File size: 16,554 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
import textwrap
from dataclasses import dataclass
from typing import Dict, List, Optional, Sequence, Tuple, Union
from torchgen.api.types import DispatcherSignature
from torchgen.api.types.signatures import CppSignature, CppSignatureGroup
from torchgen.context import method_with_native_function
from torchgen.model import (
Argument,
BackendIndex,
BaseTy,
BaseType,
DispatchKey,
FunctionSchema,
ListType,
NativeFunction,
NativeFunctionsGroup,
OperatorName,
OptionalType,
Type,
)
from torchgen.utils import mapMaybe
base_type_to_c_type = {
BaseTy.Tensor: "AtenTensorHandle",
BaseTy.bool: "int32_t", # Use int to pass bool
BaseTy.int: "int64_t",
BaseTy.SymInt: "int64_t", # Inductor-generated code won't see a SymInt
BaseTy.Scalar: "double", # Use double to pass both integer and floating point
BaseTy.float: "double", # TODO: how about other floating point types?
BaseTy.str: "const char*",
BaseTy.DeviceIndex: "int32_t",
BaseTy.Layout: "int32_t", # Represent enum as int
BaseTy.MemoryFormat: "int32_t", # Represent enum as int
BaseTy.ScalarType: "int32_t", # Represent enum as int
BaseTy.Generator: "AtenGeneratorHandle",
}
base_type_to_aten_type = {
BaseTy.Tensor: "at::Tensor",
BaseTy.bool: "bool",
BaseTy.int: "int64_t",
BaseTy.SymInt: "c10::SymInt",
BaseTy.Scalar: "c10::Scalar",
BaseTy.float: "double",
BaseTy.str: "c10::string_view",
BaseTy.DeviceIndex: "c10::DeviceIndex",
BaseTy.Layout: "c10::Layout",
BaseTy.MemoryFormat: "c10::MemoryFormat",
BaseTy.ScalarType: "c10::ScalarType",
BaseTy.Generator: "at::Generator",
}
base_type_to_callsite_expr = {
BaseTy.Tensor: "*tensor_handle_to_tensor_pointer",
BaseTy.bool: "",
BaseTy.int: "",
BaseTy.SymInt: "",
BaseTy.Scalar: "",
BaseTy.float: "",
BaseTy.str: "",
BaseTy.DeviceIndex: "static_cast<c10::DeviceIndex>",
BaseTy.Layout: "static_cast<c10::Layout>",
BaseTy.MemoryFormat: "static_cast<c10::MemoryFormat>",
BaseTy.ScalarType: "static_cast<c10::ScalarType>",
BaseTy.Generator: "*generator_handle_to_generator_pointer",
}
# convert args to C types, names in declarations, and expressions in function bodies
def convert_arg_type_and_name(typ: Type, name: str) -> Tuple[List[str], List[str], List[str], List[str]]: # type: ignore[return]
if isinstance(typ, BaseType):
if typ.name in base_type_to_c_type:
return (
[base_type_to_c_type[typ.name]],
[name],
[base_type_to_aten_type[typ.name]],
[
f"{base_type_to_callsite_expr[typ.name]}({name})"
if base_type_to_callsite_expr[typ.name]
else name
],
)
elif typ.name == BaseTy.Device:
return (
["int32_t", "int32_t"],
[name, name + "_index_"],
["c10::Device"],
[
f"c10::Device(static_cast<c10::DeviceType>({name}), static_cast<c10::DeviceIndex>({name}_index_))"
],
)
else:
# TODO: BaseTy.Dimname, etc.
raise NotImplementedError(f"TODO: add support for arg type {repr(typ)}")
elif isinstance(typ, OptionalType):
c_types, names, aten_types, callsite_exprs = convert_arg_type_and_name(
typ.elem, name
)
j = 0 # index for names
new_aten_types = []
new_callsite_exprs = []
for aten_type in aten_types:
# Use pointer to denote optional type
c_types[j] = c_types[j] + "*"
if aten_type.startswith("c10::ArrayRef<"):
# ArrayRef is passed as pointer + size, but no need to add "*" to the size argument
new_aten_types.append(f"::std::optional<{aten_type}>")
base_type = aten_type[len("c10::ArrayRef<") : -1]
new_callsite_exprs.append(
f"pointer_to_optional_list<{base_type}>({names[j]}, {names[j+1]})"
)
j += 2
elif aten_type == "c10::Device":
# Device is passed as device_type + device_index
new_aten_types.append("::std::optional<c10::Device>")
new_callsite_exprs.append(
f"pointer_to_optional_device({names[j]}, {names[j+1]})"
)
j += 2
else:
new_aten_types.append(f"::std::optional<{aten_type}>")
new_callsite_exprs.append(
f"pointer_to_optional<{aten_type}>({names[j]})"
)
j += 1
return (
c_types,
names,
new_aten_types,
new_callsite_exprs,
)
elif isinstance(typ, ListType):
# Need to explictly pass the list as pointer + length
c_types, names, aten_types, _ = convert_arg_type_and_name(typ.elem, name)
assert len(c_types) == 1, "ListType with unsupported element type " + repr(typ)
# The list content should never be modified
c_types[0] = f"const {c_types[0]}*"
c_types.append("int64_t")
name = names[0]
names.append(name + "_len_")
atype = aten_types[0]
callsite_exprs = []
if atype == "bool":
# no converter from std::vector<bool> to c10::ArrayRef<bool>
# construct std::array<bool, N> instead
assert typ.size is not None
callsite_exprs.append(f"pointer_to_list<{typ.size}>({name})")
elif atype == "::std::optional<at::Tensor>":
# convert from std::vector<::std::optional<at::Tensor>> to c10::List<::std::optional<at::Tensor>>
callsite_exprs.append(
f"c10::List<{atype}>(c10::ArrayRef<{atype}>(pointer_to_list<{atype}>({name}, {name}_len_)))"
)
else:
callsite_exprs.append(f"pointer_to_list<{atype}>({name}, {name}_len_)")
aten_types = [f"c10::ArrayRef<{t}>" for t in aten_types]
return (
c_types,
names,
aten_types,
callsite_exprs,
)
def zip_type_and_name(types: List[str], names: List[str]) -> List[str]:
return [typ + " " + name for typ, name in zip(types, names)]
# Generate argument declarations and callsite expressions
def gen_arguments(flat_arguments: Sequence[Argument]) -> Tuple[List[str], List[str]]:
types = []
new_names = []
callsite_exprs = []
for arg in flat_arguments:
new_types, names, _, new_callsite_exprs = convert_arg_type_and_name(
arg.type, arg.name
)
types.extend(new_types)
new_names.extend(names)
callsite_exprs.extend(new_callsite_exprs)
return zip_type_and_name(types, new_names), callsite_exprs
# Return values are passed out as pointer arguments because all the C shim functions
# are expected to return AOTITorchError.
# Generate returns as declarations and callsite expressions
def gen_returns(schema: FunctionSchema) -> Tuple[List[str], List[str]]:
types = []
names = []
for idx, ret in enumerate(schema.returns):
names.append(f"ret{idx}")
if isinstance(ret.type, BaseType) and ret.type.name in base_type_to_c_type:
types.append(base_type_to_c_type[ret.type.name] + "*")
else:
raise NotImplementedError(
f"TODO: add support for return type {repr(ret.type)}"
)
def convert_return(typ: BaseType, val: str) -> str:
if typ.name == BaseTy.Tensor:
return f"new_tensor_handle(std::move({val}));"
elif typ.name == BaseTy.SymInt:
return f"{val}.expect_int()"
elif typ.name == BaseTy.Scalar:
return f"{val}.toDouble()"
else:
return val
ret_pointer_can_be_null = False
unambiguous_name = schema.name.unambiguous_name()
for name in [
"_scaled_dot_product_flash_attention",
"_scaled_dot_product_efficient_attention",
"convolution_backward",
]:
if name in unambiguous_name:
ret_pointer_can_be_null = True
break
callsite_exprs: List[str] = []
for idx, ret in enumerate(schema.returns):
tmp = "tmp_result" if len(names) == 1 else f"std::get<{idx}>(tmp_result)"
assert isinstance(ret.type, BaseType)
rval = convert_return(ret.type, tmp)
if ret_pointer_can_be_null:
callsite_exprs.append(f"if ({names[idx]}) {{ *{names[idx]} = {rval}; }}")
else:
callsite_exprs.append(f"*{names[idx]} = {rval};")
return zip_type_and_name(types, names), callsite_exprs
# gen.py generates header first and then src, so caching the result here to avoid duplicate work
declaration_definition_cache: Dict[Tuple[str, str, str], Tuple[str, str]] = {}
def gen_declaration_and_definition(
schema: FunctionSchema, device: str, backend_call: str
) -> Tuple[str, str]:
func_name = schema.name.unambiguous_name()
global declaration_definition_cache
if (func_name, device, backend_call) in declaration_definition_cache:
return declaration_definition_cache[(func_name, device, backend_call)]
if schema.is_out_fn():
# out_variant has out arguments in the front, and it's ok to ignore return values
# because C shim functions only return AOTITorchError
args, callsite_exprs = gen_arguments(
[*schema.arguments.out, *schema.arguments.flat_non_out]
)
ret_assignments: List[str] = []
else:
args, callsite_exprs = gen_arguments(schema.arguments.flat_all)
# ignore return values for inplace ops
ret_declarations, ret_assignments = (
([], []) if schema.name.name.inplace else gen_returns(schema)
)
args.extend(ret_declarations)
declaration = f"AOTITorchError aoti_torch_{device}_{func_name}({', '.join(args)})"
tmp_result = "auto tmp_result = " if ret_assignments else ""
ret_assignments_str = "\n" + "\n".join(ret_assignments) if ret_assignments else ""
definition = f"""
{declaration} {{
AOTI_TORCH_CONVERT_EXCEPTION_TO_ERROR_CODE({{
{tmp_result}{backend_call}(
{textwrap.indent(', '.join(callsite_exprs), " ")}
);{textwrap.indent(ret_assignments_str, " ")}
}});
}}
"""
declaration_definition_cache[(func_name, device, backend_call)] = (
declaration,
definition,
)
return declaration, definition
def gen_static_dispatch_backend_call_signature(
sig: Union[CppSignature, DispatcherSignature],
f: NativeFunction,
) -> CppSignature:
sig = DispatcherSignature.from_schema(f.func)
cpp_sigs = CppSignatureGroup.from_native_function(
f, method=False, fallback_binding=False
)
if sig.symint and f.func.has_symint():
cpp_sig = cpp_sigs.symint_signature
else:
cpp_sig = cpp_sigs.signature
assert cpp_sig is not None
return cpp_sig
def gen_static_dispatch_backend_call(
f: NativeFunction,
backend_index: BackendIndex,
) -> str:
sig = DispatcherSignature.from_schema(f.func)
cpp_sig = gen_static_dispatch_backend_call_signature(sig, f)
return f"at::{backend_index.dispatch_key.lower()}::{cpp_sig.name()}"
def get_backend_index_for_aoti(
func: NativeFunction,
func_group_mapping: Dict[OperatorName, NativeFunctionsGroup],
dispatch_key: DispatchKey,
backend_indices: Dict[DispatchKey, BackendIndex],
) -> Optional[BackendIndex]:
backend_index = None
if backend_indices[dispatch_key].has_kernel(func) or (
func.structured_delegate is not None
and func.structured_delegate in func_group_mapping
and backend_indices[dispatch_key].has_kernel(
func_group_mapping[func.structured_delegate]
)
):
backend_index = backend_indices[dispatch_key]
elif backend_indices[DispatchKey.CompositeExplicitAutograd].has_kernel(func):
# We need to create C shim wrappers for CompositeExplicitAutograd kernels
backend_index = backend_indices[DispatchKey.CompositeExplicitAutograd]
elif backend_indices[DispatchKey.CompositeExplicitAutogradNonFunctional].has_kernel(
func
):
# We need to create C shim wrappers for CompositeExplicitAutogradNonFunctional kernels
backend_index = backend_indices[
DispatchKey.CompositeExplicitAutogradNonFunctional
]
elif backend_indices[DispatchKey.CompositeImplicitAutograd].has_kernel(func):
backend_index = backend_indices[DispatchKey.CompositeImplicitAutograd]
return backend_index
def get_header_for_aoti(
func: NativeFunction,
func_group_mapping: Dict[OperatorName, NativeFunctionsGroup],
dispatch_key: DispatchKey,
backend_indices: Dict[DispatchKey, BackendIndex],
) -> Optional[str]:
backend_index = get_backend_index_for_aoti(
func, func_group_mapping, dispatch_key, backend_indices
)
return (
None
if backend_index is None
else f"#include <ATen/ops/{func.root_name}_{backend_index.dispatch_key.lower()}_dispatch.h>"
)
def get_fallback_op_name(func: NativeFunction) -> str:
return (
f"{func.namespace}.{func.func.name.name}.{func.func.name.overload_name}"
if func.func.name.overload_name
else f"{func.namespace}.{func.func.name.name}.default"
)
def gen_c_shim(
func: NativeFunction,
func_group_mapping: Dict[OperatorName, NativeFunctionsGroup],
dispatch_key: DispatchKey,
backend_indices: Dict[DispatchKey, BackendIndex],
header: bool,
) -> Optional[str]:
backend_index = get_backend_index_for_aoti(
func, func_group_mapping, dispatch_key, backend_indices
)
if backend_index is None:
return None
schema = func.func
device = dispatch_key.lower()
backend_call = gen_static_dispatch_backend_call(
func,
backend_index,
)
try:
if header:
declaration, _ = gen_declaration_and_definition(
schema, device, backend_call
)
return f"AOTI_TORCH_EXPORT {declaration};"
else:
_, definition = gen_declaration_and_definition(schema, device, backend_call)
return definition
except NotImplementedError:
return None
@dataclass(frozen=True)
class ShimGenerator:
func_group_mapping: Dict[OperatorName, NativeFunctionsGroup]
dispatch_key: DispatchKey
backend_indices: Dict[DispatchKey, BackendIndex]
header: bool # True to generate .h and False to generate .cpp
@method_with_native_function
def __call__(
self,
func: NativeFunction,
) -> Optional[str]:
result = gen_c_shim(
func,
self.func_group_mapping,
self.dispatch_key,
self.backend_indices,
self.header,
)
return result
def gen_aoti_c_shim(
native_functions: Sequence[NativeFunction],
func_group_mapping: Dict[OperatorName, NativeFunctionsGroup],
dispatch_key: DispatchKey,
backend_indices: Dict[DispatchKey, BackendIndex],
header: bool,
includes: str = "",
) -> str:
body = "\n".join(
list(
mapMaybe(
ShimGenerator(
func_group_mapping, dispatch_key, backend_indices, header
),
native_functions,
)
)
)
device = dispatch_key.lower()
warning = """
// WARNING: THIS FILE IS AUTOGENERATED BY torchgen. DO NOT MODIFY BY HAND.
// See https://github.com/pytorch/pytorch/blob/7e86a7c0155295539996e0cf422883571126073e/torchgen/gen.py#L2424-L2436 for details"""
if header:
return f"""
{warning}
#pragma once
#include <torch/csrc/inductor/aoti_torch/c/shim.h>
#ifdef __cplusplus
extern "C" {{
#endif
{body}
#ifdef __cplusplus
}} // extern "C"
#endif
"""
else:
return f"""
{warning}
#include <torch/csrc/inductor/aoti_torch/generated/c_shim_{device}.h>
#include <torch/csrc/inductor/aoti_torch/utils.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/{str(dispatch_key)}Functions.h>
#include <ATen/CompositeExplicitAutogradFunctions.h>
#include <ATen/CompositeExplicitAutogradNonFunctionalFunctions.h>
#include <ATen/CompositeImplicitAutogradFunctions.h>
#else
{includes}
#endif
using namespace torch::aot_inductor;
{body}"""
|