File size: 23,352 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 |
# mypy: allow-untyped-defs
from typing import Optional, Iterable
import torch
from math import sqrt
from torch import Tensor
from torch._torch_docs import factory_common_args, parse_kwargs, merge_dicts
__all__ = [
'bartlett',
'blackman',
'cosine',
'exponential',
'gaussian',
'general_cosine',
'general_hamming',
'hamming',
'hann',
'kaiser',
'nuttall',
]
window_common_args = merge_dicts(
parse_kwargs(
"""
M (int): the length of the window.
In other words, the number of points of the returned window.
sym (bool, optional): If `False`, returns a periodic window suitable for use in spectral analysis.
If `True`, returns a symmetric window suitable for use in filter design. Default: `True`.
"""
),
factory_common_args,
{
"normalization": "The window is normalized to 1 (maximum value is 1). However, the 1 doesn't appear if "
":attr:`M` is even and :attr:`sym` is `True`.",
}
)
def _add_docstr(*args):
r"""Adds docstrings to a given decorated function.
Specially useful when then docstrings needs string interpolation, e.g., with
str.format().
REMARK: Do not use this function if the docstring doesn't need string
interpolation, just write a conventional docstring.
Args:
args (str):
"""
def decorator(o):
o.__doc__ = "".join(args)
return o
return decorator
def _window_function_checks(function_name: str, M: int, dtype: torch.dtype, layout: torch.layout) -> None:
r"""Performs common checks for all the defined windows.
This function should be called before computing any window.
Args:
function_name (str): name of the window function.
M (int): length of the window.
dtype (:class:`torch.dtype`): the desired data type of returned tensor.
layout (:class:`torch.layout`): the desired layout of returned tensor.
"""
if M < 0:
raise ValueError(f'{function_name} requires non-negative window length, got M={M}')
if layout is not torch.strided:
raise ValueError(f'{function_name} is implemented for strided tensors only, got: {layout}')
if dtype not in [torch.float32, torch.float64]:
raise ValueError(f'{function_name} expects float32 or float64 dtypes, got: {dtype}')
@_add_docstr(
r"""
Computes a window with an exponential waveform.
Also known as Poisson window.
The exponential window is defined as follows:
.. math::
w_n = \exp{\left(-\frac{|n - c|}{\tau}\right)}
where `c` is the ``center`` of the window.
""",
r"""
{normalization}
Args:
{M}
Keyword args:
center (float, optional): where the center of the window will be located.
Default: `M / 2` if `sym` is `False`, else `(M - 1) / 2`.
tau (float, optional): the decay value.
Tau is generally associated with a percentage, that means, that the value should
vary within the interval (0, 100]. If tau is 100, it is considered the uniform window.
Default: 1.0.
{sym}
{dtype}
{layout}
{device}
{requires_grad}
Examples::
>>> # Generates a symmetric exponential window of size 10 and with a decay value of 1.0.
>>> # The center will be at (M - 1) / 2, where M is 10.
>>> torch.signal.windows.exponential(10)
tensor([0.0111, 0.0302, 0.0821, 0.2231, 0.6065, 0.6065, 0.2231, 0.0821, 0.0302, 0.0111])
>>> # Generates a periodic exponential window and decay factor equal to .5
>>> torch.signal.windows.exponential(10, sym=False,tau=.5)
tensor([4.5400e-05, 3.3546e-04, 2.4788e-03, 1.8316e-02, 1.3534e-01, 1.0000e+00, 1.3534e-01, 1.8316e-02, 2.4788e-03, 3.3546e-04])
""".format(
**window_common_args
),
)
def exponential(
M: int,
*,
center: Optional[float] = None,
tau: float = 1.0,
sym: bool = True,
dtype: Optional[torch.dtype] = None,
layout: torch.layout = torch.strided,
device: Optional[torch.device] = None,
requires_grad: bool = False
) -> Tensor:
if dtype is None:
dtype = torch.get_default_dtype()
_window_function_checks('exponential', M, dtype, layout)
if tau <= 0:
raise ValueError(f'Tau must be positive, got: {tau} instead.')
if sym and center is not None:
raise ValueError('Center must be None for symmetric windows')
if M == 0:
return torch.empty((0,), dtype=dtype, layout=layout, device=device, requires_grad=requires_grad)
if center is None:
center = (M if not sym and M > 1 else M - 1) / 2.0
constant = 1 / tau
k = torch.linspace(start=-center * constant,
end=(-center + (M - 1)) * constant,
steps=M,
dtype=dtype,
layout=layout,
device=device,
requires_grad=requires_grad)
return torch.exp(-torch.abs(k))
@_add_docstr(
r"""
Computes a window with a simple cosine waveform, following the same implementation as SciPy.
This window is also known as the sine window.
The cosine window is defined as follows:
.. math::
w_n = \sin\left(\frac{\pi (n + 0.5)}{M}\right)
This formula differs from the typical cosine window formula by incorporating a 0.5 term in the numerator,
which shifts the sample positions. This adjustment results in a window that starts and ends with non-zero values.
""",
r"""
{normalization}
Args:
{M}
Keyword args:
{sym}
{dtype}
{layout}
{device}
{requires_grad}
Examples::
>>> # Generates a symmetric cosine window.
>>> torch.signal.windows.cosine(10)
tensor([0.1564, 0.4540, 0.7071, 0.8910, 0.9877, 0.9877, 0.8910, 0.7071, 0.4540, 0.1564])
>>> # Generates a periodic cosine window.
>>> torch.signal.windows.cosine(10, sym=False)
tensor([0.1423, 0.4154, 0.6549, 0.8413, 0.9595, 1.0000, 0.9595, 0.8413, 0.6549, 0.4154])
""".format(
**window_common_args,
),
)
def cosine(
M: int,
*,
sym: bool = True,
dtype: Optional[torch.dtype] = None,
layout: torch.layout = torch.strided,
device: Optional[torch.device] = None,
requires_grad: bool = False
) -> Tensor:
if dtype is None:
dtype = torch.get_default_dtype()
_window_function_checks('cosine', M, dtype, layout)
if M == 0:
return torch.empty((0,), dtype=dtype, layout=layout, device=device, requires_grad=requires_grad)
start = 0.5
constant = torch.pi / (M + 1 if not sym and M > 1 else M)
k = torch.linspace(start=start * constant,
end=(start + (M - 1)) * constant,
steps=M,
dtype=dtype,
layout=layout,
device=device,
requires_grad=requires_grad)
return torch.sin(k)
@_add_docstr(
r"""
Computes a window with a gaussian waveform.
The gaussian window is defined as follows:
.. math::
w_n = \exp{\left(-\left(\frac{n}{2\sigma}\right)^2\right)}
""",
r"""
{normalization}
Args:
{M}
Keyword args:
std (float, optional): the standard deviation of the gaussian. It controls how narrow or wide the window is.
Default: 1.0.
{sym}
{dtype}
{layout}
{device}
{requires_grad}
Examples::
>>> # Generates a symmetric gaussian window with a standard deviation of 1.0.
>>> torch.signal.windows.gaussian(10)
tensor([4.0065e-05, 2.1875e-03, 4.3937e-02, 3.2465e-01, 8.8250e-01, 8.8250e-01, 3.2465e-01, 4.3937e-02, 2.1875e-03, 4.0065e-05])
>>> # Generates a periodic gaussian window and standard deviation equal to 0.9.
>>> torch.signal.windows.gaussian(10, sym=False,std=0.9)
tensor([1.9858e-07, 5.1365e-05, 3.8659e-03, 8.4658e-02, 5.3941e-01, 1.0000e+00, 5.3941e-01, 8.4658e-02, 3.8659e-03, 5.1365e-05])
""".format(
**window_common_args,
),
)
def gaussian(
M: int,
*,
std: float = 1.0,
sym: bool = True,
dtype: Optional[torch.dtype] = None,
layout: torch.layout = torch.strided,
device: Optional[torch.device] = None,
requires_grad: bool = False
) -> Tensor:
if dtype is None:
dtype = torch.get_default_dtype()
_window_function_checks('gaussian', M, dtype, layout)
if std <= 0:
raise ValueError(f'Standard deviation must be positive, got: {std} instead.')
if M == 0:
return torch.empty((0,), dtype=dtype, layout=layout, device=device, requires_grad=requires_grad)
start = -(M if not sym and M > 1 else M - 1) / 2.0
constant = 1 / (std * sqrt(2))
k = torch.linspace(start=start * constant,
end=(start + (M - 1)) * constant,
steps=M,
dtype=dtype,
layout=layout,
device=device,
requires_grad=requires_grad)
return torch.exp(-k ** 2)
@_add_docstr(
r"""
Computes the Kaiser window.
The Kaiser window is defined as follows:
.. math::
w_n = I_0 \left( \beta \sqrt{1 - \left( {\frac{n - N/2}{N/2}} \right) ^2 } \right) / I_0( \beta )
where ``I_0`` is the zeroth order modified Bessel function of the first kind (see :func:`torch.special.i0`), and
``N = M - 1 if sym else M``.
""",
r"""
{normalization}
Args:
{M}
Keyword args:
beta (float, optional): shape parameter for the window. Must be non-negative. Default: 12.0
{sym}
{dtype}
{layout}
{device}
{requires_grad}
Examples::
>>> # Generates a symmetric gaussian window with a standard deviation of 1.0.
>>> torch.signal.windows.kaiser(5)
tensor([4.0065e-05, 2.1875e-03, 4.3937e-02, 3.2465e-01, 8.8250e-01, 8.8250e-01, 3.2465e-01, 4.3937e-02, 2.1875e-03, 4.0065e-05])
>>> # Generates a periodic gaussian window and standard deviation equal to 0.9.
>>> torch.signal.windows.kaiser(5, sym=False,std=0.9)
tensor([1.9858e-07, 5.1365e-05, 3.8659e-03, 8.4658e-02, 5.3941e-01, 1.0000e+00, 5.3941e-01, 8.4658e-02, 3.8659e-03, 5.1365e-05])
""".format(
**window_common_args,
),
)
def kaiser(
M: int,
*,
beta: float = 12.0,
sym: bool = True,
dtype: Optional[torch.dtype] = None,
layout: torch.layout = torch.strided,
device: Optional[torch.device] = None,
requires_grad: bool = False
) -> Tensor:
if dtype is None:
dtype = torch.get_default_dtype()
_window_function_checks('kaiser', M, dtype, layout)
if beta < 0:
raise ValueError(f'beta must be non-negative, got: {beta} instead.')
if M == 0:
return torch.empty((0,), dtype=dtype, layout=layout, device=device, requires_grad=requires_grad)
if M == 1:
return torch.ones((1,), dtype=dtype, layout=layout, device=device, requires_grad=requires_grad)
# Avoid NaNs by casting `beta` to the appropriate dtype.
beta = torch.tensor(beta, dtype=dtype, device=device)
start = -beta
constant = 2.0 * beta / (M if not sym else M - 1)
end = torch.minimum(beta, start + (M - 1) * constant)
k = torch.linspace(start=start,
end=end,
steps=M,
dtype=dtype,
layout=layout,
device=device,
requires_grad=requires_grad)
return torch.i0(torch.sqrt(beta * beta - torch.pow(k, 2))) / torch.i0(beta)
@_add_docstr(
r"""
Computes the Hamming window.
The Hamming window is defined as follows:
.. math::
w_n = \alpha - \beta\ \cos \left( \frac{2 \pi n}{M - 1} \right)
""",
r"""
{normalization}
Arguments:
{M}
Keyword args:
{sym}
alpha (float, optional): The coefficient :math:`\alpha` in the equation above.
beta (float, optional): The coefficient :math:`\beta` in the equation above.
{dtype}
{layout}
{device}
{requires_grad}
Examples::
>>> # Generates a symmetric Hamming window.
>>> torch.signal.windows.hamming(10)
tensor([0.0800, 0.1876, 0.4601, 0.7700, 0.9723, 0.9723, 0.7700, 0.4601, 0.1876, 0.0800])
>>> # Generates a periodic Hamming window.
>>> torch.signal.windows.hamming(10, sym=False)
tensor([0.0800, 0.1679, 0.3979, 0.6821, 0.9121, 1.0000, 0.9121, 0.6821, 0.3979, 0.1679])
""".format(
**window_common_args
),
)
def hamming(M: int,
*,
sym: bool = True,
dtype: Optional[torch.dtype] = None,
layout: torch.layout = torch.strided,
device: Optional[torch.device] = None,
requires_grad: bool = False) -> Tensor:
return general_hamming(M, sym=sym, dtype=dtype, layout=layout, device=device, requires_grad=requires_grad)
@_add_docstr(
r"""
Computes the Hann window.
The Hann window is defined as follows:
.. math::
w_n = \frac{1}{2}\ \left[1 - \cos \left( \frac{2 \pi n}{M - 1} \right)\right] =
\sin^2 \left( \frac{\pi n}{M - 1} \right)
""",
r"""
{normalization}
Arguments:
{M}
Keyword args:
{sym}
{dtype}
{layout}
{device}
{requires_grad}
Examples::
>>> # Generates a symmetric Hann window.
>>> torch.signal.windows.hann(10)
tensor([0.0000, 0.1170, 0.4132, 0.7500, 0.9698, 0.9698, 0.7500, 0.4132, 0.1170, 0.0000])
>>> # Generates a periodic Hann window.
>>> torch.signal.windows.hann(10, sym=False)
tensor([0.0000, 0.0955, 0.3455, 0.6545, 0.9045, 1.0000, 0.9045, 0.6545, 0.3455, 0.0955])
""".format(
**window_common_args
),
)
def hann(M: int,
*,
sym: bool = True,
dtype: Optional[torch.dtype] = None,
layout: torch.layout = torch.strided,
device: Optional[torch.device] = None,
requires_grad: bool = False) -> Tensor:
return general_hamming(M,
alpha=0.5,
sym=sym,
dtype=dtype,
layout=layout,
device=device,
requires_grad=requires_grad)
@_add_docstr(
r"""
Computes the Blackman window.
The Blackman window is defined as follows:
.. math::
w_n = 0.42 - 0.5 \cos \left( \frac{2 \pi n}{M - 1} \right) + 0.08 \cos \left( \frac{4 \pi n}{M - 1} \right)
""",
r"""
{normalization}
Arguments:
{M}
Keyword args:
{sym}
{dtype}
{layout}
{device}
{requires_grad}
Examples::
>>> # Generates a symmetric Blackman window.
>>> torch.signal.windows.blackman(5)
tensor([-1.4901e-08, 3.4000e-01, 1.0000e+00, 3.4000e-01, -1.4901e-08])
>>> # Generates a periodic Blackman window.
>>> torch.signal.windows.blackman(5, sym=False)
tensor([-1.4901e-08, 2.0077e-01, 8.4923e-01, 8.4923e-01, 2.0077e-01])
""".format(
**window_common_args
),
)
def blackman(M: int,
*,
sym: bool = True,
dtype: Optional[torch.dtype] = None,
layout: torch.layout = torch.strided,
device: Optional[torch.device] = None,
requires_grad: bool = False) -> Tensor:
if dtype is None:
dtype = torch.get_default_dtype()
_window_function_checks('blackman', M, dtype, layout)
return general_cosine(M, a=[0.42, 0.5, 0.08], sym=sym, dtype=dtype, layout=layout, device=device,
requires_grad=requires_grad)
@_add_docstr(
r"""
Computes the Bartlett window.
The Bartlett window is defined as follows:
.. math::
w_n = 1 - \left| \frac{2n}{M - 1} - 1 \right| = \begin{cases}
\frac{2n}{M - 1} & \text{if } 0 \leq n \leq \frac{M - 1}{2} \\
2 - \frac{2n}{M - 1} & \text{if } \frac{M - 1}{2} < n < M \\ \end{cases}
""",
r"""
{normalization}
Arguments:
{M}
Keyword args:
{sym}
{dtype}
{layout}
{device}
{requires_grad}
Examples::
>>> # Generates a symmetric Bartlett window.
>>> torch.signal.windows.bartlett(10)
tensor([0.0000, 0.2222, 0.4444, 0.6667, 0.8889, 0.8889, 0.6667, 0.4444, 0.2222, 0.0000])
>>> # Generates a periodic Bartlett window.
>>> torch.signal.windows.bartlett(10, sym=False)
tensor([0.0000, 0.2000, 0.4000, 0.6000, 0.8000, 1.0000, 0.8000, 0.6000, 0.4000, 0.2000])
""".format(
**window_common_args
),
)
def bartlett(M: int,
*,
sym: bool = True,
dtype: Optional[torch.dtype] = None,
layout: torch.layout = torch.strided,
device: Optional[torch.device] = None,
requires_grad: bool = False) -> Tensor:
if dtype is None:
dtype = torch.get_default_dtype()
_window_function_checks('bartlett', M, dtype, layout)
if M == 0:
return torch.empty((0,), dtype=dtype, layout=layout, device=device, requires_grad=requires_grad)
if M == 1:
return torch.ones((1,), dtype=dtype, layout=layout, device=device, requires_grad=requires_grad)
start = -1
constant = 2 / (M if not sym else M - 1)
k = torch.linspace(start=start,
end=start + (M - 1) * constant,
steps=M,
dtype=dtype,
layout=layout,
device=device,
requires_grad=requires_grad)
return 1 - torch.abs(k)
@_add_docstr(
r"""
Computes the general cosine window.
The general cosine window is defined as follows:
.. math::
w_n = \sum^{M-1}_{i=0} (-1)^i a_i \cos{ \left( \frac{2 \pi i n}{M - 1}\right)}
""",
r"""
{normalization}
Arguments:
{M}
Keyword args:
a (Iterable): the coefficients associated to each of the cosine functions.
{sym}
{dtype}
{layout}
{device}
{requires_grad}
Examples::
>>> # Generates a symmetric general cosine window with 3 coefficients.
>>> torch.signal.windows.general_cosine(10, a=[0.46, 0.23, 0.31], sym=True)
tensor([0.5400, 0.3376, 0.1288, 0.4200, 0.9136, 0.9136, 0.4200, 0.1288, 0.3376, 0.5400])
>>> # Generates a periodic general cosine window wit 2 coefficients.
>>> torch.signal.windows.general_cosine(10, a=[0.5, 1 - 0.5], sym=False)
tensor([0.0000, 0.0955, 0.3455, 0.6545, 0.9045, 1.0000, 0.9045, 0.6545, 0.3455, 0.0955])
""".format(
**window_common_args
),
)
def general_cosine(M, *,
a: Iterable,
sym: bool = True,
dtype: Optional[torch.dtype] = None,
layout: torch.layout = torch.strided,
device: Optional[torch.device] = None,
requires_grad: bool = False) -> Tensor:
if dtype is None:
dtype = torch.get_default_dtype()
_window_function_checks('general_cosine', M, dtype, layout)
if M == 0:
return torch.empty((0,), dtype=dtype, layout=layout, device=device, requires_grad=requires_grad)
if M == 1:
return torch.ones((1,), dtype=dtype, layout=layout, device=device, requires_grad=requires_grad)
if not isinstance(a, Iterable):
raise TypeError("Coefficients must be a list/tuple")
if not a:
raise ValueError("Coefficients cannot be empty")
constant = 2 * torch.pi / (M if not sym else M - 1)
k = torch.linspace(start=0,
end=(M - 1) * constant,
steps=M,
dtype=dtype,
layout=layout,
device=device,
requires_grad=requires_grad)
a_i = torch.tensor([(-1) ** i * w for i, w in enumerate(a)], device=device, dtype=dtype, requires_grad=requires_grad)
i = torch.arange(a_i.shape[0], dtype=a_i.dtype, device=a_i.device, requires_grad=a_i.requires_grad)
return (a_i.unsqueeze(-1) * torch.cos(i.unsqueeze(-1) * k)).sum(0)
@_add_docstr(
r"""
Computes the general Hamming window.
The general Hamming window is defined as follows:
.. math::
w_n = \alpha - (1 - \alpha) \cos{ \left( \frac{2 \pi n}{M-1} \right)}
""",
r"""
{normalization}
Arguments:
{M}
Keyword args:
alpha (float, optional): the window coefficient. Default: 0.54.
{sym}
{dtype}
{layout}
{device}
{requires_grad}
Examples::
>>> # Generates a symmetric Hamming window with the general Hamming window.
>>> torch.signal.windows.general_hamming(10, sym=True)
tensor([0.0800, 0.1876, 0.4601, 0.7700, 0.9723, 0.9723, 0.7700, 0.4601, 0.1876, 0.0800])
>>> # Generates a periodic Hann window with the general Hamming window.
>>> torch.signal.windows.general_hamming(10, alpha=0.5, sym=False)
tensor([0.0000, 0.0955, 0.3455, 0.6545, 0.9045, 1.0000, 0.9045, 0.6545, 0.3455, 0.0955])
""".format(
**window_common_args
),
)
def general_hamming(M,
*,
alpha: float = 0.54,
sym: bool = True,
dtype: Optional[torch.dtype] = None,
layout: torch.layout = torch.strided,
device: Optional[torch.device] = None,
requires_grad: bool = False) -> Tensor:
return general_cosine(M,
a=[alpha, 1. - alpha],
sym=sym,
dtype=dtype,
layout=layout,
device=device,
requires_grad=requires_grad)
@_add_docstr(
r"""
Computes the minimum 4-term Blackman-Harris window according to Nuttall.
.. math::
w_n = 1 - 0.36358 \cos{(z_n)} + 0.48917 \cos{(2z_n)} - 0.13659 \cos{(3z_n)} + 0.01064 \cos{(4z_n)}
where ``z_n = 2 \u03c0 n/ M``.
""",
"""
{normalization}
Arguments:
{M}
Keyword args:
{sym}
{dtype}
{layout}
{device}
{requires_grad}
References::
- A. Nuttall, "Some windows with very good sidelobe behavior,"
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 29, no. 1, pp. 84-91,
Feb 1981. https://doi.org/10.1109/TASSP.1981.1163506
- Heinzel G. et al., "Spectrum and spectral density estimation by the Discrete Fourier transform (DFT),
including a comprehensive list of window functions and some new flat-top windows",
February 15, 2002 https://holometer.fnal.gov/GH_FFT.pdf
Examples::
>>> # Generates a symmetric Nutall window.
>>> torch.signal.windows.general_hamming(5, sym=True)
tensor([3.6280e-04, 2.2698e-01, 1.0000e+00, 2.2698e-01, 3.6280e-04])
>>> # Generates a periodic Nuttall window.
>>> torch.signal.windows.general_hamming(5, sym=False)
tensor([3.6280e-04, 1.1052e-01, 7.9826e-01, 7.9826e-01, 1.1052e-01])
""".format(
**window_common_args
),
)
def nuttall(
M: int,
*,
sym: bool = True,
dtype: Optional[torch.dtype] = None,
layout: torch.layout = torch.strided,
device: Optional[torch.device] = None,
requires_grad: bool = False
) -> Tensor:
return general_cosine(M,
a=[0.3635819, 0.4891775, 0.1365995, 0.0106411],
sym=sym,
dtype=dtype,
layout=layout,
device=device,
requires_grad=requires_grad)
|