File size: 32,334 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 |
# This base template ("datapipe.pyi.in") is generated from mypy stubgen with minimal editing for code injection
# The output file will be "datapipe.pyi". This is executed as part of torch/CMakeLists.txt
# Note that, for mypy, .pyi file takes precedent over .py file, such that we must define the interface for other
# classes/objects here, even though we are not injecting extra code into them at the moment.
from typing import Any, Callable, Dict, Generic, Iterator, List, Literal, Optional, TypeVar, Union
from torch.utils.data import Dataset, default_collate, IterableDataset
from torch.utils.data.datapipes._hook_iterator import _SnapshotState
from torch.utils.data.datapipes._typing import _DataPipeMeta, _IterDataPipeMeta
T_co = TypeVar("T_co", covariant=True)
T = TypeVar("T")
UNTRACABLE_DATAFRAME_PIPES: Any
class MapDataPipe(Dataset[T_co], metaclass=_DataPipeMeta):
functions: Dict[str, Callable] = ...
reduce_ex_hook: Optional[Callable] = ...
getstate_hook: Optional[Callable] = ...
str_hook: Optional[Callable] = ...
repr_hook: Optional[Callable] = ...
def __getattr__(self, attribute_name: Any): ...
@classmethod
def register_function(cls, function_name: Any, function: Any) -> None: ...
@classmethod
def register_datapipe_as_function(
cls,
function_name: Any,
cls_to_register: Any,
): ...
def __getstate__(self): ...
def __reduce_ex__(self, *args: Any, **kwargs: Any): ...
@classmethod
def set_getstate_hook(cls, hook_fn: Any) -> None: ...
@classmethod
def set_reduce_ex_hook(cls, hook_fn: Any) -> None: ...
# Functional form of 'BatcherMapDataPipe'
def batch(self, batch_size: int, drop_last: bool = False, wrapper_class=DataChunk) -> MapDataPipe:
r"""
Create mini-batches of data (functional name: ``batch``).
An outer dimension will be added as ``batch_size`` if ``drop_last`` is set to ``True``,
or ``length % batch_size`` for the last batch if ``drop_last`` is set to ``False``.
Args:
datapipe: Iterable DataPipe being batched
batch_size: The size of each batch
drop_last: Option to drop the last batch if it's not full
Example:
>>> # xdoctest: +SKIP
>>> from torchdata.datapipes.map import SequenceWrapper
>>> dp = SequenceWrapper(range(10))
>>> batch_dp = dp.batch(batch_size=2)
>>> list(batch_dp)
[[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]]
"""
# Functional form of 'ConcaterMapDataPipe'
def concat(self, *datapipes: MapDataPipe) -> MapDataPipe:
r"""
Concatenate multiple Map DataPipes (functional name: ``concat``).
The new index of is the cumulative sum of source DataPipes.
For example, if there are 2 source DataPipes both with length 5,
index 0 to 4 of the resulting `ConcatMapDataPipe` would refer to
elements of the first DataPipe, and 5 to 9 would refer to elements
of the second DataPipe.
Args:
datapipes: Map DataPipes being concatenated
Example:
>>> # xdoctest: +SKIP
>>> from torchdata.datapipes.map import SequenceWrapper
>>> dp1 = SequenceWrapper(range(3))
>>> dp2 = SequenceWrapper(range(3))
>>> concat_dp = dp1.concat(dp2)
>>> list(concat_dp)
[0, 1, 2, 0, 1, 2]
"""
# Functional form of 'MapperMapDataPipe'
def map(self, fn: Callable= ...) -> MapDataPipe:
r"""
Apply the input function over each item from the source DataPipe (functional name: ``map``).
The function can be any regular Python function or partial object. Lambda
function is not recommended as it is not supported by pickle.
Args:
datapipe: Source MapDataPipe
fn: Function being applied to each item
Example:
>>> # xdoctest: +SKIP
>>> from torchdata.datapipes.map import SequenceWrapper, Mapper
>>> def add_one(x):
... return x + 1
>>> dp = SequenceWrapper(range(10))
>>> map_dp_1 = dp.map(add_one)
>>> list(map_dp_1)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> map_dp_2 = Mapper(dp, lambda x: x + 1)
>>> list(map_dp_2)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
"""
# Functional form of 'ShufflerIterDataPipe'
def shuffle(self, *, indices: Optional[List] = None) -> IterDataPipe:
r"""
Shuffle the input MapDataPipe via its indices (functional name: ``shuffle``).
When it is used with :class:`~torch.utils.data.DataLoader`, the methods to
set up random seed are different based on :attr:`num_workers`.
For single-process mode (:attr:`num_workers == 0`), the random seed is set before
the :class:`~torch.utils.data.DataLoader` in the main process. For multi-process
mode (:attr:`num_worker > 0`), ``worker_init_fn`` is used to set up a random seed
for each worker process.
Args:
datapipe: MapDataPipe being shuffled
indices: a list of indices of the MapDataPipe. If not provided, we assume it uses 0-based indexing
Example:
>>> # xdoctest: +SKIP
>>> from torchdata.datapipes.map import SequenceWrapper
>>> dp = SequenceWrapper(range(10))
>>> shuffle_dp = dp.shuffle().set_seed(0)
>>> list(shuffle_dp)
[7, 8, 1, 5, 3, 4, 2, 0, 9, 6]
>>> list(shuffle_dp)
[6, 1, 9, 5, 2, 4, 7, 3, 8, 0]
>>> # Reset seed for Shuffler
>>> shuffle_dp = shuffle_dp.set_seed(0)
>>> list(shuffle_dp)
[7, 8, 1, 5, 3, 4, 2, 0, 9, 6]
Note:
Even thought this ``shuffle`` operation takes a ``MapDataPipe`` as the input, it would return an
``IterDataPipe`` rather than a ``MapDataPipe``, because ``MapDataPipe`` should be non-sensitive to
the order of data order for the sake of random reads, but ``IterDataPipe`` depends on the order
of data during data-processing.
"""
# Functional form of 'ZipperMapDataPipe'
def zip(self, *datapipes: MapDataPipe[T_co]) -> MapDataPipe:
r"""
Aggregates elements into a tuple from each of the input DataPipes (functional name: ``zip``).
This MataPipe is out of bound as soon as the shortest input DataPipe is exhausted.
Args:
*datapipes: Map DataPipes being aggregated
Example:
>>> # xdoctest: +SKIP
>>> from torchdata.datapipes.map import SequenceWrapper
>>> dp1 = SequenceWrapper(range(3))
>>> dp2 = SequenceWrapper(range(10, 13))
>>> zip_dp = dp1.zip(dp2)
>>> list(zip_dp)
[(0, 10), (1, 11), (2, 12)]
"""
class IterDataPipe(IterableDataset[T_co], metaclass=_IterDataPipeMeta):
functions: Dict[str, Callable] = ...
reduce_ex_hook: Optional[Callable] = ...
getstate_hook: Optional[Callable] = ...
str_hook: Optional[Callable] = ...
repr_hook: Optional[Callable] = ...
_number_of_samples_yielded: int = ...
_snapshot_state: _SnapshotState = _SnapshotState.Iterating
_fast_forward_iterator: Optional[Iterator] = ...
def __getattr__(self, attribute_name: Any): ...
@classmethod
def register_function(cls, function_name: Any, function: Any) -> None: ...
@classmethod
def register_datapipe_as_function(
cls,
function_name: Any,
cls_to_register: Any,
enable_df_api_tracing: bool = ...,
): ...
def __getstate__(self): ...
def __reduce_ex__(self, *args: Any, **kwargs: Any): ...
@classmethod
def set_getstate_hook(cls, hook_fn: Any) -> None: ...
@classmethod
def set_reduce_ex_hook(cls, hook_fn: Any) -> None: ...
# Functional form of 'BatcherIterDataPipe'
def batch(self, batch_size: int, drop_last: bool = False, wrapper_class=DataChunk) -> IterDataPipe:
r"""
Creates mini-batches of data (functional name: ``batch``).
An outer dimension will be added as ``batch_size`` if ``drop_last`` is set to ``True``, or ``length % batch_size`` for the
last batch if ``drop_last`` is set to ``False``.
Args:
datapipe: Iterable DataPipe being batched
batch_size: The size of each batch
drop_last: Option to drop the last batch if it's not full
wrapper_class: wrapper to apply onto each batch (type ``List``) before yielding,
defaults to ``DataChunk``
Example:
>>> # xdoctest: +SKIP
>>> from torchdata.datapipes.iter import IterableWrapper
>>> dp = IterableWrapper(range(10))
>>> dp = dp.batch(batch_size=3, drop_last=True)
>>> list(dp)
[[0, 1, 2], [3, 4, 5], [6, 7, 8]]
"""
# Functional form of 'CollatorIterDataPipe'
def collate(self, conversion: Optional[Union[Callable[..., Any],Dict[Union[str, Any], Union[Callable, Any]],]] = default_collate, collate_fn: Optional[Callable] = None) -> IterDataPipe:
r"""
Collates samples from DataPipe to Tensor(s) by a custom collate function (functional name: ``collate``).
By default, it uses :func:`torch.utils.data.default_collate`.
.. note::
While writing a custom collate function, you can import :func:`torch.utils.data.default_collate` for the
default behavior and `functools.partial` to specify any additional arguments.
Args:
datapipe: Iterable DataPipe being collated
collate_fn: Customized collate function to collect and combine data or a batch of data.
Default function collates to Tensor(s) based on data type.
Example:
>>> # xdoctest: +SKIP
>>> # Convert integer data to float Tensor
>>> class MyIterDataPipe(torch.utils.data.IterDataPipe):
... def __init__(self, start, end):
... super(MyIterDataPipe).__init__()
... assert end > start, "this example code only works with end >= start"
... self.start = start
... self.end = end
...
... def __iter__(self):
... return iter(range(self.start, self.end))
...
... def __len__(self):
... return self.end - self.start
...
>>> ds = MyIterDataPipe(start=3, end=7)
>>> print(list(ds))
[3, 4, 5, 6]
>>> def collate_fn(batch):
... return torch.tensor(batch, dtype=torch.float)
...
>>> collated_ds = CollateIterDataPipe(ds, collate_fn=collate_fn)
>>> print(list(collated_ds))
[tensor(3.), tensor(4.), tensor(5.), tensor(6.)]
"""
# Functional form of 'ConcaterIterDataPipe'
def concat(self, *datapipes: IterDataPipe) -> IterDataPipe:
r"""
Concatenates multiple Iterable DataPipes (functional name: ``concat``).
The resulting DataPipe will yield all the elements from the first input DataPipe, before yielding from the subsequent ones.
Args:
datapipes: Iterable DataPipes being concatenated
Example:
>>> # xdoctest: +REQUIRES(module:torchdata)
>>> import random
>>> from torchdata.datapipes.iter import IterableWrapper
>>> dp1 = IterableWrapper(range(3))
>>> dp2 = IterableWrapper(range(5))
>>> list(dp1.concat(dp2))
[0, 1, 2, 0, 1, 2, 3, 4]
"""
# Functional form of 'DemultiplexerIterDataPipe'
def demux(self, num_instances: int, classifier_fn: Callable[[T_co], Optional[int]], drop_none: bool = False, buffer_size: int = 1000) -> List[IterDataPipe]:
r"""
Splits the input DataPipe into multiple child DataPipes, using the given classification function (functional name: ``demux``).
A list of the child DataPipes is returned from this operation.
Args:
datapipe: Iterable DataPipe being filtered
num_instances: number of instances of the DataPipe to create
classifier_fn: a function that maps values to an integer within the range ``[0, num_instances - 1]`` or ``None``
drop_none: defaults to ``False``, if ``True``, the function will skip over elements classified as ``None``
buffer_size: this defines the maximum number of inputs that the buffer can hold across all child
DataPipes while waiting for their values to be yielded.
Defaults to ``1000``. Use ``-1`` for the unlimited buffer.
Examples:
>>> # xdoctest: +REQUIRES(module:torchdata)
>>> from torchdata.datapipes.iter import IterableWrapper
>>> def odd_or_even(n):
... return n % 2
>>> source_dp = IterableWrapper(range(5))
>>> dp1, dp2 = source_dp.demux(num_instances=2, classifier_fn=odd_or_even)
>>> list(dp1)
[0, 2, 4]
>>> list(dp2)
[1, 3]
>>> # It can also filter out any element that gets `None` from the `classifier_fn`
>>> def odd_or_even_no_zero(n):
... return n % 2 if n != 0 else None
>>> dp1, dp2 = source_dp.demux(num_instances=2, classifier_fn=odd_or_even_no_zero, drop_none=True)
>>> list(dp1)
[2, 4]
>>> list(dp2)
[1, 3]
"""
# Functional form of 'FilterIterDataPipe'
def filter(self, filter_fn: Callable, input_col=None) -> IterDataPipe:
r"""
Filters out elements from the source datapipe according to input ``filter_fn`` (functional name: ``filter``).
Args:
datapipe: Iterable DataPipe being filtered
filter_fn: Customized function mapping an element to a boolean.
input_col: Index or indices of data which ``filter_fn`` is applied, such as:
- ``None`` as default to apply ``filter_fn`` to the data directly.
- Integer(s) is used for list/tuple.
- Key(s) is used for dict.
Example:
>>> # xdoctest: +SKIP
>>> from torchdata.datapipes.iter import IterableWrapper
>>> def is_even(n):
... return n % 2 == 0
>>> dp = IterableWrapper(range(5))
>>> filter_dp = dp.filter(filter_fn=is_even)
>>> list(filter_dp)
[0, 2, 4]
"""
# Functional form of 'ForkerIterDataPipe'
def fork(self, num_instances: int, buffer_size: int = 1000, copy: Optional[Literal["shallow", "deep"]] = None) -> List[IterDataPipe]:
r"""
Creates multiple instances of the same Iterable DataPipe (functional name: ``fork``).
Args:
datapipe: Iterable DataPipe being copied
num_instances: number of instances of the datapipe to create
buffer_size: this restricts how far ahead the leading child DataPipe
can read relative to the slowest child DataPipe.
Defaults to ``1000``. Use ``-1`` for the unlimited buffer.
copy: copy strategy to use for items yielded by each branch. Supported
options are ``None`` for no copying, ``"shallow"`` for shallow object
copies, and ``"deep"`` for deep object copies. Defaults to ``None``.
Note:
All branches of the forked pipeline return the identical object unless
the copy parameter is supplied. If the object is mutable or contains
mutable objects, changing them in one branch will affect all others.
Example:
>>> # xdoctest: +REQUIRES(module:torchdata)
>>> from torchdata.datapipes.iter import IterableWrapper
>>> source_dp = IterableWrapper(range(5))
>>> dp1, dp2 = source_dp.fork(num_instances=2)
>>> list(dp1)
[0, 1, 2, 3, 4]
>>> list(dp2)
[0, 1, 2, 3, 4]
"""
# Functional form of 'GrouperIterDataPipe'
def groupby(self, group_key_fn: Callable[[T_co], Any], *, keep_key: bool = False, buffer_size: int = 10000, group_size: Optional[int] = None, guaranteed_group_size: Optional[int] = None, drop_remaining: bool = False) -> IterDataPipe:
r"""
Groups data from IterDataPipe by keys from ``group_key_fn``, yielding a ``DataChunk`` with batch size up to ``group_size``.
(functional name: ``groupby``).
The samples are read sequentially from the source ``datapipe``, and a batch of samples belonging to the same group
will be yielded as soon as the size of the batch reaches ``group_size``. When the buffer is full,
the DataPipe will yield the largest batch with the same key, provided that its size is larger
than ``guaranteed_group_size``. If its size is smaller, it will be dropped if ``drop_remaining=True``.
After iterating through the entirety of source ``datapipe``, everything not dropped due to the buffer capacity
will be yielded from the buffer, even if the group sizes are smaller than ``guaranteed_group_size``.
Args:
datapipe: Iterable datapipe to be grouped
group_key_fn: Function used to generate group key from the data of the source datapipe
keep_key: Option to yield the matching key along with the items in a tuple,
resulting in `(key, [items])` otherwise returning [items]
buffer_size: The size of buffer for ungrouped data
group_size: The max size of each group, a batch is yielded as soon as it reaches this size
guaranteed_group_size: The guaranteed minimum group size to be yielded in case the buffer is full
drop_remaining: Specifies if the group smaller than ``guaranteed_group_size`` will be dropped from buffer
when the buffer is full
Example:
>>> import os
>>> # xdoctest: +SKIP
>>> from torchdata.datapipes.iter import IterableWrapper
>>> def group_fn(file):
... return os.path.basename(file).split(".")[0]
>>> source_dp = IterableWrapper(["a.png", "b.png", "a.json", "b.json", "a.jpg", "c.json"])
>>> dp0 = source_dp.groupby(group_key_fn=group_fn)
>>> list(dp0)
[['a.png', 'a.json', 'a.jpg'], ['b.png', 'b.json'], ['c.json']]
>>> # A group is yielded as soon as its size equals to `group_size`
>>> dp1 = source_dp.groupby(group_key_fn=group_fn, group_size=2)
>>> list(dp1)
[['a.png', 'a.json'], ['b.png', 'b.json'], ['a.jpg'], ['c.json']]
>>> # Scenario where `buffer` is full, and group 'a' needs to be yielded since its size > `guaranteed_group_size`
>>> dp2 = source_dp.groupby(group_key_fn=group_fn, buffer_size=3, group_size=3, guaranteed_group_size=2)
>>> list(dp2)
[['a.png', 'a.json'], ['b.png', 'b.json'], ['a.jpg'], ['c.json']]
"""
# Functional form of 'FileListerIterDataPipe'
def list_files(self, masks: Union[str, List[str]] = '', *, recursive: bool = False, abspath: bool = False, non_deterministic: bool = False, length: int = -1) -> IterDataPipe:
r"""
Given path(s) to the root directory, yields file pathname(s) (path + filename) of files within the root directory.
Multiple root directories can be provided (functional name: ``list_files``).
Args:
root: Root directory or a sequence of root directories
masks: Unix style filter string or string list for filtering file name(s)
recursive: Whether to return pathname from nested directories or not
abspath: Whether to return relative pathname or absolute pathname
non_deterministic: Whether to return pathname in sorted order or not.
If ``False``, the results yielded from each root directory will be sorted
length: Nominal length of the datapipe
Example:
>>> # xdoctest: +SKIP
>>> from torchdata.datapipes.iter import FileLister
>>> dp = FileLister(root=".", recursive=True)
>>> list(dp)
['example.py', './data/data.tar']
"""
# Functional form of 'MapperIterDataPipe'
def map(self, fn: Callable, input_col=None, output_col=None) -> IterDataPipe:
r"""
Applies a function over each item from the source DataPipe (functional name: ``map``).
The function can be any regular Python function or partial object. Lambda
function is not recommended as it is not supported by pickle.
Args:
datapipe: Source Iterable DataPipe
fn: Function being applied over each item
input_col: Index or indices of data which ``fn`` is applied, such as:
- ``None`` as default to apply ``fn`` to the data directly.
- Integer(s) is used for list/tuple.
- Key(s) is used for dict.
output_col: Index of data where result of ``fn`` is placed. ``output_col`` can be specified
only when ``input_col`` is not ``None``
- ``None`` as default to replace the index that ``input_col`` specified; For ``input_col`` with
multiple indices, the left-most one is used, and other indices will be removed.
- Integer is used for list/tuple. ``-1`` represents to append result at the end.
- Key is used for dict. New key is acceptable.
Example:
>>> # xdoctest: +SKIP
>>> from torchdata.datapipes.iter import IterableWrapper, Mapper
>>> def add_one(x):
... return x + 1
>>> dp = IterableWrapper(range(10))
>>> map_dp_1 = dp.map(add_one) # Invocation via functional form is preferred
>>> list(map_dp_1)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> # We discourage the usage of `lambda` functions as they are not serializable with `pickle`
>>> # Use `functools.partial` or explicitly define the function instead
>>> map_dp_2 = Mapper(dp, lambda x: x + 1)
>>> list(map_dp_2)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
"""
# Functional form of 'MultiplexerIterDataPipe'
def mux(self, *datapipes) -> IterDataPipe:
r"""
Yields one element at a time from each of the input Iterable DataPipes (functional name: ``mux``).
As in, one element from the 1st input DataPipe, then one element from the 2nd DataPipe in the next iteration,
and so on. It ends when the shortest input DataPipe is exhausted.
Args:
datapipes: Iterable DataPipes that will take turn to yield their elements, until the shortest DataPipe is exhausted
Example:
>>> # xdoctest: +REQUIRES(module:torchdata)
>>> from torchdata.datapipes.iter import IterableWrapper
>>> dp1, dp2, dp3 = IterableWrapper(range(3)), IterableWrapper(range(10, 15)), IterableWrapper(range(20, 25))
>>> list(dp1.mux(dp2, dp3))
[0, 10, 20, 1, 11, 21, 2, 12, 22]
"""
# Functional form of 'FileOpenerIterDataPipe'
def open_files(self, mode: str = 'r', encoding: Optional[str] = None, length: int = -1) -> IterDataPipe:
r"""
Given pathnames, opens files and yield pathname and file stream in a tuple (functional name: ``open_files``).
Args:
datapipe: Iterable datapipe that provides pathnames
mode: An optional string that specifies the mode in which
the file is opened by ``open()``. It defaults to ``r``, other options are
``b`` for reading in binary mode and ``t`` for text mode.
encoding: An optional string that specifies the encoding of the
underlying file. It defaults to ``None`` to match the default encoding of ``open``.
length: Nominal length of the datapipe
Note:
The opened file handles will be closed by Python's GC periodically. Users can choose
to close them explicitly.
Example:
>>> # xdoctest: +SKIP
>>> from torchdata.datapipes.iter import FileLister, FileOpener, StreamReader
>>> dp = FileLister(root=".").filter(lambda fname: fname.endswith('.txt'))
>>> dp = FileOpener(dp)
>>> dp = StreamReader(dp)
>>> list(dp)
[('./abc.txt', 'abc')]
"""
# Functional form of 'StreamReaderIterDataPipe'
def read_from_stream(self, chunk=None) -> IterDataPipe:
r"""
Given IO streams and their label names, yield bytes with label name as tuple.
(functional name: ``read_from_stream``).
Args:
datapipe: Iterable DataPipe provides label/URL and byte stream
chunk: Number of bytes to be read from stream per iteration.
If ``None``, all bytes will be read until the EOF.
Example:
>>> # xdoctest: +SKIP
>>> from torchdata.datapipes.iter import IterableWrapper, StreamReader
>>> from io import StringIO
>>> dp = IterableWrapper([("alphabet", StringIO("abcde"))])
>>> list(StreamReader(dp, chunk=1))
[('alphabet', 'a'), ('alphabet', 'b'), ('alphabet', 'c'), ('alphabet', 'd'), ('alphabet', 'e')]
"""
# Functional form of 'RoutedDecoderIterDataPipe'
def routed_decode(self, *handlers: Callable, key_fn: Callable= ...) -> IterDataPipe:
r"""
Decodes binary streams from input DataPipe, yields pathname and decoded data in a tuple.
(functional name: ``routed_decode``)
Args:
datapipe: Iterable datapipe that provides pathname and binary stream in tuples
handlers: Optional user defined decoder handlers. If ``None``, basic and image decoder
handlers will be set as default. If multiple handles are provided, the priority
order follows the order of handlers (the first handler has the top priority)
key_fn: Function for decoder to extract key from pathname to dispatch handlers.
Default is set to extract file extension from pathname
Note:
When ``key_fn`` is specified returning anything other than extension, the default
handler will not work and users need to specify custom handler. Custom handler
could use regex to determine the eligibility to handle data.
"""
# Functional form of 'ShardingFilterIterDataPipe'
def sharding_filter(self, sharding_group_filter=None) -> IterDataPipe:
r"""
Wrapper that allows DataPipe to be sharded (functional name: ``sharding_filter``).
After ``apply_sharding`` is called, each instance of the DataPipe (on different workers) will have every `n`-th element of the
original DataPipe, where `n` equals to the number of instances.
Args:
source_datapipe: Iterable DataPipe that will be sharded
"""
# Functional form of 'ShufflerIterDataPipe'
def shuffle(self, *, buffer_size: int = 10000, unbatch_level: int = 0) -> IterDataPipe:
r"""
Shuffle the input DataPipe with a buffer (functional name: ``shuffle``).
The buffer with ``buffer_size`` is filled with elements from the datapipe first. Then,
each item will be yielded from the buffer by reservoir sampling via iterator.
``buffer_size`` is required to be larger than ``0``. For ``buffer_size == 1``, the
datapipe is not shuffled. In order to fully shuffle all elements from datapipe,
``buffer_size`` is required to be greater than or equal to the size of datapipe.
When it is used with :class:`torch.utils.data.DataLoader`, the methods to
set up random seed are different based on :attr:`num_workers`.
For single-process mode (:attr:`num_workers == 0`), the random seed is set before
the :class:`~torch.utils.data.DataLoader` in the main process. For multi-process
mode (:attr:`num_worker > 0`), `worker_init_fn` is used to set up a random seed
for each worker process.
Args:
datapipe: The IterDataPipe being shuffled
buffer_size: The buffer size for shuffling (default to ``10000``)
unbatch_level: Specifies if it is necessary to unbatch source data before
applying the shuffle
Example:
>>> # xdoctest: +SKIP
>>> from torchdata.datapipes.iter import IterableWrapper
>>> dp = IterableWrapper(range(10))
>>> shuffle_dp = dp.shuffle()
>>> list(shuffle_dp)
[0, 4, 1, 6, 3, 2, 9, 5, 7, 8]
"""
# Functional form of 'UnBatcherIterDataPipe'
def unbatch(self, unbatch_level: int = 1) -> IterDataPipe:
r"""
Undos batching of data (functional name: ``unbatch``).
In other words, it flattens the data up to the specified level within a batched DataPipe.
Args:
datapipe: Iterable DataPipe being un-batched
unbatch_level: Defaults to ``1`` (only flattening the top level). If set to ``2``,
it will flatten the top two levels, and ``-1`` will flatten the entire DataPipe.
Example:
>>> # xdoctest: +SKIP
>>> from torchdata.datapipes.iter import IterableWrapper
>>> source_dp = IterableWrapper([[[0, 1], [2]], [[3, 4], [5]], [[6]]])
>>> dp1 = source_dp.unbatch()
>>> list(dp1)
[[0, 1], [2], [3, 4], [5], [6]]
>>> dp2 = source_dp.unbatch(unbatch_level=2)
>>> list(dp2)
[0, 1, 2, 3, 4, 5, 6]
"""
# Functional form of 'ZipperIterDataPipe'
def zip(self, *datapipes: IterDataPipe) -> IterDataPipe:
r"""
Aggregates elements into a tuple from each of the input DataPipes (functional name: ``zip``).
The output is stopped as soon as the shortest input DataPipe is exhausted.
Args:
*datapipes: Iterable DataPipes being aggregated
Example:
>>> # xdoctest: +REQUIRES(module:torchdata)
>>> from torchdata.datapipes.iter import IterableWrapper
>>> dp1, dp2, dp3 = IterableWrapper(range(5)), IterableWrapper(range(10, 15)), IterableWrapper(range(20, 25))
>>> list(dp1.zip(dp2, dp3))
[(0, 10, 20), (1, 11, 21), (2, 12, 22), (3, 13, 23), (4, 14, 24)]
"""
class DFIterDataPipe(IterDataPipe):
def _is_dfpipe(self): ...
def __iter__(self): ...
class _DataPipeSerializationWrapper:
def __init__(self, datapipe): ...
def __getstate__(self): ...
def __setstate__(self, state): ...
def __len__(self): ...
class _IterDataPipeSerializationWrapper(_DataPipeSerializationWrapper, IterDataPipe):
def __iter__(self): ...
class _MapDataPipeSerializationWrapper(_DataPipeSerializationWrapper, MapDataPipe):
def __getitem__(self, idx): ...
class DataChunk(list, Generic[T]):
def __init__(self, items):
super().__init__(items)
self.items = items
def as_str(self, indent: str = "") -> str:
res = indent + "[" + ", ".join(str(i) for i in iter(self)) + "]"
return res
def __iter__(self) -> Iterator[T]:
yield from super().__iter__()
def raw_iterator(self) -> T: # type: ignore[misc]
yield from self.items
|