File size: 3,677 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
from .module import Module
from .. import functional as F

from torch import Tensor

__all__ = ['PixelShuffle', 'PixelUnshuffle']

class PixelShuffle(Module):
    r"""Rearrange elements in a tensor according to an upscaling factor.

    Rearranges elements in a tensor of shape :math:`(*, C \times r^2, H, W)`
    to a tensor of shape :math:`(*, C, H \times r, W \times r)`, where r is an upscale factor.

    This is useful for implementing efficient sub-pixel convolution
    with a stride of :math:`1/r`.

    See the paper:
    `Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network`_
    by Shi et al. (2016) for more details.

    Args:
        upscale_factor (int): factor to increase spatial resolution by

    Shape:
        - Input: :math:`(*, C_{in}, H_{in}, W_{in})`, where * is zero or more batch dimensions
        - Output: :math:`(*, C_{out}, H_{out}, W_{out})`, where

    .. math::
        C_{out} = C_{in} \div \text{upscale\_factor}^2

    .. math::
        H_{out} = H_{in} \times \text{upscale\_factor}

    .. math::
        W_{out} = W_{in} \times \text{upscale\_factor}

    Examples::

        >>> pixel_shuffle = nn.PixelShuffle(3)
        >>> input = torch.randn(1, 9, 4, 4)
        >>> output = pixel_shuffle(input)
        >>> print(output.size())
        torch.Size([1, 1, 12, 12])

    .. _Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network:
        https://arxiv.org/abs/1609.05158
    """

    __constants__ = ['upscale_factor']
    upscale_factor: int

    def __init__(self, upscale_factor: int) -> None:
        super().__init__()
        self.upscale_factor = upscale_factor

    def forward(self, input: Tensor) -> Tensor:
        return F.pixel_shuffle(input, self.upscale_factor)

    def extra_repr(self) -> str:
        return f'upscale_factor={self.upscale_factor}'


class PixelUnshuffle(Module):
    r"""Reverse the PixelShuffle operation.

    Reverses the :class:`~torch.nn.PixelShuffle` operation by rearranging elements
    in a tensor of shape :math:`(*, C, H \times r, W \times r)` to a tensor of shape
    :math:`(*, C \times r^2, H, W)`, where r is a downscale factor.

    See the paper:
    `Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network`_
    by Shi et al. (2016) for more details.

    Args:
        downscale_factor (int): factor to decrease spatial resolution by

    Shape:
        - Input: :math:`(*, C_{in}, H_{in}, W_{in})`, where * is zero or more batch dimensions
        - Output: :math:`(*, C_{out}, H_{out}, W_{out})`, where

    .. math::
        C_{out} = C_{in} \times \text{downscale\_factor}^2

    .. math::
        H_{out} = H_{in} \div \text{downscale\_factor}

    .. math::
        W_{out} = W_{in} \div \text{downscale\_factor}

    Examples::

        >>> pixel_unshuffle = nn.PixelUnshuffle(3)
        >>> input = torch.randn(1, 1, 12, 12)
        >>> output = pixel_unshuffle(input)
        >>> print(output.size())
        torch.Size([1, 9, 4, 4])

    .. _Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network:
        https://arxiv.org/abs/1609.05158
    """

    __constants__ = ['downscale_factor']
    downscale_factor: int

    def __init__(self, downscale_factor: int) -> None:
        super().__init__()
        self.downscale_factor = downscale_factor

    def forward(self, input: Tensor) -> Tensor:
        return F.pixel_unshuffle(input, self.downscale_factor)

    def extra_repr(self) -> str:
        return f'downscale_factor={self.downscale_factor}'