File size: 35,133 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 |
"""
Contains utility functions for working with nested python data structures.
A *pytree* is Python nested data structure. It is a tree in the sense that
nodes are Python collections (e.g., list, tuple, dict) and the leaves are
Python values. Furthermore, a pytree should not contain reference cycles.
pytrees are useful for working with nested collections of Tensors. For example,
one can use `tree_map` to map a function over all Tensors inside some nested
collection of Tensors and `tree_leaves` to get a flat list of all Tensors
inside some nested collection. pytrees are helpful for implementing nested
collection support for PyTorch APIs.
"""
import functools
import sys
import types
from typing import (
Any,
Callable,
Iterable,
List,
Optional,
overload,
Tuple,
Type,
TypeVar,
Union,
)
from typing_extensions import deprecated
import torch
if torch._running_with_deploy(): # type: ignore[no-untyped-call]
raise ImportError("C++ pytree utilities do not work with torch::deploy.")
import optree
from optree import PyTreeSpec # direct import for type annotations
from torch.utils._pytree import KeyEntry
__all__ = [
"PyTree",
"Context",
"FlattenFunc",
"UnflattenFunc",
"DumpableContext",
"ToDumpableContextFn",
"FromDumpableContextFn",
"TreeSpec",
"LeafSpec",
"keystr",
"key_get",
"register_pytree_node",
"tree_flatten",
"tree_flatten_with_path",
"tree_unflatten",
"tree_iter",
"tree_leaves",
"tree_leaves_with_path",
"tree_structure",
"tree_map",
"tree_map_with_path",
"tree_map_",
"tree_map_only",
"tree_map_only_",
"tree_all",
"tree_any",
"tree_all_only",
"tree_any_only",
"treespec_dumps",
"treespec_loads",
"treespec_pprint",
]
T = TypeVar("T")
S = TypeVar("S")
U = TypeVar("U")
R = TypeVar("R")
Context = Any
PyTree = Any
TreeSpec = PyTreeSpec
FlattenFunc = Callable[[PyTree], Tuple[List[Any], Context]]
UnflattenFunc = Callable[[Iterable[Any], Context], PyTree]
OpTreeUnflattenFunc = Callable[[Context, Iterable[Any]], PyTree]
DumpableContext = Any # Any json dumpable text
ToDumpableContextFn = Callable[[Context], DumpableContext]
FromDumpableContextFn = Callable[[DumpableContext], Context]
KeyPath = Tuple[KeyEntry, ...]
FlattenWithKeysFunc = Callable[[PyTree], Tuple[List[Tuple[KeyEntry, Any]], Any]]
def _reverse_args(func: UnflattenFunc) -> OpTreeUnflattenFunc:
@functools.wraps(func)
def wrapped(*args: Any, **kwargs: Any) -> Any:
return func(*reversed(args), **kwargs)
return wrapped
def register_pytree_node(
cls: Type[Any],
flatten_fn: FlattenFunc,
unflatten_fn: UnflattenFunc,
*,
serialized_type_name: Optional[str] = None,
to_dumpable_context: Optional[ToDumpableContextFn] = None,
from_dumpable_context: Optional[FromDumpableContextFn] = None,
flatten_with_keys_fn: Optional[FlattenWithKeysFunc] = None,
) -> None:
"""Register a container-like type as pytree node.
Args:
cls (type): A Python type to treat as an internal pytree node.
flatten_fn (callable): A function to be used during flattening, taking an instance of
``cls`` and returning a pair, with (1) an iterable for the children to be flattened
recursively, and (2) some hashable auxiliary data to be stored in the treespec and to be
passed to the ``unflatten_fn``.
unflatten_fn (callable): A function taking two arguments: the auxiliary data that was
returned by ``flatten_fn`` and stored in the treespec, and the unflattened children.
The function should return an instance of ``cls``.
serialized_type_name (str, optional): A keyword argument used to specify the fully
qualified name used when serializing the tree spec.
to_dumpable_context (callable, optional): An optional keyword argument to custom specify how
to convert the context of the pytree to a custom json dumpable representation. This is
used for json serialization, which is being used in :mod:`torch.export` right now.
from_dumpable_context (callable, optional): An optional keyword argument to custom specify
how to convert the custom json dumpable representation of the context back to the
original context. This is used for json deserialization, which is being used in
:mod:`torch.export` right now.
Example::
>>> # xdoctest: +SKIP
>>> # Registry a Python type with lambda functions
>>> register_pytree_node(
... set,
... lambda s: (sorted(s), None, None),
... lambda children, _: set(children),
... )
"""
if flatten_with_keys_fn is not None:
raise NotImplementedError("KeyPaths are not yet supported in cxx_pytree.")
_private_register_pytree_node(
cls,
flatten_fn,
unflatten_fn,
serialized_type_name=serialized_type_name,
to_dumpable_context=to_dumpable_context,
from_dumpable_context=from_dumpable_context,
)
from . import _pytree as python
python._private_register_pytree_node(
cls,
flatten_fn,
unflatten_fn,
serialized_type_name=serialized_type_name,
to_dumpable_context=to_dumpable_context,
from_dumpable_context=from_dumpable_context,
)
@deprecated(
"`torch.utils._cxx_pytree._register_pytree_node` is deprecated. "
"Please use `torch.utils._cxx_pytree.register_pytree_node` instead.",
category=FutureWarning,
)
def _register_pytree_node(
cls: Type[Any],
flatten_fn: FlattenFunc,
unflatten_fn: UnflattenFunc,
*,
serialized_type_name: Optional[str] = None,
to_dumpable_context: Optional[ToDumpableContextFn] = None,
from_dumpable_context: Optional[FromDumpableContextFn] = None,
) -> None:
"""Register a container-like type as pytree node for the C++ pytree only.
The ``namespace`` argument is used to avoid collisions that occur when different libraries
register the same Python type with different behaviors. It is recommended to add a unique prefix
to the namespace to avoid conflicts with other libraries. Namespaces can also be used to specify
the same class in different namespaces for different use cases.
.. warning::
For safety reasons, a ``namespace`` must be specified while registering a custom type. It is
used to isolate the behavior of flattening and unflattening a pytree node type. This is to
prevent accidental collisions between different libraries that may register the same type.
Args:
cls (type): A Python type to treat as an internal pytree node.
flatten_fn (callable): A function to be used during flattening, taking an instance of
``cls`` and returning a pair, with (1) an iterable for the children to be flattened
recursively, and (2) some hashable auxiliary data to be stored in the treespec and to be
passed to the ``unflatten_fn``.
unflatten_fn (callable): A function taking two arguments: the auxiliary data that was
returned by ``flatten_fn`` and stored in the treespec, and the unflattened children.
The function should return an instance of ``cls``.
serialized_type_name (str, optional): A keyword argument used to specify the fully
qualified name used when serializing the tree spec.
to_dumpable_context (callable, optional): An optional keyword argument to custom specify how
to convert the context of the pytree to a custom json dumpable representation. This is
used for json serialization, which is being used in :mod:`torch.export` right now.
from_dumpable_context (callable, optional): An optional keyword argument to custom specify
how to convert the custom json dumpable representation of the context back to the
original context. This is used for json deserialization, which is being used in
:mod:`torch.export` right now.
"""
_private_register_pytree_node(
cls,
flatten_fn,
unflatten_fn,
serialized_type_name=serialized_type_name,
to_dumpable_context=to_dumpable_context,
from_dumpable_context=from_dumpable_context,
)
def _private_register_pytree_node(
cls: Type[Any],
flatten_fn: FlattenFunc,
unflatten_fn: UnflattenFunc,
*,
serialized_type_name: Optional[str] = None,
to_dumpable_context: Optional[ToDumpableContextFn] = None,
from_dumpable_context: Optional[FromDumpableContextFn] = None,
) -> None:
"""This is an internal function that is used to register a pytree node type
for the C++ pytree only. End-users should use :func:`register_pytree_node`
instead.
"""
# TODO(XuehaiPan): remove this condition when we make Python pytree out-of-box support
# PyStructSequence types
if not optree.is_structseq_class(cls):
optree.register_pytree_node(
cls,
flatten_fn,
_reverse_args(unflatten_fn),
namespace="torch",
)
def tree_flatten(
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> Tuple[List[Any], TreeSpec]:
"""Flatten a pytree.
See also :func:`tree_unflatten`.
The flattening order (i.e., the order of elements in the output list) is deterministic,
corresponding to a left-to-right depth-first tree traversal.
>>> tree = {'b': (2, [3, 4]), 'a': 1, 'c': None, 'd': 5}
>>> tree_flatten(tree)
([1, 2, 3, 4, None, 5], PyTreeSpec({'a': *, 'b': (*, [*, *]), 'c': *, 'd': *}, NoneIsLeaf))
>>> tree_flatten(1)
([1], PyTreeSpec(*, NoneIsLeaf))
>>> tree_flatten(None)
([None], PyTreeSpec(*, NoneIsLeaf))
For unordered dictionaries, :class:`dict` and :class:`collections.defaultdict`, the order is
dependent on the **sorted** keys in the dictionary. Please use :class:`collections.OrderedDict`
if you want to keep the keys in the insertion order.
>>> from collections import OrderedDict
>>> tree = OrderedDict([('b', (2, [3, 4])), ('a', 1), ('c', None), ('d', 5)])
>>> tree_flatten(tree)
([2, 3, 4, 1, None, 5], PyTreeSpec(OrderedDict([('b', (*, [*, *])), ('a', *), ('c', *), ('d', *)]), NoneIsLeaf))
Args:
tree (pytree): A pytree to flatten.
is_leaf (callable, optional): An extra leaf predicate function that will be called at each
flattening step. The function should have a single argument with signature
``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
leaf or not. If the function is not specified, the default pytree registry will be used.
Returns:
A pair ``(leaves, treespec)`` where the first element is a list of leaf values and the
second element is a treespec representing the structure of the pytree.
"""
return optree.tree_flatten( # type: ignore[return-value]
tree,
is_leaf=is_leaf,
none_is_leaf=True,
namespace="torch",
)
def tree_unflatten(leaves: Iterable[Any], treespec: TreeSpec) -> PyTree:
"""Reconstruct a pytree from the treespec and the leaves.
The inverse of :func:`tree_flatten`.
>>> tree = {'b': (2, [3, 4]), 'a': 1, 'c': None, 'd': 5}
>>> leaves, treespec = tree_flatten(tree)
>>> tree == tree_unflatten(leaves, treespec)
True
Args:
leaves (iterable): The list of leaves to use for reconstruction. The list must match the
number of leaves of the treespec.
treespec (TreeSpec): The treespec to reconstruct.
Returns:
The reconstructed pytree, containing the ``leaves`` placed in the structure described by
``treespec``.
"""
if not isinstance(treespec, TreeSpec):
raise TypeError(
f"tree_unflatten(values, spec): Expected `spec` to be instance of "
f"TreeSpec but got item of type {type(treespec)}."
)
return optree.tree_unflatten(treespec, leaves) # type: ignore[arg-type]
def tree_iter(
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> Iterable[Any]:
"""Get an iterator over the leaves of a pytree.
See also :func:`tree_flatten`.
>>> tree = {'b': (2, [3, 4]), 'a': 1, 'c': None, 'd': 5}
>>> list(tree_iter(tree))
[1, 2, 3, 4, None, 5]
>>> list(tree_iter(1))
[1]
>>> list(tree_iter(None))
[None]
Args:
tree (pytree): A pytree to flatten.
is_leaf (callable, optional): An extra leaf predicate function that will be called at each
flattening step. The function should have a single argument with signature
``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
leaf or not. If the function is not specified, the default pytree registry will be used.
Returns:
An iterator over the leaf values.
"""
return optree.tree_iter(
tree,
is_leaf=is_leaf,
none_is_leaf=True,
namespace="torch",
)
def tree_leaves(
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> List[Any]:
"""Get the leaves of a pytree.
See also :func:`tree_flatten`.
>>> tree = {'b': (2, [3, 4]), 'a': 1, 'c': None, 'd': 5}
>>> tree_leaves(tree)
[1, 2, 3, 4, None, 5]
>>> tree_leaves(1)
[1]
>>> tree_leaves(None)
[None]
Args:
tree (pytree): A pytree to flatten.
is_leaf (callable, optional): An extra leaf predicate function that will be called at each
flattening step. The function should have a single argument with signature
``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
leaf or not. If the function is not specified, the default pytree registry will be used.
Returns:
A list of leaf values.
"""
return optree.tree_leaves(
tree,
is_leaf=is_leaf,
none_is_leaf=True,
namespace="torch",
)
def tree_structure(
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> TreeSpec:
"""Get the treespec for a pytree.
See also :func:`tree_flatten`.
>>> tree = {'b': (2, [3, 4]), 'a': 1, 'c': None, 'd': 5}
>>> tree_structure(tree)
PyTreeSpec({'a': *, 'b': (*, [*, *]), 'c': *, 'd': *}, NoneIsLeaf)
>>> tree_structure(1)
PyTreeSpec(*, NoneIsLeaf)
>>> tree_structure(None)
PyTreeSpec(*, NoneIsLeaf)
Args:
tree (pytree): A pytree to flatten.
is_leaf (callable, optional): An extra leaf predicate function that will be called at each
flattening step. The function should have a single argument with signature
``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
leaf or not. If the function is not specified, the default pytree registry will be used.
Returns:
A treespec object representing the structure of the pytree.
"""
return optree.tree_structure( # type: ignore[return-value]
tree,
is_leaf=is_leaf,
none_is_leaf=True,
namespace="torch",
)
def tree_map(
func: Callable[..., Any],
tree: PyTree,
*rests: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
"""Map a multi-input function over pytree args to produce a new pytree.
See also :func:`tree_map_`.
>>> tree_map(lambda x: x + 1, {'x': 7, 'y': (42, 64)})
{'x': 8, 'y': (43, 65)}
>>> tree_map(lambda x: x is None, {'x': 7, 'y': (42, 64), 'z': None})
{'x': False, 'y': (False, False), 'z': True}
If multiple inputs are given, the structure of the tree is taken from the first input;
subsequent inputs need only have ``tree`` as a prefix:
>>> tree_map(lambda x, y: [x] + y, [5, 6], [[7, 9], [1, 2]])
[[5, 7, 9], [6, 1, 2]]
Args:
func (callable): A function that takes ``1 + len(rests)`` arguments, to be applied at the
corresponding leaves of the pytrees.
tree (pytree): A pytree to be mapped over, with each leaf providing the first positional
argument to function ``func``.
rests (tuple of pytree): A tuple of pytrees, each of which has the same structure as
``tree`` or has ``tree`` as a prefix.
is_leaf (callable, optional): An extra leaf predicate function that will be called at each
flattening step. The function should have a single argument with signature
``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
leaf or not. If the function is not specified, the default pytree registry will be used.
Returns:
A new pytree with the same structure as ``tree`` but with the value at each leaf given by
``func(x, *xs)`` where ``x`` is the value at the corresponding leaf in ``tree`` and ``xs``
is the tuple of values at corresponding nodes in ``rests``.
"""
return optree.tree_map(
func,
tree,
*rests,
is_leaf=is_leaf,
none_is_leaf=True,
namespace="torch",
)
def tree_map_(
func: Callable[..., Any],
tree: PyTree,
*rests: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
"""Like :func:`tree_map`, but do an inplace call on each leaf and return the original tree.
See also :func:`tree_map`.
Args:
func (callable): A function that takes ``1 + len(rests)`` arguments, to be applied at the
corresponding leaves of the pytrees.
tree (pytree): A pytree to be mapped over, with each leaf providing the first positional
argument to function ``func``.
rests (tuple of pytree): A tuple of pytrees, each of which has the same structure as
``tree`` or has ``tree`` as a prefix.
is_leaf (callable, optional): An extra leaf predicate function that will be called at each
flattening step. The function should have a single argument with signature
``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
leaf or not. If the function is not specified, the default pytree registry will be used.
Returns:
The original ``tree`` with the value at each leaf is given by the side-effect of function
``func(x, *xs)`` (not the return value) where ``x`` is the value at the corresponding leaf
in ``tree`` and ``xs`` is the tuple of values at values at corresponding nodes in ``rests``.
"""
return optree.tree_map_(
func,
tree,
*rests,
is_leaf=is_leaf,
none_is_leaf=True,
namespace="torch",
)
Type2 = Tuple[Type[T], Type[S]]
Type3 = Tuple[Type[T], Type[S], Type[U]]
if sys.version_info >= (3, 10):
TypeAny = Union[Type[Any], Tuple[Type[Any], ...], types.UnionType]
else:
TypeAny = Union[Type[Any], Tuple[Type[Any], ...]]
Fn2 = Callable[[Union[T, S]], R]
Fn3 = Callable[[Union[T, S, U]], R]
Fn = Callable[[T], R]
FnAny = Callable[[Any], R]
MapOnlyFn = Callable[[T], Callable[[Any], Any]]
# These specializations help with type inference on the lambda passed to this
# function
@overload
def map_only(__type_or_types_or_pred: Type2[T, S]) -> MapOnlyFn[Fn2[T, S, Any]]:
...
@overload
def map_only(__type_or_types_or_pred: Type3[T, S, U]) -> MapOnlyFn[Fn3[T, S, U, Any]]:
...
@overload
def map_only(__type_or_types_or_pred: Type[T]) -> MapOnlyFn[Fn[T, Any]]:
...
# This specialization is needed for the implementations below that call
@overload
def map_only(__type_or_types_or_pred: TypeAny) -> MapOnlyFn[FnAny[Any]]:
...
@overload
def map_only(__type_or_types_or_pred: Callable[[Any], bool]) -> MapOnlyFn[FnAny[Any]]:
...
def map_only(
__type_or_types_or_pred: Union[TypeAny, Callable[[Any], bool]]
) -> MapOnlyFn[FnAny[Any]]:
"""
Suppose you are writing a tree_map over tensors, leaving everything
else unchanged. Ordinarily you would have to write:
def go(t):
if isinstance(t, Tensor):
return ...
else:
return t
With this function, you only need to write:
@map_only(Tensor)
def go(t):
return ...
You can also directly use 'tree_map_only'
"""
if isinstance(__type_or_types_or_pred, (type, tuple)) or (
sys.version_info >= (3, 10)
and isinstance(__type_or_types_or_pred, types.UnionType)
):
def pred(x: Any) -> bool:
return isinstance(x, __type_or_types_or_pred) # type: ignore[arg-type]
elif callable(__type_or_types_or_pred):
pred = __type_or_types_or_pred # type: ignore[assignment]
else:
raise TypeError("Argument must be a type, a tuple of types, or a callable.")
def wrapper(func: Callable[[T], Any]) -> Callable[[Any], Any]:
@functools.wraps(func)
def wrapped(x: T) -> Any:
if pred(x):
return func(x)
return x
return wrapped
return wrapper
@overload
def tree_map_only(
__type_or_types_or_pred: Type[T],
func: Fn[T, Any],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
...
@overload
def tree_map_only(
__type_or_types_or_pred: Type2[T, S],
func: Fn2[T, S, Any],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
...
@overload
def tree_map_only(
__type_or_types_or_pred: Type3[T, S, U],
func: Fn3[T, S, U, Any],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
...
@overload
def tree_map_only(
__type_or_types_or_pred: Callable[[Any], bool],
func: FnAny[Any],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
...
def tree_map_only(
__type_or_types_or_pred: Union[TypeAny, Callable[[Any], bool]],
func: FnAny[Any],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
return tree_map(map_only(__type_or_types_or_pred)(func), tree, is_leaf=is_leaf)
@overload
def tree_map_only_(
__type_or_types_or_pred: Type[T],
func: Fn[T, Any],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
...
@overload
def tree_map_only_(
__type_or_types_or_pred: Type2[T, S],
func: Fn2[T, S, Any],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
...
@overload
def tree_map_only_(
__type_or_types_or_pred: Type3[T, S, U],
func: Fn3[T, S, U, Any],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
...
@overload
def tree_map_only_(
__type_or_types_or_pred: Callable[[Any], bool],
func: FnAny[Any],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
...
def tree_map_only_(
__type_or_types_or_pred: Union[TypeAny, Callable[[Any], bool]],
func: FnAny[Any],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
return tree_map_(map_only(__type_or_types_or_pred)(func), tree, is_leaf=is_leaf)
def tree_all(
pred: Callable[[Any], bool],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> bool:
flat_args = tree_iter(tree, is_leaf=is_leaf)
return all(map(pred, flat_args))
def tree_any(
pred: Callable[[Any], bool],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> bool:
flat_args = tree_iter(tree, is_leaf=is_leaf)
return any(map(pred, flat_args))
@overload
def tree_all_only(
__type_or_types: Type[T],
pred: Fn[T, bool],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> bool:
...
@overload
def tree_all_only(
__type_or_types: Type2[T, S],
pred: Fn2[T, S, bool],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> bool:
...
@overload
def tree_all_only(
__type_or_types: Type3[T, S, U],
pred: Fn3[T, S, U, bool],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> bool:
...
def tree_all_only(
__type_or_types: TypeAny,
pred: FnAny[bool],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> bool:
flat_args = tree_iter(tree, is_leaf=is_leaf)
return all(pred(x) for x in flat_args if isinstance(x, __type_or_types))
@overload
def tree_any_only(
__type_or_types: Type[T],
pred: Fn[T, bool],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> bool:
...
@overload
def tree_any_only(
__type_or_types: Type2[T, S],
pred: Fn2[T, S, bool],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> bool:
...
@overload
def tree_any_only(
__type_or_types: Type3[T, S, U],
pred: Fn3[T, S, U, bool],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> bool:
...
def tree_any_only(
__type_or_types: TypeAny,
pred: FnAny[bool],
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> bool:
flat_args = tree_iter(tree, is_leaf=is_leaf)
return any(pred(x) for x in flat_args if isinstance(x, __type_or_types))
def broadcast_prefix(
prefix_tree: PyTree,
full_tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> List[Any]:
"""Return a list of broadcasted leaves in ``prefix_tree`` to match the number of leaves in ``full_tree``.
If a ``prefix_tree`` is a prefix of a ``full_tree``, this means the ``full_tree`` can be
constructed by replacing the leaves of ``prefix_tree`` with appropriate **subtrees**.
This function returns a list of leaves with the same size as ``full_tree``. The leaves are
replicated from ``prefix_tree``. The number of replicas is determined by the corresponding
subtree in ``full_tree``.
>>> broadcast_prefix(1, [1, 2, 3])
[1, 1, 1]
>>> broadcast_prefix([1, 2, 3], [1, 2, 3])
[1, 2, 3]
>>> broadcast_prefix([1, 2, 3], [1, 2, 3, 4])
Traceback (most recent call last):
...
ValueError: list arity mismatch; expected: 3, got: 4; list: [1, 2, 3, 4].
>>> broadcast_prefix([1, 2, 3], [1, 2, (3, 4)])
[1, 2, 3, 3]
>>> broadcast_prefix([1, 2, 3], [1, 2, {'a': 3, 'b': 4, 'c': (None, 5)}])
[1, 2, 3, 3, 3, 3]
Args:
prefix_tree (pytree): A pytree with the same structure as a prefix of ``full_tree``.
full_tree (pytree): A pytree with the same structure as a suffix of ``prefix_tree``.
is_leaf (callable, optional): An extra leaf predicate function that will be called at each
flattening step. The function should have a single argument with signature
``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
leaf or not. If the function is not specified, the default pytree registry will be used.
Returns:
A list of leaves in ``prefix_tree`` broadcasted to match the number of leaves in ``full_tree``.
"""
return optree.broadcast_prefix(
prefix_tree,
full_tree,
is_leaf=is_leaf,
none_is_leaf=True,
namespace="torch",
)
# Broadcasts a pytree to the provided TreeSpec and returns the flattened
# values. If this is not possible, then this function returns None.
#
# For example, given pytree=0 and spec=TreeSpec(list, None, [LeafSpec(), LeafSpec()]),
# would return [0, 0]. This is useful for part of the vmap implementation:
# a user can pass in vmap(fn, in_dims)(*inputs). `in_dims` should be
# broadcastable to the tree structure of `inputs` and we use
# _broadcast_to_and_flatten to check this.
def _broadcast_to_and_flatten(
tree: PyTree,
treespec: TreeSpec,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> Optional[List[Any]]:
assert isinstance(treespec, TreeSpec)
full_tree = tree_unflatten([0] * treespec.num_leaves, treespec)
try:
return broadcast_prefix(tree, full_tree, is_leaf=is_leaf)
except ValueError:
return None
def treespec_dumps(treespec: TreeSpec, protocol: Optional[int] = None) -> str:
"""Serialize a treespec to a JSON string."""
if not isinstance(treespec, TreeSpec):
raise TypeError(
f"treespec_dumps(spec): Expected `spec` to be instance of "
f"TreeSpec but got item of type {type(treespec)}."
)
from ._pytree import (
tree_structure as _tree_structure,
treespec_dumps as _treespec_dumps,
)
orig_treespec = _tree_structure(tree_unflatten([0] * treespec.num_leaves, treespec))
return _treespec_dumps(orig_treespec, protocol=protocol)
def treespec_loads(serialized: str) -> TreeSpec:
"""Deserialize a treespec from a JSON string."""
from ._pytree import (
tree_unflatten as _tree_unflatten,
treespec_loads as _treespec_loads,
)
orig_treespec = _treespec_loads(serialized)
dummy_tree = _tree_unflatten([0] * orig_treespec.num_leaves, orig_treespec)
treespec = tree_structure(dummy_tree)
return treespec
class _DummyLeaf:
def __repr__(self) -> str:
return "*"
def treespec_pprint(treespec: TreeSpec) -> str:
dummy_tree = tree_unflatten(
[_DummyLeaf() for _ in range(treespec.num_leaves)],
treespec,
)
return repr(dummy_tree)
class LeafSpecMeta(type(TreeSpec)): # type: ignore[misc]
def __instancecheck__(self, instance: object) -> bool:
return isinstance(instance, TreeSpec) and instance.is_leaf()
class LeafSpec(TreeSpec, metaclass=LeafSpecMeta):
def __new__(cls) -> "LeafSpec":
return optree.treespec_leaf(none_is_leaf=True) # type: ignore[return-value]
def tree_flatten_with_path(
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> Tuple[List[Tuple[KeyPath, Any]], TreeSpec]:
"""Flattens a pytree like :func:`tree_flatten`, but also returns each leaf's key path.
Args:
tree: a pytree to flatten. If it contains a custom type, that type must be
registered with an appropriate `tree_flatten_with_path_fn` when registered
with :func:`register_pytree_node`.
is_leaf: An extra leaf predicate function that will be called at each
flattening step. The function should have a single argument with signature
``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
leaf or not. If the function is not specified, the default pytree registry will be used.
Returns:
A tuple where the first element is a list of (key path, leaf) pairs, and the
second element is a :class:`TreeSpec` representing the structure of the flattened
tree.
"""
raise NotImplementedError("KeyPaths are not yet supported in cxx_pytree.")
def tree_leaves_with_path(
tree: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> List[Tuple[KeyPath, Any]]:
"""Gets the leaves of a pytree like ``tree_leaves`` and returns each leaf's key path.
Args:
tree: a pytree. If it contains a custom type, that type must be
registered with an appropriate `tree_flatten_with_path_fn` when registered
with :func:`register_pytree_node`.
is_leaf: An extra leaf predicate function that will be called at each
flattening step. The function should have a single argument with signature
``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
leaf or not. If the function is not specified, the default pytree registry will be used.
Returns:
A list of (key path, leaf) pairs.
"""
raise NotImplementedError("KeyPaths are not yet supported in cxx_pytree.")
def tree_map_with_path(
func: Callable[..., Any],
tree: PyTree,
*rests: PyTree,
is_leaf: Optional[Callable[[PyTree], bool]] = None,
) -> PyTree:
"""Like :func:`tree_map`, but the provided callable takes an additional key path argument.
Args:
func: A function that takes ``2 + len(rests)`` arguments, to be applied at the
corresponding leaves of the pytrees. The first positional argument
to ``func`` is the key path of the leaf in question. The second
positional argument is the value of the leaf.
tree: A pytree to be mapped over, with each leaf providing the first positional
argument to function ``func``.
rests: A tuple of pytrees, each of which has the same structure as
``tree`` or has ``tree`` as a prefix.
is_leaf: An extra leaf predicate function that will be called at each
flattening step. The function should have a single argument with signature
``is_leaf(node) -> bool``. If it returns :data:`True`, the whole subtree being treated
as a leaf. Otherwise, the default pytree registry will be used to determine a node is a
leaf or not. If the function is not specified, the default pytree registry will be used.
Returns
A new pytree with the same structure as ``tree`` but with the value at each leaf given by
``func(keypath, x, *xs)`` where ``keypath`` is the key path at the
corresponding leaf in ``tree``, ``x`` is the value at that leaf, and
``xs`` is the tuple of values at corresponding nodes in ``rests``.
"""
raise NotImplementedError("KeyPaths are not yet supported in cxx_pytree.")
def keystr(kp: KeyPath) -> str:
"""Given a key path, return a pretty-printed representation."""
raise NotImplementedError("KeyPaths are not yet supported in cxx_pytree.")
def key_get(obj: Any, kp: KeyPath) -> Any:
"""Given an object and a key path, return the value at the key path."""
raise NotImplementedError("KeyPaths are not yet supported in cxx_pytree.")
|