File size: 19,171 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
# mypy: allow-untyped-defs
import bisect
import itertools
import math
import warnings
from typing import (
cast,
Dict,
Generic,
Iterable,
List,
Optional,
Sequence,
Tuple,
TypeVar,
Union,
)
from typing_extensions import deprecated
# No 'default_generator' in torch/__init__.pyi
from torch import default_generator, randperm
from ... import Generator, Tensor
__all__ = [
"Dataset",
"IterableDataset",
"TensorDataset",
"StackDataset",
"ConcatDataset",
"ChainDataset",
"Subset",
"random_split",
]
T_co = TypeVar("T_co", covariant=True)
T = TypeVar("T")
T_dict = Dict[str, T_co]
T_tuple = Tuple[T_co, ...]
T_stack = TypeVar("T_stack", T_tuple, T_dict)
class Dataset(Generic[T_co]):
r"""An abstract class representing a :class:`Dataset`.
All datasets that represent a map from keys to data samples should subclass
it. All subclasses should overwrite :meth:`__getitem__`, supporting fetching a
data sample for a given key. Subclasses could also optionally overwrite
:meth:`__len__`, which is expected to return the size of the dataset by many
:class:`~torch.utils.data.Sampler` implementations and the default options
of :class:`~torch.utils.data.DataLoader`. Subclasses could also
optionally implement :meth:`__getitems__`, for speedup batched samples
loading. This method accepts list of indices of samples of batch and returns
list of samples.
.. note::
:class:`~torch.utils.data.DataLoader` by default constructs an index
sampler that yields integral indices. To make it work with a map-style
dataset with non-integral indices/keys, a custom sampler must be provided.
"""
def __getitem__(self, index) -> T_co:
raise NotImplementedError("Subclasses of Dataset should implement __getitem__.")
# def __getitems__(self, indices: List) -> List[T_co]:
# Not implemented to prevent false-positives in fetcher check in
# torch.utils.data._utils.fetch._MapDatasetFetcher
def __add__(self, other: "Dataset[T_co]") -> "ConcatDataset[T_co]":
return ConcatDataset([self, other])
# No `def __len__(self)` default?
# See NOTE [ Lack of Default `__len__` in Python Abstract Base Classes ]
# in pytorch/torch/utils/data/sampler.py
class IterableDataset(Dataset[T_co], Iterable[T_co]):
r"""An iterable Dataset.
All datasets that represent an iterable of data samples should subclass it.
Such form of datasets is particularly useful when data come from a stream.
All subclasses should overwrite :meth:`__iter__`, which would return an
iterator of samples in this dataset.
When a subclass is used with :class:`~torch.utils.data.DataLoader`, each
item in the dataset will be yielded from the :class:`~torch.utils.data.DataLoader`
iterator. When :attr:`num_workers > 0`, each worker process will have a
different copy of the dataset object, so it is often desired to configure
each copy independently to avoid having duplicate data returned from the
workers. :func:`~torch.utils.data.get_worker_info`, when called in a worker
process, returns information about the worker. It can be used in either the
dataset's :meth:`__iter__` method or the :class:`~torch.utils.data.DataLoader` 's
:attr:`worker_init_fn` option to modify each copy's behavior.
Example 1: splitting workload across all workers in :meth:`__iter__`::
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_DATALOADER)
>>> # xdoctest: +SKIP("Fails on MacOS12")
>>> class MyIterableDataset(torch.utils.data.IterableDataset):
... def __init__(self, start, end):
... super(MyIterableDataset).__init__()
... assert end > start, "this example code only works with end >= start"
... self.start = start
... self.end = end
...
... def __iter__(self):
... worker_info = torch.utils.data.get_worker_info()
... if worker_info is None: # single-process data loading, return the full iterator
... iter_start = self.start
... iter_end = self.end
... else: # in a worker process
... # split workload
... per_worker = int(math.ceil((self.end - self.start) / float(worker_info.num_workers)))
... worker_id = worker_info.id
... iter_start = self.start + worker_id * per_worker
... iter_end = min(iter_start + per_worker, self.end)
... return iter(range(iter_start, iter_end))
...
>>> # should give same set of data as range(3, 7), i.e., [3, 4, 5, 6].
>>> ds = MyIterableDataset(start=3, end=7)
>>> # Single-process loading
>>> print(list(torch.utils.data.DataLoader(ds, num_workers=0)))
[tensor([3]), tensor([4]), tensor([5]), tensor([6])]
>>> # xdoctest: +REQUIRES(POSIX)
>>> # Mult-process loading with two worker processes
>>> # Worker 0 fetched [3, 4]. Worker 1 fetched [5, 6].
>>> # xdoctest: +IGNORE_WANT("non deterministic")
>>> print(list(torch.utils.data.DataLoader(ds, num_workers=2)))
[tensor([3]), tensor([5]), tensor([4]), tensor([6])]
>>> # With even more workers
>>> # xdoctest: +IGNORE_WANT("non deterministic")
>>> print(list(torch.utils.data.DataLoader(ds, num_workers=12)))
[tensor([3]), tensor([5]), tensor([4]), tensor([6])]
Example 2: splitting workload across all workers using :attr:`worker_init_fn`::
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_DATALOADER)
>>> class MyIterableDataset(torch.utils.data.IterableDataset):
... def __init__(self, start, end):
... super(MyIterableDataset).__init__()
... assert end > start, "this example code only works with end >= start"
... self.start = start
... self.end = end
...
... def __iter__(self):
... return iter(range(self.start, self.end))
...
>>> # should give same set of data as range(3, 7), i.e., [3, 4, 5, 6].
>>> ds = MyIterableDataset(start=3, end=7)
>>> # Single-process loading
>>> print(list(torch.utils.data.DataLoader(ds, num_workers=0)))
[3, 4, 5, 6]
>>>
>>> # Directly doing multi-process loading yields duplicate data
>>> print(list(torch.utils.data.DataLoader(ds, num_workers=2)))
[3, 3, 4, 4, 5, 5, 6, 6]
>>> # Define a `worker_init_fn` that configures each dataset copy differently
>>> def worker_init_fn(worker_id):
... worker_info = torch.utils.data.get_worker_info()
... dataset = worker_info.dataset # the dataset copy in this worker process
... overall_start = dataset.start
... overall_end = dataset.end
... # configure the dataset to only process the split workload
... per_worker = int(math.ceil((overall_end - overall_start) / float(worker_info.num_workers)))
... worker_id = worker_info.id
... dataset.start = overall_start + worker_id * per_worker
... dataset.end = min(dataset.start + per_worker, overall_end)
...
>>> # Mult-process loading with the custom `worker_init_fn`
>>> # Worker 0 fetched [3, 4]. Worker 1 fetched [5, 6].
>>> print(list(torch.utils.data.DataLoader(ds, num_workers=2, worker_init_fn=worker_init_fn)))
[3, 5, 4, 6]
>>> # With even more workers
>>> print(list(torch.utils.data.DataLoader(ds, num_workers=12, worker_init_fn=worker_init_fn)))
[3, 4, 5, 6]
"""
def __add__(self, other: Dataset[T_co]):
return ChainDataset([self, other])
# No `def __len__(self)` default? Subclasses raise `TypeError` when needed.
# See NOTE [ Lack of Default `__len__` in Python Abstract Base Classes ]
class TensorDataset(Dataset[Tuple[Tensor, ...]]):
r"""Dataset wrapping tensors.
Each sample will be retrieved by indexing tensors along the first dimension.
Args:
*tensors (Tensor): tensors that have the same size of the first dimension.
"""
tensors: Tuple[Tensor, ...]
def __init__(self, *tensors: Tensor) -> None:
assert all(
tensors[0].size(0) == tensor.size(0) for tensor in tensors
), "Size mismatch between tensors"
self.tensors = tensors
def __getitem__(self, index):
return tuple(tensor[index] for tensor in self.tensors)
def __len__(self):
return self.tensors[0].size(0)
class StackDataset(Dataset[T_stack]):
r"""Dataset as a stacking of multiple datasets.
This class is useful to assemble different parts of complex input data, given as datasets.
Example:
>>> # xdoctest: +SKIP
>>> images = ImageDataset()
>>> texts = TextDataset()
>>> tuple_stack = StackDataset(images, texts)
>>> tuple_stack[0] == (images[0], texts[0])
>>> dict_stack = StackDataset(image=images, text=texts)
>>> dict_stack[0] == {'image': images[0], 'text': texts[0]}
Args:
*args (Dataset): Datasets for stacking returned as tuple.
**kwargs (Dataset): Datasets for stacking returned as dict.
"""
datasets: Union[tuple, dict]
def __init__(self, *args: Dataset[T_co], **kwargs: Dataset[T_co]) -> None:
if args:
if kwargs:
raise ValueError(
"Supported either ``tuple``- (via ``args``) or"
"``dict``- (via ``kwargs``) like input/output, but both types are given."
)
self._length = len(args[0]) # type: ignore[arg-type]
if any(self._length != len(dataset) for dataset in args): # type: ignore[arg-type]
raise ValueError("Size mismatch between datasets")
self.datasets = args
elif kwargs:
tmp = list(kwargs.values())
self._length = len(tmp[0]) # type: ignore[arg-type]
if any(self._length != len(dataset) for dataset in tmp): # type: ignore[arg-type]
raise ValueError("Size mismatch between datasets")
self.datasets = kwargs
else:
raise ValueError("At least one dataset should be passed")
def __getitem__(self, index):
if isinstance(self.datasets, dict):
return {k: dataset[index] for k, dataset in self.datasets.items()}
return tuple(dataset[index] for dataset in self.datasets)
def __getitems__(self, indices: list):
# add batched sampling support when parent datasets supports it.
if isinstance(self.datasets, dict):
dict_batch: List[T_dict] = [{} for _ in indices]
for k, dataset in self.datasets.items():
if callable(getattr(dataset, "__getitems__", None)):
items = dataset.__getitems__(indices) # type: ignore[attr-defined]
if len(items) != len(indices):
raise ValueError(
"Nested dataset's output size mismatch."
f" Expected {len(indices)}, got {len(items)}"
)
for data, d_sample in zip(items, dict_batch):
d_sample[k] = data
else:
for idx, d_sample in zip(indices, dict_batch):
d_sample[k] = dataset[idx]
return dict_batch
# tuple data
list_batch: List[list] = [[] for _ in indices]
for dataset in self.datasets:
if callable(getattr(dataset, "__getitems__", None)):
items = dataset.__getitems__(indices) # type: ignore[attr-defined]
if len(items) != len(indices):
raise ValueError(
"Nested dataset's output size mismatch."
f" Expected {len(indices)}, got {len(items)}"
)
for data, t_sample in zip(items, list_batch):
t_sample.append(data)
else:
for idx, t_sample in zip(indices, list_batch):
t_sample.append(dataset[idx])
tuple_batch: List[T_tuple] = [tuple(sample) for sample in list_batch]
return tuple_batch
def __len__(self):
return self._length
class ConcatDataset(Dataset[T_co]):
r"""Dataset as a concatenation of multiple datasets.
This class is useful to assemble different existing datasets.
Args:
datasets (sequence): List of datasets to be concatenated
"""
datasets: List[Dataset[T_co]]
cumulative_sizes: List[int]
@staticmethod
def cumsum(sequence):
r, s = [], 0
for e in sequence:
l = len(e)
r.append(l + s)
s += l
return r
def __init__(self, datasets: Iterable[Dataset]) -> None:
super().__init__()
self.datasets = list(datasets)
assert len(self.datasets) > 0, "datasets should not be an empty iterable" # type: ignore[arg-type]
for d in self.datasets:
assert not isinstance(
d, IterableDataset
), "ConcatDataset does not support IterableDataset"
self.cumulative_sizes = self.cumsum(self.datasets)
def __len__(self):
return self.cumulative_sizes[-1]
def __getitem__(self, idx):
if idx < 0:
if -idx > len(self):
raise ValueError(
"absolute value of index should not exceed dataset length"
)
idx = len(self) + idx
dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx)
if dataset_idx == 0:
sample_idx = idx
else:
sample_idx = idx - self.cumulative_sizes[dataset_idx - 1]
return self.datasets[dataset_idx][sample_idx]
@property
@deprecated(
"`cummulative_sizes` attribute is renamed to `cumulative_sizes`",
category=FutureWarning,
)
def cummulative_sizes(self):
return self.cumulative_sizes
class ChainDataset(IterableDataset):
r"""Dataset for chaining multiple :class:`IterableDataset` s.
This class is useful to assemble different existing dataset streams. The
chaining operation is done on-the-fly, so concatenating large-scale
datasets with this class will be efficient.
Args:
datasets (iterable of IterableDataset): datasets to be chained together
"""
def __init__(self, datasets: Iterable[Dataset]) -> None:
super().__init__()
self.datasets = datasets
def __iter__(self):
for d in self.datasets:
assert isinstance(
d, IterableDataset
), "ChainDataset only supports IterableDataset"
yield from d
def __len__(self):
total = 0
for d in self.datasets:
assert isinstance(
d, IterableDataset
), "ChainDataset only supports IterableDataset"
total += len(d) # type: ignore[arg-type]
return total
class Subset(Dataset[T_co]):
r"""
Subset of a dataset at specified indices.
Args:
dataset (Dataset): The whole Dataset
indices (sequence): Indices in the whole set selected for subset
"""
dataset: Dataset[T_co]
indices: Sequence[int]
def __init__(self, dataset: Dataset[T_co], indices: Sequence[int]) -> None:
self.dataset = dataset
self.indices = indices
def __getitem__(self, idx):
if isinstance(idx, list):
return self.dataset[[self.indices[i] for i in idx]]
return self.dataset[self.indices[idx]]
def __getitems__(self, indices: List[int]) -> List[T_co]:
# add batched sampling support when parent dataset supports it.
# see torch.utils.data._utils.fetch._MapDatasetFetcher
if callable(getattr(self.dataset, "__getitems__", None)):
return self.dataset.__getitems__([self.indices[idx] for idx in indices]) # type: ignore[attr-defined]
else:
return [self.dataset[self.indices[idx]] for idx in indices]
def __len__(self):
return len(self.indices)
def random_split(
dataset: Dataset[T],
lengths: Sequence[Union[int, float]],
generator: Optional[Generator] = default_generator,
) -> List[Subset[T]]:
r"""
Randomly split a dataset into non-overlapping new datasets of given lengths.
If a list of fractions that sum up to 1 is given,
the lengths will be computed automatically as
floor(frac * len(dataset)) for each fraction provided.
After computing the lengths, if there are any remainders, 1 count will be
distributed in round-robin fashion to the lengths
until there are no remainders left.
Optionally fix the generator for reproducible results, e.g.:
Example:
>>> # xdoctest: +SKIP
>>> generator1 = torch.Generator().manual_seed(42)
>>> generator2 = torch.Generator().manual_seed(42)
>>> random_split(range(10), [3, 7], generator=generator1)
>>> random_split(range(30), [0.3, 0.3, 0.4], generator=generator2)
Args:
dataset (Dataset): Dataset to be split
lengths (sequence): lengths or fractions of splits to be produced
generator (Generator): Generator used for the random permutation.
"""
if math.isclose(sum(lengths), 1) and sum(lengths) <= 1:
subset_lengths: List[int] = []
for i, frac in enumerate(lengths):
if frac < 0 or frac > 1:
raise ValueError(f"Fraction at index {i} is not between 0 and 1")
n_items_in_split = int(
math.floor(len(dataset) * frac) # type: ignore[arg-type]
)
subset_lengths.append(n_items_in_split)
remainder = len(dataset) - sum(subset_lengths) # type: ignore[arg-type]
# add 1 to all the lengths in round-robin fashion until the remainder is 0
for i in range(remainder):
idx_to_add_at = i % len(subset_lengths)
subset_lengths[idx_to_add_at] += 1
lengths = subset_lengths
for i, length in enumerate(lengths):
if length == 0:
warnings.warn(
f"Length of split at index {i} is 0. "
f"This might result in an empty dataset."
)
# Cannot verify that dataset is Sized
if sum(lengths) != len(dataset): # type: ignore[arg-type]
raise ValueError(
"Sum of input lengths does not equal the length of the input dataset!"
)
indices = randperm(sum(lengths), generator=generator).tolist() # type: ignore[arg-type, call-overload]
lengths = cast(Sequence[int], lengths)
return [
Subset(dataset, indices[offset - length : offset])
for offset, length in zip(itertools.accumulate(lengths), lengths)
]
|