
>>>
>>> @numpy_sin.register_fake
>>> def _(x, y):
>>> return torch.empty_like(x)
>>>
>>> def setup_context(ctx, inputs, output):
>>> y, = inputs
>>> ctx.y = y
>>>
>>> def backward(ctx, grad):
>>> return grad * ctx.y, None
>>>
>>> numpy_sin.register_autograd(backward, setup_context=setup_context)
>>>
>>> sample_inputs = [
>>> (torch.randn(3), 3.14),
>>> (torch.randn(2, 3, device='cuda'), 2.718),
>>> (torch.randn(1, 10, requires_grad=True), 1.234),
>>> (torch.randn(64, 64, device='cuda', requires_grad=True), 90.18),
>>> ]
>>>
>>> for args in sample_inputs:
>>> torch.library.opcheck(foo, args)
"""
import torch.testing._internal.optests as optests
return optests.opcheck(op, args, kwargs, test_utils=test_utils, raise_exception=raise_exception)
|