File size: 21,567 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 |
# mypy: allow-untyped-defs
import functools
import math
import sys
import sympy
from sympy import S
__all__ = [
"FloorDiv",
"ModularIndexing",
"CleanDiv",
"CeilDiv",
"IntTrueDiv",
"FloatTrueDiv",
"LShift",
"RShift",
"IsNonOverlappingAndDenseIndicator",
"RoundToInt",
"RoundDecimal",
"ToFloat",
"FloatPow",
"PowByNatural",
]
def _keep_float(f):
@functools.wraps(f)
def inner(*args):
r = f(*args)
if any(isinstance(a, sympy.Float) for a in args) and not isinstance(
r, sympy.Float
):
r = sympy.Float(float(r))
return r
return inner
def fuzzy_eq(x, y):
if None in (x, y):
return None
return x == y
# It would be nice to have assertions on whether or not inputs is_integer
# However, with bugs like https://github.com/sympy/sympy/issues/26620 sympy
# sometimes inconsistently reports floats an integers.
#
# What we can assume from sympy is that if something is an int, it
# definitely is is_integer, but if it is a float it may or may not
# be is_integer. So we are unable to do strong asserts that things
# are NOT integers.
# TODO: In Triton, // rounds to zero, but in Python, it is floor division.
# When we can prove both arguments are non-negative, we should just have a
# GenericFloorDiv (name pending) which can codegen efficiently in Python/C,
# and then PythonFloorDiv and CIntDiv which have the appropriate rounding
# semantics.
#
# Right now, FloorDiv de facto changes behavior if arguments are negative or
# not, this can potentially cause correctness issues.
class FloorDiv(sympy.Function):
"""
We maintain this so that:
1. We can use divisibility guards to simplify FloorDiv(a, b) to a / b.
2. Printing out the expression is nicer (compared to say, representing a//b as (a - a % b) / b)
NB: This is Python-style floor division, round to -Inf
"""
nargs = (2,)
precedence = 50 # precedence of mul # noqa: F811
is_integer = True
@property
def base(self):
return self.args[0]
@property
def divisor(self):
return self.args[1]
def _sympystr(self, printer):
base = printer.parenthesize(self.base, self.precedence)
divisor = printer.parenthesize(self.divisor, self.precedence)
return f"({base}//{divisor})"
# Automatic evaluation.
# https://docs.sympy.org/latest/guides/custom-functions.html#best-practices-for-eval
@classmethod
def eval(cls, base, divisor):
# python test/test_dynamic_shapes.py -k TestDimConstraints.test_dim_constraints_solve_full
# Assert triggered by inequality solver
# assert base.is_integer, base
# assert divisor.is_integer, divisor
# We don't provide the same error message as in Python because SymPy
# makes it difficult to check the types.
if divisor.is_zero:
raise ZeroDivisionError("division by zero")
if base.is_zero:
return sympy.S.Zero
if base.is_integer and divisor == 1:
return base
if base.is_integer and divisor == -1:
return sympy.Mul(base, -1)
if isinstance(base, sympy.Integer) and isinstance(divisor, sympy.Integer):
return sympy.Integer(int(base) // int(divisor))
if isinstance(base, FloorDiv):
return FloorDiv(base.args[0], base.args[1] * divisor)
# gcd in sympy is over polynomials, so you'll end up with rationals if
# you do this. Don't.
"""
if isinstance(base, sympy.Add):
for a in base.args:
gcd = sympy.gcd(a, divisor)
if gcd == divisor:
return FloorDiv(base - a, divisor) + a / gcd
"""
try:
gcd = sympy.gcd(base, divisor)
if gcd != 1:
return FloorDiv(
sympy.simplify(base / gcd), sympy.simplify(divisor / gcd)
)
except sympy.PolynomialError:
pass # https://github.com/pytorch/pytorch/issues/108276
class ModularIndexing(sympy.Function):
"""
ModularIndexing(a, b, c) => (a // b) % c where % is the C modulus
"""
nargs = (3,)
is_integer = True
@classmethod
def eval(cls, base, divisor, modulus):
if base == 0 or modulus == 1:
return sympy.Integer(0)
if (
isinstance(base, sympy.Integer)
and isinstance(divisor, sympy.Integer)
and isinstance(modulus, sympy.Integer)
):
return (base // divisor) % modulus
try:
if divisor != 1:
gcd = sympy.gcd(base, divisor)
if gcd != 1:
return ModularIndexing(
sympy.simplify(base / gcd),
sympy.simplify(divisor / gcd),
modulus,
)
except sympy.PolynomialError:
pass # https://github.com/pytorch/pytorch/issues/108276
if isinstance(base, sympy.Add):
new_terms = []
all_positive = True
for term in base.args:
if sympy.gcd(term, modulus * divisor) != modulus * divisor:
if (isinstance(term, sympy.Integer) and term < 0) or (
isinstance(term, sympy.Mul)
and isinstance(term.args[0], sympy.Integer)
and term.args[0] < 0
):
# workaround for https://github.com/openai/triton/issues/619,
# if there are negative terms, // produces wrong result
# TODO if https://github.com/openai/triton/issues/619 is fixed
# this optimization would become valid
all_positive = False
break
else:
new_terms.append(term)
if len(new_terms) != len(base.args) and all_positive:
return ModularIndexing(sum(new_terms), divisor, modulus)
if isinstance(base, FloorDiv):
return ModularIndexing(base.args[0], base.args[1] * divisor, modulus)
def _eval_is_nonnegative(self):
p, q = self.args[:2]
return fuzzy_eq(p.is_nonnegative, q.is_nonnegative) # type: ignore[attr-defined]
def _eval_is_positive(self):
p, q = self.args[:2]
return fuzzy_eq(p.is_positive, q.is_positive) # type: ignore[attr-defined]
class Where(sympy.Function):
"""
Good ol' ternary operator
"""
nargs = (3,)
def _eval_is_integer(self):
return True if self.args[1].is_integer and self.args[2].is_integer else None # type: ignore[attr-defined]
def _eval_is_nonnegative(self):
return (
True
if self.args[1].is_nonnegative and self.args[2].is_nonnegative # type: ignore[attr-defined]
else None
)
def _eval_is_positive(self):
return True if self.args[1].is_positive and self.args[2].is_positive else None # type: ignore[attr-defined]
@classmethod
def eval(cls, c, p, q):
if c == sympy.true:
return p
elif c == sympy.false:
return q
# Python-style modulus: take sign from RHS
class PythonMod(sympy.Function):
nargs = (2,)
is_integer = True
@classmethod
def eval(cls, p, q):
# python test/dynamo/test_export.py -k ExportTests.test_trivial_constraint
# Triggered by sympy.solvers.inequalities.reduce_inequalities
# assert p.is_integer, p
# assert q.is_integer, q
if q.is_zero:
raise ZeroDivisionError("Modulo by zero")
# Three cases:
# 1. p == 0
# 2. p is either q or -q
# 3. p is integer and q == 1
if p is S.Zero or p in (q, -q) or q == 1:
return S.Zero
# Evaluate if they are both literals.
if q.is_Number and p.is_Number:
return p % q
# If q == 2, it's a matter of whether p is odd or even.
if q.is_Number and q == 2:
if p.is_even:
return S.Zero
if p.is_odd:
return S.One
# If p is a multiple of q.
r = p / q
if r.is_integer:
return S.Zero
# If p < q and its ratio is positive, then:
# - floor(p / q) = 0
# - p % q = p - floor(p / q) * q = p
less = p < q
if less.is_Boolean and bool(less) and r.is_positive:
return p
if sympy.Mod(p, q) == 0:
return S.Zero
# NB: args[1] for PythonMod
def _eval_is_nonnegative(self):
return True if self.args[1].is_positive else None # type: ignore[attr-defined]
def _eval_is_nonpositive(self):
return True if self.args[1].is_negative else None # type: ignore[attr-defined]
# Generic modulus: only defined on non-negative arguments
class Mod(sympy.Function):
nargs = (2,)
is_integer = True
is_nonnegative = True
@classmethod
def eval(cls, p, q):
# This was adapted from: sympy/core/mod.py
# Triggered by
# python test/test_dynamic_shapes.py -k TestDimConstraints.test_dim_constraints_solve_full
# assert p.is_integer, p
# assert q.is_integer, q
if q.is_zero:
raise ZeroDivisionError("Modulo by zero")
# Three cases:
# 1. p == 0
# 2. p is either q or -q
# 3. p is integer and q == 1
if p is S.Zero or p in (q, -q) or q == 1:
return S.Zero
# Evaluate if they are both literals.
if q.is_Number and p.is_Number:
assert p >= 0, p
assert q >= 1, q
return p % q
# If q == 2, it's a matter of whether p is odd or even.
if q.is_Number and q == 2:
if p.is_even:
return S.Zero
if p.is_odd:
return S.One
# If p is a multiple of q.
r = p / q
if r.is_integer:
return S.Zero
# If p < q and its ratio is positive, then:
# - floor(p / q) = 0
# - p % q = p - floor(p / q) * q = p
less = p < q
if less.is_Boolean and bool(less) and r.is_positive:
return p
class CleanDiv(FloorDiv):
"""
Div where we can assume no rounding.
This is to enable future optimizations.
"""
pass
# Don't use sympy ceiling/floor as they will attempt simplifications involving
# frac
class CeilToInt(sympy.Function):
is_integer = True
@classmethod
def eval(cls, number):
# assert number.is_integer is not True, number
if number == sympy.oo:
return sympy.Integer(sys.maxsize - 1)
if number == -sympy.oo:
return sympy.Integer(-sys.maxsize - 1)
if isinstance(number, sympy.Number):
return sympy.Integer(math.ceil(float(number)))
class FloorToInt(sympy.Function):
is_integer = True
@classmethod
def eval(cls, number):
# assert number.is_integer is not True, number
if number == sympy.oo:
return sympy.Integer(sys.maxsize - 1)
if number == -sympy.oo:
return sympy.Integer(-sys.maxsize - 1)
if isinstance(number, sympy.Number):
return sympy.Integer(math.floor(float(number)))
class CeilDiv(sympy.Function):
"""
Div used in indexing that rounds up.
"""
is_integer = True
def __new__(cls, base, divisor):
base = sympy.sympify(base)
divisor = sympy.sympify(divisor)
if sympy.gcd(base, divisor) == divisor:
return CleanDiv(base, divisor)
else:
return FloorDiv(base + (divisor - 1), divisor)
class LShift(sympy.Function):
is_integer = True
@classmethod
def eval(cls, base, shift):
if shift < 0:
raise ValueError("negative shift count")
return base * 2**shift
class RShift(sympy.Function):
is_integer = True
@classmethod
def eval(cls, base, shift):
if shift < 0:
raise ValueError("negative shift count")
return base // 2**shift
def safe_pow(base, exp):
sign = 1
if base < 0:
base = -base
sign = 1 if exp % 2 == 0 else -1
return sign * _safe_pow(base, exp)
def _safe_pow(base, exponent):
if exponent < 0:
raise ValueError("Exponent must be non-negative.")
if exponent == 0:
return 1
half_exp = safe_pow(base, exponent // 2)
if half_exp > sys.maxsize - 1:
return sys.maxsize - 1
result = half_exp * half_exp
if result > sys.maxsize - 1:
return sys.maxsize - 1
if exponent % 2 == 1:
result *= base
if result > sys.maxsize - 1:
return sys.maxsize - 1
return result
class PowByNatural(sympy.Function):
is_integer = True
@classmethod
def eval(cls, base, exp):
if isinstance(base, sympy.Number) and isinstance(exp, sympy.Number):
return sympy.Integer(safe_pow(base, exp))
if isinstance(exp, sympy.Integer):
# Translate power into iterated multiplication
r = sympy.Integer(1)
for _ in range(int(exp)):
r *= base
return r
# NB: do NOT translate into sympy.Pow, we will lose knowledge that exp
# is a natural number if we do
# base is assumed to be nonnegative, thereby prevent complex numbers from
# occuring
class FloatPow(sympy.Function):
is_integer = False
is_real = True
@classmethod
def eval(cls, base, exp):
if isinstance(base, sympy.Number) and isinstance(exp, sympy.Number):
return sympy.Float(float(base) ** float(exp))
# NB: do not do any nontrivial reasoning
# Overloaded to be compatible with regular Python.
# https://github.com/pytorch/pytorch/issues/90900
#
# In particular, sympy division is willing to simplify x/x == 1
# where 1 is an integer, but this must be a float if x was float.
class FloatTrueDiv(sympy.Function):
is_integer = False
is_real = True
@classmethod
def eval(cls, base, divisor):
# assert base.is_integer is not True, base
# assert divisor.is_integer is not True, divisor
if divisor.is_zero:
raise ZeroDivisionError("division by zero")
if isinstance(base, sympy.Number) and isinstance(divisor, sympy.Number):
return sympy.Float(float(base) / float(divisor))
# Overloaded to be compatible with regular Python. We distinguish this from
# FloatTrueDiv, because the code generation has to be different for this case:
# Python has a fancy algorithm for integer true division that isn't just
# "promote both arguments to float and use float division", so you need to
# codegen it differently. While technically you can work it out from the
# types of the input, this is often inconvenient to do in Inductor codegen,
# so just have a different operator
# NB: Right now, Inductor codegen doesn't implement this correctly lol
class IntTrueDiv(sympy.Function):
is_integer = False
is_real = True
@classmethod
def eval(cls, base, divisor):
if divisor.is_zero:
raise ZeroDivisionError("division by zero")
if isinstance(base, sympy.Number) and isinstance(divisor, sympy.Number):
return sympy.Float(int(base) / int(divisor))
# TODO: As an indicator, this != 0 implies == 1 (and vice versa).
# Because we do not have the ability to guard on the stride permutation
# at the moment, it is hard to make further inferences when this is true,
# as although we know the tensor is contiguous in *some* layout, we don't
# know which one (however, you could, for example, make the inference that
# reshaping this to a 1D tensor can be guard-free.)
class IsNonOverlappingAndDenseIndicator(sympy.Function):
is_integer = True
@classmethod
def eval(cls, *args):
assert len(args) % 2 == 0
dim = len(args) // 2
# TODO: it is possible to make progress evaluating this guard
# even if not all of the inputs are known. For example, a 2D
# tensor with non-0/1 sizes but strides (0, 1) is definitely
# false, because we know its numel > 1 but it's broadcasted
# in dim 0.
if all(isinstance(a, sympy.Integer) for a in args):
# sym_node imported in torch.__init__. Local import to avoid an import cycle
from torch.fx.experimental.symbolic_shapes import (
eval_is_non_overlapping_and_dense,
)
size_args = args[0:dim]
stride_args = args[dim:]
return eval_is_non_overlapping_and_dense(
[int(a) for a in size_args], [int(a) for a in stride_args]
)
return None
# NB: this is inconsistent with math.trunc in Python
class TruncToFloat(sympy.Function):
is_integer = False
is_real = True
@classmethod
def eval(cls, number):
# assert number.is_integer is not True, number
if isinstance(number, sympy.Number):
# NB: It is safe to use truncation to integer, which is what
# math.trunc does, as Python integers are arbitrary precision and
# so we are guaranteed not to lose precision when we do this
return sympy.Float(math.trunc(float(number)))
class TruncToInt(sympy.Function):
is_integer = True
@classmethod
def eval(cls, number):
# assert number.is_integer is not True, number
if number == sympy.oo:
return sympy.Integer(sys.maxsize - 1)
if number == -sympy.oo:
return sympy.Integer(-sys.maxsize - 1)
if isinstance(number, sympy.Number):
return sympy.Integer(math.trunc(float(number)))
# This is float -> int
class RoundToInt(sympy.Function):
is_integer = True
@classmethod
def eval(cls, number):
# assert number.is_integer is not True, number
if isinstance(number, sympy.Float):
return sympy.Integer(round(float(number), 0))
# To get float -> int, Python style round semantics.
#
# x = PyFloat_AsDouble(self);
# if (o_ndigits == Py_None) {
# /* single-argument round or with None ndigits:
# * round to nearest integer */
# rounded = round(x);
# if (fabs(x-rounded) == 0.5)
# /* halfway case: round to even */
# rounded = 2.0*round(x/2.0);
# return PyLong_FromDouble(rounded);
# }
# NB: Like Round, this only ever returns floats. ndigits cannot be None
class RoundDecimal(sympy.Function):
is_integer = False
is_real = True
@classmethod
def eval(cls, number, ndigits):
# assert number.is_integer is not True, number
if isinstance(number, sympy.Float) and isinstance(ndigits, sympy.Integer):
return sympy.Float(round(float(number), int(ndigits)))
class ToFloat(sympy.Function):
is_integer = False
is_real = True
@classmethod
def eval(cls, number):
if number in [sympy.oo, -sympy.oo]:
return number
if isinstance(number, sympy.Integer):
return sympy.Float(int(number))
def make_opaque_unary_fn(name):
class OpaqueUnaryFn(sympy.Function):
"""
Unlike the builtin sympy functions on real numbers like sympy.sqrt,
these equivalents do not do any nontrivial reasoning besides
constant propagation. This helps avoid performing transformations
that are valid for real numbers but are invalid for floating point;
in particular, while we are willing to make optimizations that change
numerics for Tensor compute, we are NOT willing to make optimziations
that change numerics for size compute.
"""
_torch_handler_name = name
@classmethod
def eval(cls, a):
if isinstance(a, (sympy.Integer, sympy.Float)):
# Python converts to float64 before computing, c.f.
# >>> math.sin(2**53+1)
# -0.848925964814655
# >>> math.sin(float(2**53+1))
# -0.848925964814655
try:
return sympy.Float(getattr(math, name)(float(a)))
# Just use sympy semantics for infinity/overflow, you might get some
# weird objects but ask silly questions, get silly answers
except OverflowError:
return getattr(sympy, name)(a)
elif a in [sympy.oo, -sympy.oo, sympy.zoo, -sympy.zoo]:
return getattr(sympy, name)(a)
return None
OpaqueUnaryFn.__name__ = "OpaqueUnaryFn_" + name
return OpaqueUnaryFn
# Keep in sync with math_op_names in torch/fx/experimental/sym_node.py
OpaqueUnaryFn_sqrt = make_opaque_unary_fn("sqrt")
OpaqueUnaryFn_cos = make_opaque_unary_fn("cos")
OpaqueUnaryFn_cosh = make_opaque_unary_fn("cosh")
OpaqueUnaryFn_sin = make_opaque_unary_fn("sin")
OpaqueUnaryFn_sinh = make_opaque_unary_fn("sinh")
OpaqueUnaryFn_tan = make_opaque_unary_fn("tan")
OpaqueUnaryFn_tanh = make_opaque_unary_fn("tanh")
OpaqueUnaryFn_asin = make_opaque_unary_fn("asin")
OpaqueUnaryFn_acos = make_opaque_unary_fn("acos")
OpaqueUnaryFn_atan = make_opaque_unary_fn("atan")
OpaqueUnaryFn_exp = make_opaque_unary_fn("exp")
OpaqueUnaryFn_log = make_opaque_unary_fn("log")
OpaqueUnaryFn_asinh = make_opaque_unary_fn("asinh")
|