File size: 16,770 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
import functools
import pickle
from typing import Dict, Callable, Optional, TypeVar, Generic, Iterator
from torch.utils.data.datapipes._typing import _DataPipeMeta, _IterDataPipeMeta
from torch.utils.data.datapipes._hook_iterator import _SnapshotState
from torch.utils.data.datapipes.utils.common import (
_deprecation_warning,
_iter_deprecated_functional_names,
_map_deprecated_functional_names,
)
from torch.utils.data.dataset import Dataset, IterableDataset
from torch.utils._import_utils import import_dill
dill = import_dill()
HAS_DILL = dill is not None
__all__ = [
"DataChunk",
"DFIterDataPipe",
"IterDataPipe",
"MapDataPipe",
]
T = TypeVar('T')
T_co = TypeVar('T_co', covariant=True)
UNTRACABLE_DATAFRAME_PIPES = ['batch', # As it returns DataChunks
'groupby', # As it returns DataChunks
'_dataframes_as_tuples', # As it unpacks DF
'trace_as_dataframe', # As it used to mark DF for tracing
]
class IterDataPipe(IterableDataset[T_co], metaclass=_IterDataPipeMeta):
r"""
Iterable-style DataPipe.
All DataPipes that represent an iterable of data samples should subclass this.
This style of DataPipes is particularly useful when data come from a stream, or
when the number of samples is too large to fit them all in memory. ``IterDataPipe`` is lazily initialized and its
elements are computed only when ``next()`` is called on the iterator of an ``IterDataPipe``.
All subclasses should overwrite :meth:`__iter__`, which would return an
iterator of samples in this DataPipe. Calling ``__iter__`` of an ``IterDataPipe`` automatically invokes its
method ``reset()``, which by default performs no operation. When writing a custom ``IterDataPipe``, users should
override ``reset()`` if necessary. The common usages include resetting buffers, pointers,
and various state variables within the custom ``IterDataPipe``.
Note:
Only `one` iterator can be valid for each ``IterDataPipe`` at a time,
and the creation a second iterator will invalidate the first one. This constraint is necessary because
some ``IterDataPipe`` have internal buffers, whose states can become invalid if there are multiple iterators.
The code example below presents details on how this constraint looks in practice.
If you have any feedback related to this constraint, please see `GitHub IterDataPipe Single Iterator Issue`_.
These DataPipes can be invoked in two ways, using the class constructor or applying their
functional form onto an existing ``IterDataPipe`` (recommended, available to most but not all DataPipes).
You can chain multiple `IterDataPipe` together to form a pipeline that will perform multiple
operations in succession.
.. _GitHub IterDataPipe Single Iterator Issue:
https://github.com/pytorch/data/issues/45
Note:
When a subclass is used with :class:`~torch.utils.data.DataLoader`, each
item in the DataPipe will be yielded from the :class:`~torch.utils.data.DataLoader`
iterator. When :attr:`num_workers > 0`, each worker process will have a
different copy of the DataPipe object, so it is often desired to configure
each copy independently to avoid having duplicate data returned from the
workers. :func:`~torch.utils.data.get_worker_info`, when called in a worker
process, returns information about the worker. It can be used in either the
dataset's :meth:`__iter__` method or the :class:`~torch.utils.data.DataLoader` 's
:attr:`worker_init_fn` option to modify each copy's behavior.
Examples:
General Usage:
>>> # xdoctest: +SKIP
>>> from torchdata.datapipes.iter import IterableWrapper, Mapper
>>> dp = IterableWrapper(range(10))
>>> map_dp_1 = Mapper(dp, lambda x: x + 1) # Using class constructor
>>> map_dp_2 = dp.map(lambda x: x + 1) # Using functional form (recommended)
>>> list(map_dp_1)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> list(map_dp_2)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> filter_dp = map_dp_1.filter(lambda x: x % 2 == 0)
>>> list(filter_dp)
[2, 4, 6, 8, 10]
Single Iterator Constraint Example:
>>> from torchdata.datapipes.iter import IterableWrapper, Mapper
>>> source_dp = IterableWrapper(range(10))
>>> it1 = iter(source_dp)
>>> list(it1)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> it1 = iter(source_dp)
>>> it2 = iter(source_dp) # The creation of a new iterator invalidates `it1`
>>> next(it2)
0
>>> next(it1) # Further usage of `it1` will raise a `RunTimeError`
"""
functions: Dict[str, Callable] = {}
reduce_ex_hook: Optional[Callable] = None
getstate_hook: Optional[Callable] = None
str_hook: Optional[Callable] = None
repr_hook: Optional[Callable] = None
_valid_iterator_id: Optional[int] = None
_number_of_samples_yielded: int = 0
_snapshot_state: _SnapshotState = _SnapshotState.NotStarted
_fast_forward_iterator: Optional[Iterator] = None
def __iter__(self) -> Iterator[T_co]:
return self
def __getattr__(self, attribute_name):
if attribute_name in IterDataPipe.functions:
if attribute_name in _iter_deprecated_functional_names:
kwargs = _iter_deprecated_functional_names[attribute_name]
_deprecation_warning(**kwargs)
f = IterDataPipe.functions[attribute_name]
function = functools.partial(f, self)
functools.update_wrapper(wrapper=function, wrapped=f, assigned=("__doc__",))
return function
else:
raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{attribute_name}")
@classmethod
def register_function(cls, function_name, function):
cls.functions[function_name] = function
@classmethod
def register_datapipe_as_function(cls, function_name, cls_to_register, enable_df_api_tracing=False):
if function_name in cls.functions:
raise Exception(f"Unable to add DataPipe function name {function_name} as it is already taken") # noqa: TRY002
def class_function(cls, enable_df_api_tracing, source_dp, *args, **kwargs):
result_pipe = cls(source_dp, *args, **kwargs)
if isinstance(result_pipe, IterDataPipe):
if enable_df_api_tracing or isinstance(source_dp, DFIterDataPipe):
if function_name not in UNTRACABLE_DATAFRAME_PIPES:
result_pipe = result_pipe.trace_as_dataframe()
return result_pipe
function = functools.partial(
class_function, cls_to_register, enable_df_api_tracing
)
functools.update_wrapper(
wrapper=function, wrapped=cls_to_register, assigned=("__doc__",)
)
cls.functions[function_name] = function
def __getstate__(self):
"""
Serialize `lambda` functions when `dill` is available.
If this doesn't cover your custom DataPipe's use case, consider writing custom methods for
`__getstate__` and `__setstate__`, or use `pickle.dumps` for serialization.
"""
state = self.__dict__
if IterDataPipe.getstate_hook is not None:
return IterDataPipe.getstate_hook(state)
return state
def __reduce_ex__(self, *args, **kwargs):
if IterDataPipe.reduce_ex_hook is not None:
try:
return IterDataPipe.reduce_ex_hook(self)
except NotImplementedError:
pass
return super().__reduce_ex__(*args, **kwargs)
@classmethod
def set_getstate_hook(cls, hook_fn):
if IterDataPipe.getstate_hook is not None and hook_fn is not None:
raise Exception("Attempt to override existing getstate_hook") # noqa: TRY002
IterDataPipe.getstate_hook = hook_fn
@classmethod
def set_reduce_ex_hook(cls, hook_fn):
if IterDataPipe.reduce_ex_hook is not None and hook_fn is not None:
raise Exception("Attempt to override existing reduce_ex_hook") # noqa: TRY002
IterDataPipe.reduce_ex_hook = hook_fn
def __repr__(self):
if self.repr_hook is not None:
return self.repr_hook(self)
# Instead of showing <torch. ... .MapperIterDataPipe object at 0x.....>, return the class name
return str(self.__class__.__qualname__)
def __str__(self):
if self.str_hook is not None:
return self.str_hook(self)
# Instead of showing <torch. ... .MapperIterDataPipe object at 0x.....>, return the class name
return str(self.__class__.__qualname__)
def __dir__(self):
# for auto-completion in a REPL (e.g. Jupyter notebook)
return list(super().__dir__()) + list(self.functions.keys())
def reset(self) -> None:
r"""
Reset the `IterDataPipe` to the initial state.
By default, no-op. For subclasses of `IterDataPipe`, depending on their functionalities,
they may want to override this method with implementations that
may clear the buffers and reset pointers of the DataPipe.
The `reset` method is always called when `__iter__` is called as part of `hook_iterator`.
"""
pass
class DFIterDataPipe(IterDataPipe):
def _is_dfpipe(self):
return True
class MapDataPipe(Dataset[T_co], metaclass=_DataPipeMeta):
r"""
Map-style DataPipe.
All datasets that represent a map from keys to data samples should subclass this.
Subclasses should overwrite :meth:`__getitem__`, supporting fetching a
data sample for a given, unique key. Subclasses can also optionally overwrite
:meth:`__len__`, which is expected to return the size of the dataset by many
:class:`~torch.utils.data.Sampler` implementations and the default options
of :class:`~torch.utils.data.DataLoader`.
These DataPipes can be invoked in two ways, using the class constructor or applying their
functional form onto an existing `MapDataPipe` (recommend, available to most but not all DataPipes).
Note:
:class:`~torch.utils.data.DataLoader` by default constructs an index
sampler that yields integral indices. To make it work with a map-style
DataPipe with non-integral indices/keys, a custom sampler must be provided.
Example:
>>> # xdoctest: +SKIP
>>> from torchdata.datapipes.map import SequenceWrapper, Mapper
>>> dp = SequenceWrapper(range(10))
>>> map_dp_1 = dp.map(lambda x: x + 1) # Using functional form (recommended)
>>> list(map_dp_1)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> map_dp_2 = Mapper(dp, lambda x: x + 1) # Using class constructor
>>> list(map_dp_2)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> batch_dp = map_dp_1.batch(batch_size=2)
>>> list(batch_dp)
[[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]
"""
functions: Dict[str, Callable] = {}
reduce_ex_hook: Optional[Callable] = None
getstate_hook: Optional[Callable] = None
str_hook: Optional[Callable] = None
repr_hook: Optional[Callable] = None
def __getattr__(self, attribute_name):
if attribute_name in MapDataPipe.functions:
if attribute_name in _map_deprecated_functional_names:
kwargs = _map_deprecated_functional_names[attribute_name]
_deprecation_warning(**kwargs)
f = MapDataPipe.functions[attribute_name]
function = functools.partial(f, self)
functools.update_wrapper(wrapper=function, wrapped=f, assigned=("__doc__",))
return function
else:
raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{attribute_name}")
@classmethod
def register_function(cls, function_name, function):
cls.functions[function_name] = function
@classmethod
def register_datapipe_as_function(cls, function_name, cls_to_register):
if function_name in cls.functions:
raise Exception(f"Unable to add DataPipe function name {function_name} as it is already taken") # noqa: TRY002
def class_function(cls, source_dp, *args, **kwargs):
result_pipe = cls(source_dp, *args, **kwargs)
return result_pipe
function = functools.partial(class_function, cls_to_register)
functools.update_wrapper(
wrapper=function, wrapped=cls_to_register, assigned=("__doc__",)
)
cls.functions[function_name] = function
def __getstate__(self):
"""
Serialize `lambda` functions when `dill` is available.
If this doesn't cover your custom DataPipe's use case, consider writing custom methods for
`__getstate__` and `__setstate__`, or use `pickle.dumps` for serialization.
"""
state = self.__dict__
if MapDataPipe.getstate_hook is not None:
return MapDataPipe.getstate_hook(state)
return state
def __reduce_ex__(self, *args, **kwargs):
if MapDataPipe.reduce_ex_hook is not None:
try:
return MapDataPipe.reduce_ex_hook(self)
except NotImplementedError:
pass
return super().__reduce_ex__(*args, **kwargs)
@classmethod
def set_getstate_hook(cls, hook_fn):
if MapDataPipe.getstate_hook is not None and hook_fn is not None:
raise Exception("Attempt to override existing getstate_hook") # noqa: TRY002
MapDataPipe.getstate_hook = hook_fn
@classmethod
def set_reduce_ex_hook(cls, hook_fn):
if MapDataPipe.reduce_ex_hook is not None and hook_fn is not None:
raise Exception("Attempt to override existing reduce_ex_hook") # noqa: TRY002
MapDataPipe.reduce_ex_hook = hook_fn
def __repr__(self):
if self.repr_hook is not None:
return self.repr_hook(self)
# Instead of showing <torch. ... .MapperMapDataPipe object at 0x.....>, return the class name
return str(self.__class__.__qualname__)
def __str__(self):
if self.str_hook is not None:
return self.str_hook(self)
# Instead of showing <torch. ... .MapperMapDataPipe object at 0x.....>, return the class name
return str(self.__class__.__qualname__)
def __dir__(self):
# for auto-completion in a REPL (e.g. Jupyter notebook)
return list(super().__dir__()) + list(self.functions.keys())
class _DataPipeSerializationWrapper:
def __init__(self, datapipe):
self._datapipe = datapipe
def __getstate__(self):
use_dill = False
try:
value = pickle.dumps(self._datapipe)
except Exception:
if HAS_DILL:
value = dill.dumps(self._datapipe)
use_dill = True
else:
raise
return (value, use_dill)
def __setstate__(self, state):
value, use_dill = state
if use_dill:
self._datapipe = dill.loads(value)
else:
self._datapipe = pickle.loads(value)
def __len__(self):
try:
return len(self._datapipe)
except Exception as e:
raise TypeError(
f"{type(self).__name__} instance doesn't have valid length"
) from e
class _IterDataPipeSerializationWrapper(_DataPipeSerializationWrapper, IterDataPipe):
def __init__(self, datapipe: IterDataPipe[T_co]):
super().__init__(datapipe)
self._datapipe_iter: Optional[Iterator[T_co]] = None
def __iter__(self) -> "_IterDataPipeSerializationWrapper":
self._datapipe_iter = iter(self._datapipe)
return self
def __next__(self) -> T_co: # type: ignore[type-var]
assert self._datapipe_iter is not None
return next(self._datapipe_iter)
class _MapDataPipeSerializationWrapper(_DataPipeSerializationWrapper, MapDataPipe):
def __getitem__(self, idx):
return self._datapipe[idx]
class DataChunk(list, Generic[T]):
def __init__(self, items):
super().__init__(items)
self.items = items
def as_str(self, indent=''):
res = indent + "[" + ", ".join(str(i) for i in iter(self)) + "]"
return res
def __iter__(self) -> Iterator[T]:
yield from super().__iter__()
def raw_iterator(self) -> T: # type: ignore[misc]
yield from self.items
|