File size: 5,949 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# mypy: allow-untyped-defs
import math

import operator

import sympy

import torch
from torch.utils._sympy.functions import (
    _keep_float,
    FloatPow,
    FloatTrueDiv,
    FloorDiv,
    IntTrueDiv,
    Mod,
    OpaqueUnaryFn_exp,
    OpaqueUnaryFn_log,
    OpaqueUnaryFn_sqrt,
    PowByNatural,
    RoundDecimal,
    RoundToInt,
    ToFloat,
    TruncToInt,
)


# The sympy interpretation of operators.  It will also sometimes work with
# plain int/float, but if you do certain operations you will get out a
# sympy.Basic in the end.  If you want the Python/FX traceable interpretation,
# check PythonReferenceAnalysis.
# NB: For magic methods this needs to use normal magic methods
# so that test_magic_methods works
class ReferenceAnalysis:
    @staticmethod
    def constant(c, dtype):
        return sympy.sympify(c)

    @staticmethod
    def or_(a, b):
        return a | b

    @staticmethod
    def and_(a, b):
        return a & b

    @staticmethod
    def eq(a, b):
        if isinstance(a, sympy.Expr) or isinstance(b, sympy.Expr):
            return sympy.Eq(a, b)
        return a == b

    @classmethod
    def ne(cls, a, b):
        return cls.not_(cls.eq(a, b))

    @staticmethod
    def lt(a, b):
        return a < b

    @staticmethod
    def gt(a, b):
        return a > b

    @staticmethod
    def le(a, b):
        return a <= b

    @staticmethod
    def ge(a, b):
        return a >= b

    @staticmethod
    def not_(a):
        assert not isinstance(a, bool)
        return ~a

    @staticmethod
    def reciprocal(x):
        return FloatTrueDiv(1.0, x)

    @staticmethod
    def square(x):
        return PowByNatural(x, 2)

    @staticmethod
    def trunc_to_int(x, dtype):
        return TruncToInt(x)

    @staticmethod
    def ceil_to_int(x, dtype):
        return sympy.ceiling(x)

    @staticmethod
    def floor_to_int(x, dtype):
        return sympy.floor(x)

    @staticmethod
    def floor(x):
        return _keep_float(sympy.floor)(x)

    @staticmethod
    def ceil(x):
        return _keep_float(sympy.ceiling)(x)

    @staticmethod
    def to_dtype(x, dtype):
        if dtype == torch.float64:
            return ToFloat(x)
        raise NotImplementedError(f"to_dtype {dtype} NYI")

    @staticmethod
    def mod(x, y):
        return Mod(x, y)

    @staticmethod
    def abs(x):
        return abs(x)

    @staticmethod
    def neg(x):
        return -x

    @staticmethod
    def truediv(a, b):
        return FloatTrueDiv(a, b)

    @staticmethod
    def int_truediv(a, b):
        return IntTrueDiv(a, b)

    @staticmethod
    def floordiv(a, b):
        return FloorDiv(a, b)

    @staticmethod
    def truncdiv(a, b):
        raise NotImplementedError("TODO: truncdiv")

    @staticmethod
    def add(a, b):
        return _keep_float(operator.add)(a, b)

    @staticmethod
    def mul(a, b):
        return _keep_float(operator.mul)(a, b)

    @staticmethod
    def sub(a, b):
        return _keep_float(operator.sub)(a, b)

    @staticmethod
    def exp(x):
        return OpaqueUnaryFn_exp(x)

    @staticmethod
    def log(x):
        return OpaqueUnaryFn_log(x)

    @staticmethod
    def sqrt(x):
        return OpaqueUnaryFn_sqrt(x)

    @staticmethod
    def pow(a, b):
        return _keep_float(FloatPow)(a, b)

    @staticmethod
    def pow_by_natural(a, b):
        return PowByNatural(a, b)

    @staticmethod
    def minimum(a, b):
        return sympy.Min(a, b)

    @staticmethod
    def maximum(a, b):
        return sympy.Max(a, b)

    @staticmethod
    def round_to_int(a, dtype):
        return RoundToInt(a)

    @staticmethod
    def round_decimal(a, b):
        return RoundDecimal(a, b)


# Unlike ReferenceAnalysis, does NOT sympyify, instead, works with plain
# Python types and is FX traceable.  Inheritance here is purely for code
# sharing (TODO: considering splitting out a BaseReferenceAnalysis).
class PythonReferenceAnalysis(ReferenceAnalysis):
    @staticmethod
    def constant(c, dtype):
        if dtype is torch.int64:
            return int(c)
        elif dtype is torch.double:
            return float(c)
        elif dtype is torch.bool:
            return bool(c)
        else:
            raise AssertionError(f"unrecognized dtype {dtype}")

    @staticmethod
    def not_(a):
        return torch.sym_not(a)

    @staticmethod
    def floordiv(a, b):
        return a // b

    @staticmethod
    def mod(x, y):
        return x % y

    @staticmethod
    def truncdiv(a, b):
        return a / b

    @staticmethod
    def to_dtype(x, dtype):
        if dtype == torch.float64:
            return float(x)
        raise NotImplementedError(f"to_dtype {dtype} NYI")

    @staticmethod
    def exp(x):
        raise AssertionError("exp is not valid shape sympy expr")

    @staticmethod
    def log(x):
        raise AssertionError("log is not valid shape sympy expr")

    @staticmethod
    def sqrt(x):
        return torch._sym_sqrt(x)  # type: ignore[attr-defined]

    @staticmethod
    def minimum(a, b):
        return torch.sym_min(a, b)

    @staticmethod
    def maximum(a, b):
        return torch.sym_max(a, b)

    @staticmethod
    def floor_to_int(x, dtype):
        return math.floor(x)

    @staticmethod
    def ceil_to_int(x, dtype):
        return math.ceil(x)

    @staticmethod
    def floor(x):
        return float(math.floor(x))

    @staticmethod
    def ceil(x):
        return float(math.ceil(x))

    @staticmethod
    def truediv(a, b):
        return a / b

    @staticmethod
    def pow(a, b):
        return a**b

    @staticmethod
    def pow_by_natural(a, b):
        # Pray that safe_pow is not needed here lol.  In particular, this
        # never participates in VR low/high ranges, so overflow should be
        # unlikely
        return a**b

    @staticmethod
    def round_to_int(a, dtype):
        return round(a)

    @staticmethod
    def round_decimal(a, b):
        return round(a, ndigits=b)