File size: 46,669 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
# mypy: allow-untyped-defs
"""Provide an API for writing protocol buffers to event files to be consumed by TensorBoard for visualization."""

import os
import time
from typing import List, Optional, TYPE_CHECKING, Union

import torch

if TYPE_CHECKING:
    from matplotlib.figure import Figure
from tensorboard.compat import tf
from tensorboard.compat.proto import event_pb2
from tensorboard.compat.proto.event_pb2 import Event, SessionLog
from tensorboard.plugins.projector.projector_config_pb2 import ProjectorConfig
from tensorboard.summary.writer.event_file_writer import EventFileWriter

from ._convert_np import make_np
from ._embedding import get_embedding_info, make_mat, make_sprite, make_tsv, write_pbtxt
from ._onnx_graph import load_onnx_graph
from ._pytorch_graph import graph
from ._utils import figure_to_image
from .summary import (
    audio,
    custom_scalars,
    histogram,
    histogram_raw,
    hparams,
    image,
    image_boxes,
    mesh,
    pr_curve,
    pr_curve_raw,
    scalar,
    tensor_proto,
    text,
    video,
)

__all__ = ["FileWriter", "SummaryWriter"]


class FileWriter:
    """Writes protocol buffers to event files to be consumed by TensorBoard.

    The `FileWriter` class provides a mechanism to create an event file in a
    given directory and add summaries and events to it. The class updates the
    file contents asynchronously. This allows a training program to call methods
    to add data to the file directly from the training loop, without slowing down
    training.
    """

    def __init__(self, log_dir, max_queue=10, flush_secs=120, filename_suffix=""):
        """Create a `FileWriter` and an event file.

        On construction the writer creates a new event file in `log_dir`.
        The other arguments to the constructor control the asynchronous writes to
        the event file.

        Args:
          log_dir: A string. Directory where event file will be written.
          max_queue: Integer. Size of the queue for pending events and
            summaries before one of the 'add' calls forces a flush to disk.
            Default is ten items.
          flush_secs: Number. How often, in seconds, to flush the
            pending events and summaries to disk. Default is every two minutes.
          filename_suffix: A string. Suffix added to all event filenames
            in the log_dir directory. More details on filename construction in
            tensorboard.summary.writer.event_file_writer.EventFileWriter.
        """
        # Sometimes PosixPath is passed in and we need to coerce it to
        # a string in all cases
        # TODO: See if we can remove this in the future if we are
        # actually the ones passing in a PosixPath
        log_dir = str(log_dir)
        self.event_writer = EventFileWriter(
            log_dir, max_queue, flush_secs, filename_suffix
        )

    def get_logdir(self):
        """Return the directory where event file will be written."""
        return self.event_writer.get_logdir()

    def add_event(self, event, step=None, walltime=None):
        """Add an event to the event file.

        Args:
          event: An `Event` protocol buffer.
          step: Number. Optional global step value for training process
            to record with the event.
          walltime: float. Optional walltime to override the default (current)
            walltime (from time.time()) seconds after epoch
        """
        event.wall_time = time.time() if walltime is None else walltime
        if step is not None:
            # Make sure step is converted from numpy or other formats
            # since protobuf might not convert depending on version
            event.step = int(step)
        self.event_writer.add_event(event)

    def add_summary(self, summary, global_step=None, walltime=None):
        """Add a `Summary` protocol buffer to the event file.

        This method wraps the provided summary in an `Event` protocol buffer
        and adds it to the event file.

        Args:
          summary: A `Summary` protocol buffer.
          global_step: Number. Optional global step value for training process
            to record with the summary.
          walltime: float. Optional walltime to override the default (current)
            walltime (from time.time()) seconds after epoch
        """
        event = event_pb2.Event(summary=summary)
        self.add_event(event, global_step, walltime)

    def add_graph(self, graph_profile, walltime=None):
        """Add a `Graph` and step stats protocol buffer to the event file.

        Args:
          graph_profile: A `Graph` and step stats protocol buffer.
          walltime: float. Optional walltime to override the default (current)
            walltime (from time.time()) seconds after epoch
        """
        graph = graph_profile[0]
        stepstats = graph_profile[1]
        event = event_pb2.Event(graph_def=graph.SerializeToString())
        self.add_event(event, None, walltime)

        trm = event_pb2.TaggedRunMetadata(
            tag="step1", run_metadata=stepstats.SerializeToString()
        )
        event = event_pb2.Event(tagged_run_metadata=trm)
        self.add_event(event, None, walltime)

    def add_onnx_graph(self, graph, walltime=None):
        """Add a `Graph` protocol buffer to the event file.

        Args:
          graph: A `Graph` protocol buffer.
          walltime: float. Optional walltime to override the default (current)
            _get_file_writerfrom time.time())
        """
        event = event_pb2.Event(graph_def=graph.SerializeToString())
        self.add_event(event, None, walltime)

    def flush(self):
        """Flushes the event file to disk.

        Call this method to make sure that all pending events have been written to
        disk.
        """
        self.event_writer.flush()

    def close(self):
        """Flushes the event file to disk and close the file.

        Call this method when you do not need the summary writer anymore.
        """
        self.event_writer.close()

    def reopen(self):
        """Reopens the EventFileWriter.

        Can be called after `close()` to add more events in the same directory.
        The events will go into a new events file.
        Does nothing if the EventFileWriter was not closed.
        """
        self.event_writer.reopen()


class SummaryWriter:
    """Writes entries directly to event files in the log_dir to be consumed by TensorBoard.

    The `SummaryWriter` class provides a high-level API to create an event file
    in a given directory and add summaries and events to it. The class updates the
    file contents asynchronously. This allows a training program to call methods
    to add data to the file directly from the training loop, without slowing down
    training.
    """

    def __init__(
        self,
        log_dir=None,
        comment="",
        purge_step=None,
        max_queue=10,
        flush_secs=120,
        filename_suffix="",
    ):
        """Create a `SummaryWriter` that will write out events and summaries to the event file.

        Args:
            log_dir (str): Save directory location. Default is
              runs/**CURRENT_DATETIME_HOSTNAME**, which changes after each run.
              Use hierarchical folder structure to compare
              between runs easily. e.g. pass in 'runs/exp1', 'runs/exp2', etc.
              for each new experiment to compare across them.
            comment (str): Comment log_dir suffix appended to the default
              ``log_dir``. If ``log_dir`` is assigned, this argument has no effect.
            purge_step (int):
              When logging crashes at step :math:`T+X` and restarts at step :math:`T`,
              any events whose global_step larger or equal to :math:`T` will be
              purged and hidden from TensorBoard.
              Note that crashed and resumed experiments should have the same ``log_dir``.
            max_queue (int): Size of the queue for pending events and
              summaries before one of the 'add' calls forces a flush to disk.
              Default is ten items.
            flush_secs (int): How often, in seconds, to flush the
              pending events and summaries to disk. Default is every two minutes.
            filename_suffix (str): Suffix added to all event filenames in
              the log_dir directory. More details on filename construction in
              tensorboard.summary.writer.event_file_writer.EventFileWriter.

        Examples::

            from torch.utils.tensorboard import SummaryWriter

            # create a summary writer with automatically generated folder name.
            writer = SummaryWriter()
            # folder location: runs/May04_22-14-54_s-MacBook-Pro.local/

            # create a summary writer using the specified folder name.
            writer = SummaryWriter("my_experiment")
            # folder location: my_experiment

            # create a summary writer with comment appended.
            writer = SummaryWriter(comment="LR_0.1_BATCH_16")
            # folder location: runs/May04_22-14-54_s-MacBook-Pro.localLR_0.1_BATCH_16/

        """
        torch._C._log_api_usage_once("tensorboard.create.summarywriter")
        if not log_dir:
            import socket
            from datetime import datetime

            current_time = datetime.now().strftime("%b%d_%H-%M-%S")
            log_dir = os.path.join(
                "runs", current_time + "_" + socket.gethostname() + comment
            )
        self.log_dir = log_dir
        self.purge_step = purge_step
        self.max_queue = max_queue
        self.flush_secs = flush_secs
        self.filename_suffix = filename_suffix

        # Initialize the file writers, but they can be cleared out on close
        # and recreated later as needed.
        self.file_writer = self.all_writers = None
        self._get_file_writer()

        # Create default bins for histograms, see generate_testdata.py in tensorflow/tensorboard
        v = 1e-12
        buckets = []
        neg_buckets = []
        while v < 1e20:
            buckets.append(v)
            neg_buckets.append(-v)
            v *= 1.1
        self.default_bins = neg_buckets[::-1] + [0] + buckets

    def _get_file_writer(self):
        """Return the default FileWriter instance. Recreates it if closed."""
        if self.all_writers is None or self.file_writer is None:
            self.file_writer = FileWriter(
                self.log_dir, self.max_queue, self.flush_secs, self.filename_suffix
            )
            self.all_writers = {self.file_writer.get_logdir(): self.file_writer}
            if self.purge_step is not None:
                most_recent_step = self.purge_step
                self.file_writer.add_event(
                    Event(step=most_recent_step, file_version="brain.Event:2")
                )
                self.file_writer.add_event(
                    Event(
                        step=most_recent_step,
                        session_log=SessionLog(status=SessionLog.START),
                    )
                )
                self.purge_step = None
        return self.file_writer

    def get_logdir(self):
        """Return the directory where event files will be written."""
        return self.log_dir

    def add_hparams(
        self,
        hparam_dict,
        metric_dict,
        hparam_domain_discrete=None,
        run_name=None,
        global_step=None,
    ):
        """Add a set of hyperparameters to be compared in TensorBoard.

        Args:
            hparam_dict (dict): Each key-value pair in the dictionary is the
              name of the hyper parameter and it's corresponding value.
              The type of the value can be one of `bool`, `string`, `float`,
              `int`, or `None`.
            metric_dict (dict): Each key-value pair in the dictionary is the
              name of the metric and it's corresponding value. Note that the key used
              here should be unique in the tensorboard record. Otherwise the value
              you added by ``add_scalar`` will be displayed in hparam plugin. In most
              cases, this is unwanted.
            hparam_domain_discrete: (Optional[Dict[str, List[Any]]]) A dictionary that
              contains names of the hyperparameters and all discrete values they can hold
            run_name (str): Name of the run, to be included as part of the logdir.
              If unspecified, will use current timestamp.
            global_step (int): Global step value to record

        Examples::

            from torch.utils.tensorboard import SummaryWriter
            with SummaryWriter() as w:
                for i in range(5):
                    w.add_hparams({'lr': 0.1*i, 'bsize': i},
                                  {'hparam/accuracy': 10*i, 'hparam/loss': 10*i})

        Expected result:

        .. image:: _static/img/tensorboard/add_hparam.png
           :scale: 50 %

        """
        torch._C._log_api_usage_once("tensorboard.logging.add_hparams")
        if type(hparam_dict) is not dict or type(metric_dict) is not dict:
            raise TypeError("hparam_dict and metric_dict should be dictionary.")
        exp, ssi, sei = hparams(hparam_dict, metric_dict, hparam_domain_discrete)

        if not run_name:
            run_name = str(time.time())
        logdir = os.path.join(self._get_file_writer().get_logdir(), run_name)
        with SummaryWriter(log_dir=logdir) as w_hp:
            w_hp.file_writer.add_summary(exp, global_step)
            w_hp.file_writer.add_summary(ssi, global_step)
            w_hp.file_writer.add_summary(sei, global_step)
            for k, v in metric_dict.items():
                w_hp.add_scalar(k, v, global_step)

    def add_scalar(
        self,
        tag,
        scalar_value,
        global_step=None,
        walltime=None,
        new_style=False,
        double_precision=False,
    ):
        """Add scalar data to summary.

        Args:
            tag (str): Data identifier
            scalar_value (float or string/blobname): Value to save
            global_step (int): Global step value to record
            walltime (float): Optional override default walltime (time.time())
              with seconds after epoch of event
            new_style (boolean): Whether to use new style (tensor field) or old
              style (simple_value field). New style could lead to faster data loading.
        Examples::

            from torch.utils.tensorboard import SummaryWriter
            writer = SummaryWriter()
            x = range(100)
            for i in x:
                writer.add_scalar('y=2x', i * 2, i)
            writer.close()

        Expected result:

        .. image:: _static/img/tensorboard/add_scalar.png
           :scale: 50 %

        """
        torch._C._log_api_usage_once("tensorboard.logging.add_scalar")

        summary = scalar(
            tag, scalar_value, new_style=new_style, double_precision=double_precision
        )
        self._get_file_writer().add_summary(summary, global_step, walltime)

    def add_scalars(self, main_tag, tag_scalar_dict, global_step=None, walltime=None):
        """Add many scalar data to summary.

        Args:
            main_tag (str): The parent name for the tags
            tag_scalar_dict (dict): Key-value pair storing the tag and corresponding values
            global_step (int): Global step value to record
            walltime (float): Optional override default walltime (time.time())
              seconds after epoch of event

        Examples::

            from torch.utils.tensorboard import SummaryWriter
            writer = SummaryWriter()
            r = 5
            for i in range(100):
                writer.add_scalars('run_14h', {'xsinx':i*np.sin(i/r),
                                                'xcosx':i*np.cos(i/r),
                                                'tanx': np.tan(i/r)}, i)
            writer.close()
            # This call adds three values to the same scalar plot with the tag
            # 'run_14h' in TensorBoard's scalar section.

        Expected result:

        .. image:: _static/img/tensorboard/add_scalars.png
           :scale: 50 %

        """
        torch._C._log_api_usage_once("tensorboard.logging.add_scalars")
        walltime = time.time() if walltime is None else walltime
        fw_logdir = self._get_file_writer().get_logdir()
        for tag, scalar_value in tag_scalar_dict.items():
            fw_tag = fw_logdir + "/" + main_tag.replace("/", "_") + "_" + tag
            assert self.all_writers is not None
            if fw_tag in self.all_writers.keys():
                fw = self.all_writers[fw_tag]
            else:
                fw = FileWriter(
                    fw_tag, self.max_queue, self.flush_secs, self.filename_suffix
                )
                self.all_writers[fw_tag] = fw
            fw.add_summary(scalar(main_tag, scalar_value), global_step, walltime)

    def add_tensor(
        self,
        tag,
        tensor,
        global_step=None,
        walltime=None,
    ):
        """Add tensor data to summary.

        Args:
            tag (str): Data identifier
            tensor (torch.Tensor): tensor to save
            global_step (int): Global step value to record
        Examples::

            from torch.utils.tensorboard import SummaryWriter
            writer = SummaryWriter()
            x = torch.tensor([1,2,3])
            writer.add_scalar('x', x)
            writer.close()

        Expected result:
            Summary::tensor::float_val [1,2,3]
                   ::tensor::shape [3]
                   ::tag 'x'

        """
        torch._C._log_api_usage_once("tensorboard.logging.add_tensor")

        summary = tensor_proto(tag, tensor)
        self._get_file_writer().add_summary(summary, global_step, walltime)

    def add_histogram(
        self,
        tag,
        values,
        global_step=None,
        bins="tensorflow",
        walltime=None,
        max_bins=None,
    ):
        """Add histogram to summary.

        Args:
            tag (str): Data identifier
            values (torch.Tensor, numpy.ndarray, or string/blobname): Values to build histogram
            global_step (int): Global step value to record
            bins (str): One of {'tensorflow','auto', 'fd', ...}. This determines how the bins are made. You can find
              other options in: https://docs.scipy.org/doc/numpy/reference/generated/numpy.histogram.html
            walltime (float): Optional override default walltime (time.time())
              seconds after epoch of event

        Examples::

            from torch.utils.tensorboard import SummaryWriter
            import numpy as np
            writer = SummaryWriter()
            for i in range(10):
                x = np.random.random(1000)
                writer.add_histogram('distribution centers', x + i, i)
            writer.close()

        Expected result:

        .. image:: _static/img/tensorboard/add_histogram.png
           :scale: 50 %

        """
        torch._C._log_api_usage_once("tensorboard.logging.add_histogram")
        if isinstance(bins, str) and bins == "tensorflow":
            bins = self.default_bins
        self._get_file_writer().add_summary(
            histogram(tag, values, bins, max_bins=max_bins), global_step, walltime
        )

    def add_histogram_raw(
        self,
        tag,
        min,
        max,
        num,
        sum,
        sum_squares,
        bucket_limits,
        bucket_counts,
        global_step=None,
        walltime=None,
    ):
        """Add histogram with raw data.

        Args:
            tag (str): Data identifier
            min (float or int): Min value
            max (float or int): Max value
            num (int): Number of values
            sum (float or int): Sum of all values
            sum_squares (float or int): Sum of squares for all values
            bucket_limits (torch.Tensor, numpy.ndarray): Upper value per bucket.
              The number of elements of it should be the same as `bucket_counts`.
            bucket_counts (torch.Tensor, numpy.ndarray): Number of values per bucket
            global_step (int): Global step value to record
            walltime (float): Optional override default walltime (time.time())
              seconds after epoch of event
            see: https://github.com/tensorflow/tensorboard/blob/master/tensorboard/plugins/histogram/README.md

        Examples::

            from torch.utils.tensorboard import SummaryWriter
            import numpy as np
            writer = SummaryWriter()
            dummy_data = []
            for idx, value in enumerate(range(50)):
                dummy_data += [idx + 0.001] * value

            bins = list(range(50+2))
            bins = np.array(bins)
            values = np.array(dummy_data).astype(float).reshape(-1)
            counts, limits = np.histogram(values, bins=bins)
            sum_sq = values.dot(values)
            writer.add_histogram_raw(
                tag='histogram_with_raw_data',
                min=values.min(),
                max=values.max(),
                num=len(values),
                sum=values.sum(),
                sum_squares=sum_sq,
                bucket_limits=limits[1:].tolist(),
                bucket_counts=counts.tolist(),
                global_step=0)
            writer.close()

        Expected result:

        .. image:: _static/img/tensorboard/add_histogram_raw.png
           :scale: 50 %

        """
        torch._C._log_api_usage_once("tensorboard.logging.add_histogram_raw")
        if len(bucket_limits) != len(bucket_counts):
            raise ValueError(
                "len(bucket_limits) != len(bucket_counts), see the document."
            )
        self._get_file_writer().add_summary(
            histogram_raw(
                tag, min, max, num, sum, sum_squares, bucket_limits, bucket_counts
            ),
            global_step,
            walltime,
        )

    def add_image(
        self, tag, img_tensor, global_step=None, walltime=None, dataformats="CHW"
    ):
        """Add image data to summary.

        Note that this requires the ``pillow`` package.

        Args:
            tag (str): Data identifier
            img_tensor (torch.Tensor, numpy.ndarray, or string/blobname): Image data
            global_step (int): Global step value to record
            walltime (float): Optional override default walltime (time.time())
              seconds after epoch of event
            dataformats (str): Image data format specification of the form
              CHW, HWC, HW, WH, etc.
        Shape:
            img_tensor: Default is :math:`(3, H, W)`. You can use ``torchvision.utils.make_grid()`` to
            convert a batch of tensor into 3xHxW format or call ``add_images`` and let us do the job.
            Tensor with :math:`(1, H, W)`, :math:`(H, W)`, :math:`(H, W, 3)` is also suitable as long as
            corresponding ``dataformats`` argument is passed, e.g. ``CHW``, ``HWC``, ``HW``.

        Examples::

            from torch.utils.tensorboard import SummaryWriter
            import numpy as np
            img = np.zeros((3, 100, 100))
            img[0] = np.arange(0, 10000).reshape(100, 100) / 10000
            img[1] = 1 - np.arange(0, 10000).reshape(100, 100) / 10000

            img_HWC = np.zeros((100, 100, 3))
            img_HWC[:, :, 0] = np.arange(0, 10000).reshape(100, 100) / 10000
            img_HWC[:, :, 1] = 1 - np.arange(0, 10000).reshape(100, 100) / 10000

            writer = SummaryWriter()
            writer.add_image('my_image', img, 0)

            # If you have non-default dimension setting, set the dataformats argument.
            writer.add_image('my_image_HWC', img_HWC, 0, dataformats='HWC')
            writer.close()

        Expected result:

        .. image:: _static/img/tensorboard/add_image.png
           :scale: 50 %

        """
        torch._C._log_api_usage_once("tensorboard.logging.add_image")
        self._get_file_writer().add_summary(
            image(tag, img_tensor, dataformats=dataformats), global_step, walltime
        )

    def add_images(
        self, tag, img_tensor, global_step=None, walltime=None, dataformats="NCHW"
    ):
        """Add batched image data to summary.

        Note that this requires the ``pillow`` package.

        Args:
            tag (str): Data identifier
            img_tensor (torch.Tensor, numpy.ndarray, or string/blobname): Image data
            global_step (int): Global step value to record
            walltime (float): Optional override default walltime (time.time())
              seconds after epoch of event
            dataformats (str): Image data format specification of the form
              NCHW, NHWC, CHW, HWC, HW, WH, etc.
        Shape:
            img_tensor: Default is :math:`(N, 3, H, W)`. If ``dataformats`` is specified, other shape will be
            accepted. e.g. NCHW or NHWC.

        Examples::

            from torch.utils.tensorboard import SummaryWriter
            import numpy as np

            img_batch = np.zeros((16, 3, 100, 100))
            for i in range(16):
                img_batch[i, 0] = np.arange(0, 10000).reshape(100, 100) / 10000 / 16 * i
                img_batch[i, 1] = (1 - np.arange(0, 10000).reshape(100, 100) / 10000) / 16 * i

            writer = SummaryWriter()
            writer.add_images('my_image_batch', img_batch, 0)
            writer.close()

        Expected result:

        .. image:: _static/img/tensorboard/add_images.png
           :scale: 30 %

        """
        torch._C._log_api_usage_once("tensorboard.logging.add_images")
        self._get_file_writer().add_summary(
            image(tag, img_tensor, dataformats=dataformats), global_step, walltime
        )

    def add_image_with_boxes(
        self,
        tag,
        img_tensor,
        box_tensor,
        global_step=None,
        walltime=None,
        rescale=1,
        dataformats="CHW",
        labels=None,
    ):
        """Add image and draw bounding boxes on the image.

        Args:
            tag (str): Data identifier
            img_tensor (torch.Tensor, numpy.ndarray, or string/blobname): Image data
            box_tensor (torch.Tensor, numpy.ndarray, or string/blobname): Box data (for detected objects)
              box should be represented as [x1, y1, x2, y2].
            global_step (int): Global step value to record
            walltime (float): Optional override default walltime (time.time())
              seconds after epoch of event
            rescale (float): Optional scale override
            dataformats (str): Image data format specification of the form
              NCHW, NHWC, CHW, HWC, HW, WH, etc.
            labels (list of string): The label to be shown for each bounding box.
        Shape:
            img_tensor: Default is :math:`(3, H, W)`. It can be specified with ``dataformats`` argument.
            e.g. CHW or HWC

            box_tensor: (torch.Tensor, numpy.ndarray, or string/blobname): NX4,  where N is the number of
            boxes and each 4 elements in a row represents (xmin, ymin, xmax, ymax).
        """
        torch._C._log_api_usage_once("tensorboard.logging.add_image_with_boxes")
        if labels is not None:
            if isinstance(labels, str):
                labels = [labels]
            if len(labels) != box_tensor.shape[0]:
                labels = None
        self._get_file_writer().add_summary(
            image_boxes(
                tag,
                img_tensor,
                box_tensor,
                rescale=rescale,
                dataformats=dataformats,
                labels=labels,
            ),
            global_step,
            walltime,
        )

    def add_figure(
        self,
        tag: str,
        figure: Union["Figure", List["Figure"]],
        global_step: Optional[int] = None,
        close: bool = True,
        walltime: Optional[float] = None,
    ) -> None:
        """Render matplotlib figure into an image and add it to summary.

        Note that this requires the ``matplotlib`` package.

        Args:
            tag: Data identifier
            figure: Figure or a list of figures
            global_step: Global step value to record
            close: Flag to automatically close the figure
            walltime: Optional override default walltime (time.time())
              seconds after epoch of event
        """
        torch._C._log_api_usage_once("tensorboard.logging.add_figure")
        if isinstance(figure, list):
            self.add_image(
                tag,
                figure_to_image(figure, close),
                global_step,
                walltime,
                dataformats="NCHW",
            )
        else:
            self.add_image(
                tag,
                figure_to_image(figure, close),
                global_step,
                walltime,
                dataformats="CHW",
            )

    def add_video(self, tag, vid_tensor, global_step=None, fps=4, walltime=None):
        """Add video data to summary.

        Note that this requires the ``moviepy`` package.

        Args:
            tag (str): Data identifier
            vid_tensor (torch.Tensor): Video data
            global_step (int): Global step value to record
            fps (float or int): Frames per second
            walltime (float): Optional override default walltime (time.time())
              seconds after epoch of event
        Shape:
            vid_tensor: :math:`(N, T, C, H, W)`. The values should lie in [0, 255] for type `uint8` or [0, 1] for type `float`.
        """
        torch._C._log_api_usage_once("tensorboard.logging.add_video")
        self._get_file_writer().add_summary(
            video(tag, vid_tensor, fps), global_step, walltime
        )

    def add_audio(
        self, tag, snd_tensor, global_step=None, sample_rate=44100, walltime=None
    ):
        """Add audio data to summary.

        Args:
            tag (str): Data identifier
            snd_tensor (torch.Tensor): Sound data
            global_step (int): Global step value to record
            sample_rate (int): sample rate in Hz
            walltime (float): Optional override default walltime (time.time())
              seconds after epoch of event
        Shape:
            snd_tensor: :math:`(1, L)`. The values should lie between [-1, 1].
        """
        torch._C._log_api_usage_once("tensorboard.logging.add_audio")
        self._get_file_writer().add_summary(
            audio(tag, snd_tensor, sample_rate=sample_rate), global_step, walltime
        )

    def add_text(self, tag, text_string, global_step=None, walltime=None):
        """Add text data to summary.

        Args:
            tag (str): Data identifier
            text_string (str): String to save
            global_step (int): Global step value to record
            walltime (float): Optional override default walltime (time.time())
              seconds after epoch of event
        Examples::

            writer.add_text('lstm', 'This is an lstm', 0)
            writer.add_text('rnn', 'This is an rnn', 10)
        """
        torch._C._log_api_usage_once("tensorboard.logging.add_text")
        self._get_file_writer().add_summary(
            text(tag, text_string), global_step, walltime
        )

    def add_onnx_graph(self, prototxt):
        torch._C._log_api_usage_once("tensorboard.logging.add_onnx_graph")
        self._get_file_writer().add_onnx_graph(load_onnx_graph(prototxt))

    def add_graph(
        self, model, input_to_model=None, verbose=False, use_strict_trace=True
    ):
        """Add graph data to summary.

        Args:
            model (torch.nn.Module): Model to draw.
            input_to_model (torch.Tensor or list of torch.Tensor): A variable or a tuple of
                variables to be fed.
            verbose (bool): Whether to print graph structure in console.
            use_strict_trace (bool): Whether to pass keyword argument `strict` to
                `torch.jit.trace`. Pass False when you want the tracer to
                record your mutable container types (list, dict)
        """
        torch._C._log_api_usage_once("tensorboard.logging.add_graph")
        # A valid PyTorch model should have a 'forward' method
        self._get_file_writer().add_graph(
            graph(model, input_to_model, verbose, use_strict_trace)
        )

    @staticmethod
    def _encode(rawstr):
        # I'd use urllib but, I'm unsure about the differences from python3 to python2, etc.
        retval = rawstr
        retval = retval.replace("%", f"%{ord('%'):02x}")
        retval = retval.replace("/", f"%{ord('/'):02x}")
        retval = retval.replace("\\", "%%%02x" % (ord("\\")))  # noqa: UP031
        return retval

    def add_embedding(
        self,
        mat,
        metadata=None,
        label_img=None,
        global_step=None,
        tag="default",
        metadata_header=None,
    ):
        """Add embedding projector data to summary.

        Args:
            mat (torch.Tensor or numpy.ndarray): A matrix which each row is the feature vector of the data point
            metadata (list): A list of labels, each element will be converted to string
            label_img (torch.Tensor): Images correspond to each data point
            global_step (int): Global step value to record
            tag (str): Name for the embedding
            metadata_header (list): A list of headers for multi-column metadata. If given, each metadata must be
                a list with values corresponding to headers.
        Shape:
            mat: :math:`(N, D)`, where N is number of data and D is feature dimension

            label_img: :math:`(N, C, H, W)`

        Examples::

            import keyword
            import torch
            meta = []
            while len(meta)<100:
                meta = meta+keyword.kwlist # get some strings
            meta = meta[:100]

            for i, v in enumerate(meta):
                meta[i] = v+str(i)

            label_img = torch.rand(100, 3, 10, 32)
            for i in range(100):
                label_img[i]*=i/100.0

            writer.add_embedding(torch.randn(100, 5), metadata=meta, label_img=label_img)
            writer.add_embedding(torch.randn(100, 5), label_img=label_img)
            writer.add_embedding(torch.randn(100, 5), metadata=meta)

        .. note::
            Categorical (i.e. non-numeric) metadata cannot have more than 50 unique values if they are to be used for
            coloring in the embedding projector.

        """
        torch._C._log_api_usage_once("tensorboard.logging.add_embedding")
        mat = make_np(mat)
        if global_step is None:
            global_step = 0
            # clear pbtxt?

        # Maybe we should encode the tag so slashes don't trip us up?
        # I don't think this will mess us up, but better safe than sorry.
        subdir = f"{str(global_step).zfill(5)}/{self._encode(tag)}"
        save_path = os.path.join(self._get_file_writer().get_logdir(), subdir)

        fs = tf.io.gfile
        if fs.exists(save_path):
            if fs.isdir(save_path):
                print(
                    "warning: Embedding dir exists, did you set global_step for add_embedding()?"
                )
            else:
                raise NotADirectoryError(
                    f"Path: `{save_path}` exists, but is a file. Cannot proceed."
                )
        else:
            fs.makedirs(save_path)

        if metadata is not None:
            assert mat.shape[0] == len(
                metadata
            ), "#labels should equal with #data points"
            make_tsv(metadata, save_path, metadata_header=metadata_header)

        if label_img is not None:
            assert (
                mat.shape[0] == label_img.shape[0]
            ), "#images should equal with #data points"
            make_sprite(label_img, save_path)

        assert (
            mat.ndim == 2
        ), "mat should be 2D, where mat.size(0) is the number of data points"
        make_mat(mat, save_path)

        # Filesystem doesn't necessarily have append semantics, so we store an
        # internal buffer to append to and re-write whole file after each
        # embedding is added
        if not hasattr(self, "_projector_config"):
            self._projector_config = ProjectorConfig()
        embedding_info = get_embedding_info(
            metadata, label_img, subdir, global_step, tag
        )
        self._projector_config.embeddings.extend([embedding_info])

        from google.protobuf import text_format

        config_pbtxt = text_format.MessageToString(self._projector_config)
        write_pbtxt(self._get_file_writer().get_logdir(), config_pbtxt)

    def add_pr_curve(
        self,
        tag,
        labels,
        predictions,
        global_step=None,
        num_thresholds=127,
        weights=None,
        walltime=None,
    ):
        """Add precision recall curve.

        Plotting a precision-recall curve lets you understand your model's
        performance under different threshold settings. With this function,
        you provide the ground truth labeling (T/F) and prediction confidence
        (usually the output of your model) for each target. The TensorBoard UI
        will let you choose the threshold interactively.

        Args:
            tag (str): Data identifier
            labels (torch.Tensor, numpy.ndarray, or string/blobname):
              Ground truth data. Binary label for each element.
            predictions (torch.Tensor, numpy.ndarray, or string/blobname):
              The probability that an element be classified as true.
              Value should be in [0, 1]
            global_step (int): Global step value to record
            num_thresholds (int): Number of thresholds used to draw the curve.
            walltime (float): Optional override default walltime (time.time())
              seconds after epoch of event

        Examples::

            from torch.utils.tensorboard import SummaryWriter
            import numpy as np
            labels = np.random.randint(2, size=100)  # binary label
            predictions = np.random.rand(100)
            writer = SummaryWriter()
            writer.add_pr_curve('pr_curve', labels, predictions, 0)
            writer.close()

        """
        torch._C._log_api_usage_once("tensorboard.logging.add_pr_curve")
        labels, predictions = make_np(labels), make_np(predictions)
        self._get_file_writer().add_summary(
            pr_curve(tag, labels, predictions, num_thresholds, weights),
            global_step,
            walltime,
        )

    def add_pr_curve_raw(
        self,
        tag,
        true_positive_counts,
        false_positive_counts,
        true_negative_counts,
        false_negative_counts,
        precision,
        recall,
        global_step=None,
        num_thresholds=127,
        weights=None,
        walltime=None,
    ):
        """Add precision recall curve with raw data.

        Args:
            tag (str): Data identifier
            true_positive_counts (torch.Tensor, numpy.ndarray, or string/blobname): true positive counts
            false_positive_counts (torch.Tensor, numpy.ndarray, or string/blobname): false positive counts
            true_negative_counts (torch.Tensor, numpy.ndarray, or string/blobname): true negative counts
            false_negative_counts (torch.Tensor, numpy.ndarray, or string/blobname): false negative counts
            precision (torch.Tensor, numpy.ndarray, or string/blobname): precision
            recall (torch.Tensor, numpy.ndarray, or string/blobname): recall
            global_step (int): Global step value to record
            num_thresholds (int): Number of thresholds used to draw the curve.
            walltime (float): Optional override default walltime (time.time())
              seconds after epoch of event
            see: https://github.com/tensorflow/tensorboard/blob/master/tensorboard/plugins/pr_curve/README.md
        """
        torch._C._log_api_usage_once("tensorboard.logging.add_pr_curve_raw")
        self._get_file_writer().add_summary(
            pr_curve_raw(
                tag,
                true_positive_counts,
                false_positive_counts,
                true_negative_counts,
                false_negative_counts,
                precision,
                recall,
                num_thresholds,
                weights,
            ),
            global_step,
            walltime,
        )

    def add_custom_scalars_multilinechart(
        self, tags, category="default", title="untitled"
    ):
        """Shorthand for creating multilinechart. Similar to ``add_custom_scalars()``, but the only necessary argument is *tags*.

        Args:
            tags (list): list of tags that have been used in ``add_scalar()``

        Examples::

            writer.add_custom_scalars_multilinechart(['twse/0050', 'twse/2330'])
        """
        torch._C._log_api_usage_once(
            "tensorboard.logging.add_custom_scalars_multilinechart"
        )
        layout = {category: {title: ["Multiline", tags]}}
        self._get_file_writer().add_summary(custom_scalars(layout))

    def add_custom_scalars_marginchart(
        self, tags, category="default", title="untitled"
    ):
        """Shorthand for creating marginchart.

        Similar to ``add_custom_scalars()``, but the only necessary argument is *tags*,
        which should have exactly 3 elements.

        Args:
            tags (list): list of tags that have been used in ``add_scalar()``

        Examples::

            writer.add_custom_scalars_marginchart(['twse/0050', 'twse/2330', 'twse/2006'])
        """
        torch._C._log_api_usage_once(
            "tensorboard.logging.add_custom_scalars_marginchart"
        )
        assert len(tags) == 3
        layout = {category: {title: ["Margin", tags]}}
        self._get_file_writer().add_summary(custom_scalars(layout))

    def add_custom_scalars(self, layout):
        """Create special chart by collecting charts tags in 'scalars'.

        NOTE: This function can only be called once for each SummaryWriter() object.

        Because it only provides metadata to tensorboard, the function can be called before or after the training loop.

        Args:
            layout (dict): {categoryName: *charts*}, where *charts* is also a dictionary
              {chartName: *ListOfProperties*}. The first element in *ListOfProperties* is the chart's type
              (one of **Multiline** or **Margin**) and the second element should be a list containing the tags
              you have used in add_scalar function, which will be collected into the new chart.

        Examples::

            layout = {'Taiwan':{'twse':['Multiline',['twse/0050', 'twse/2330']]},
                         'USA':{ 'dow':['Margin',   ['dow/aaa', 'dow/bbb', 'dow/ccc']],
                              'nasdaq':['Margin',   ['nasdaq/aaa', 'nasdaq/bbb', 'nasdaq/ccc']]}}

            writer.add_custom_scalars(layout)
        """
        torch._C._log_api_usage_once("tensorboard.logging.add_custom_scalars")
        self._get_file_writer().add_summary(custom_scalars(layout))

    def add_mesh(
        self,
        tag,
        vertices,
        colors=None,
        faces=None,
        config_dict=None,
        global_step=None,
        walltime=None,
    ):
        """Add meshes or 3D point clouds to TensorBoard.

        The visualization is based on Three.js,
        so it allows users to interact with the rendered object. Besides the basic definitions
        such as vertices, faces, users can further provide camera parameter, lighting condition, etc.
        Please check https://threejs.org/docs/index.html#manual/en/introduction/Creating-a-scene for
        advanced usage.

        Args:
            tag (str): Data identifier
            vertices (torch.Tensor): List of the 3D coordinates of vertices.
            colors (torch.Tensor): Colors for each vertex
            faces (torch.Tensor): Indices of vertices within each triangle. (Optional)
            config_dict: Dictionary with ThreeJS classes names and configuration.
            global_step (int): Global step value to record
            walltime (float): Optional override default walltime (time.time())
              seconds after epoch of event

        Shape:
            vertices: :math:`(B, N, 3)`. (batch, number_of_vertices, channels)

            colors: :math:`(B, N, 3)`. The values should lie in [0, 255] for type `uint8` or [0, 1] for type `float`.

            faces: :math:`(B, N, 3)`. The values should lie in [0, number_of_vertices] for type `uint8`.

        Examples::

            from torch.utils.tensorboard import SummaryWriter
            vertices_tensor = torch.as_tensor([
                [1, 1, 1],
                [-1, -1, 1],
                [1, -1, -1],
                [-1, 1, -1],
            ], dtype=torch.float).unsqueeze(0)
            colors_tensor = torch.as_tensor([
                [255, 0, 0],
                [0, 255, 0],
                [0, 0, 255],
                [255, 0, 255],
            ], dtype=torch.int).unsqueeze(0)
            faces_tensor = torch.as_tensor([
                [0, 2, 3],
                [0, 3, 1],
                [0, 1, 2],
                [1, 3, 2],
            ], dtype=torch.int).unsqueeze(0)

            writer = SummaryWriter()
            writer.add_mesh('my_mesh', vertices=vertices_tensor, colors=colors_tensor, faces=faces_tensor)

            writer.close()
        """
        torch._C._log_api_usage_once("tensorboard.logging.add_mesh")
        self._get_file_writer().add_summary(
            mesh(tag, vertices, colors, faces, config_dict), global_step, walltime
        )

    def flush(self):
        """Flushes the event file to disk.

        Call this method to make sure that all pending events have been written to
        disk.
        """
        if self.all_writers is None:
            return
        for writer in self.all_writers.values():
            writer.flush()

    def close(self):
        if self.all_writers is None:
            return  # ignore double close
        for writer in self.all_writers.values():
            writer.flush()
            writer.close()
        self.file_writer = self.all_writers = None

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.close()