File size: 26,380 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
import json
import logging

import math
from typing import Dict, List, Optional, Sequence, Tuple, Union

import torchgen.api.cpp as cpp
from torchgen.context import native_function_manager
from torchgen.model import (
    Argument,
    BackendIndex,
    BaseTy,
    BaseType,
    FunctionSchema,
    NativeFunctionsGroup,
    NativeFunctionsViewGroup,
    OptionalType,
    SelfArgument,
    TensorOptionsArguments,
    Type,
)
from torchgen.static_runtime import config

logger: logging.Logger = logging.getLogger()


def has_alias(
    arguments: Sequence[Union[Argument, SelfArgument, TensorOptionsArguments]]
) -> bool:
    for arg in arguments:
        annotation = getattr(arg, "annotation", None)
        if not annotation:
            continue
        alias_set = getattr(annotation, "alias_set", ())
        if alias_set:
            return True
    return False


BLOCKED_OPS = frozenset(
    (
        # non cpu ops
        "sparse_sampled_addmm",
        "hspmm",
        "linalg_svdvals",
        # sparse ops
        "sspaddmm",
        "coalesce",
        "_indices",
        "indices",
        "_values",
        "values",
        "crow_indices",
        "col_indices",
        # deprecated ops
        "floor_divide",
        "ger",
        # buggy ops
        "conj_physical",  # P495807361
        "binary_cross_entropy",  # P496394764
        "arccosh",
        # uncommon ops
        "cholesky",
        "lu_solve",
        "linalg_cholesky",
        "linalg_householder_product",
        "linalg_ldl_solve",
        "_compute_linear_combination",
        # training related ops
        "_make_dual",
        # cannot call directly
        "_fw_primal",
        # no documentation
        "_index_reduce",
        # TODO: these ones got added recently and need manual inspection
        "_new_zeros_with_same_feature_meta",
        "_conj_physical",
        "binary_cross_entropy_with_logits",
        "bincount",
        "conv_tbc",
        "copy",
        "_copy_from",
        "_copy_from_and_resize",
        "count_nonzero",
        "cudnn_affine_grid_generator",
        "cudnn_affine_grid_generator_backward",
        "cudnn_grid_sampler",
        "diag_embed",
        "embedding",
        "embedding_dense_backward",
        "_embedding_bag_dense_backward",
        "_embedding_bag_per_sample_weights_backward",
        "grid_sampler_2d",
        "_grid_sampler_2d_cpu_fallback",
        "grid_sampler_3d",
        "isnan",
        "mkldnn_linear",
        "median",
        "nanmedian",
        "_sparse_sparse_matmul",
        "batch_norm_backward_elemt",
        "_euclidean_dist",
        "pixel_shuffle",
        "pixel_unshuffle",
        "channel_shuffle",
        "_reshape_nested_backward",
        "relu",
        "prelu",
        "celu",
        "slice_scatter",
        "select_scatter",
        "diagonal_scatter",
        "sum",
        "_mkldnn_transpose",
        "_nested_tensor_from_mask",
        "_nested_from_padded",
        "_nested_tensor_size",
        "_nested_from_padded_and_nested_example",
        "_standard_gamma_grad",
        "_dirichlet_grad",
        "native_norm",
        "_sparse_softmax",
        "_sparse_softmax_backward_data",
        "_sparse_log_softmax",
        "_sparse_log_softmax_backward_data",
        "zero",
        "_sparse_addmm",
        "sparse_mask",
        "_sparse_mask_projection",
        "_to_dense",
        "_coalesce",
        "_coalesced",
        "copy_sparse_to_sparse",
        "to_sparse",
        "to_sparse_csr",
        "to_sparse_csc",
        "to_mkldnn",
        "quantize_per_tensor_dynamic",
        "quantize_per_channel",
        "q_per_channel_scales",
        "q_per_channel_zero_points",
        "int_repr",
        "_make_per_channel_quantized_tensor",
        "set",
        "lift",
        "lift_fresh",
        "lift_fresh_copy",
        "masked_scatter",
        "_masked_softmax",
        "_masked_softmax_backward",
        "put",
        "index_reduce",
        "trace",
        "_cholesky_solve_helper",
        "dist",
        "max",
        "_torch_cuda_cu_linker_symbol_op",
        "glu_jvp",
        "glu_backward_jvp",
        "hardswish_backward",
        "rrelu_with_noise_backward",
        "mkldnn_adaptive_avg_pool2d_backward",
        "_adaptive_avg_pool2d_backward",
        "_adaptive_avg_pool3d_backward",
        "isinf",
        "linalg_lu_solve",
        "linalg_vecdot",
        "linalg_matrix_exp",
        "linalg_eigvalsh",
        "_test_warn_in_autograd",
        "_test_autograd_multiple_dispatch_view",
        "_test_autograd_multiple_dispatch_view_copy",
        "_segment_reduce",
        "_segment_reduce_backward",
        "_fw_primal_copy",
        "_make_dual_copy",
        "view_as_real_copy",
        "view_as_complex_copy",
        "_conj_copy",
        "_neg_view_copy",
        "diagonal_copy",
        "detach_copy",
        "squeeze_copy",
        "t_copy",
        "unsqueeze_copy",
        "_indices_copy",
        "_values_copy",
        "indices_copy",
        "values_copy",
        "crow_indices_copy",
        "col_indices_copy",
        "ccol_indices",
        "ccol_indices_copy",
        "row_indices",
        "row_indices_copy",
        "unfold_copy",
        "alias_copy",
        "_triton_multi_head_attention",
        "special_airy_ai",
        "special_bessel_j0",
        "special_bessel_j1",
        "special_bessel_y0",
        "special_bessel_y1",
        "special_chebyshev_polynomial_t",
        "special_chebyshev_polynomial_u",
        "special_chebyshev_polynomial_v",
        "special_chebyshev_polynomial_w",
        "special_hermite_polynomial_h",
        "special_hermite_polynomial_he",
        "special_laguerre_polynomial_l",
        "special_legendre_polynomial_p",
        "special_modified_bessel_i0",
        "special_modified_bessel_i1",
        "special_modified_bessel_k0",
        "special_modified_bessel_k1",
        "special_scaled_modified_bessel_k0",
        "special_scaled_modified_bessel_k1",
        "special_shifted_chebyshev_polynomial_t",
        "special_shifted_chebyshev_polynomial_u",
        "special_shifted_chebyshev_polynomial_v",
        "special_shifted_chebyshev_polynomial_w",
        "special_spherical_bessel_j0",
        "_foobar",
        "_nested_tensor_strides",
    )
)


def is_supported(g: Union[NativeFunctionsGroup, NativeFunctionsViewGroup]) -> bool:
    base_op_name = ""
    func = None
    if isinstance(g, NativeFunctionsViewGroup):
        base_op_name = g.view.root_name
        func = g.view.func
    else:
        base_op_name = g.out.func.name.name.base
        func = g.out.func
    if config.is_hand_written(g):
        logger.info("HAND WRITTEN: %s", base_op_name)
        return False
    if base_op_name in BLOCKED_OPS:
        logger.info("BLOCKED: %s", base_op_name)
        return False
    for arg in func.schema_order_arguments():
        maybe_method = ivalue_type_conversion_method(arg.type)
        if not maybe_method:
            # Type converting is unsupported yet.
            logger.info("NOT SUPPORTED TYPE CONVERTING: %s", func)
            return False

    if isinstance(g, NativeFunctionsViewGroup):
        # TODO: stop doing type tests by converting to C++ and then testing
        # the string, just test the dang thing directly
        if "at::Tensor" != cpp.returns_type(func.returns, symint=False).cpp_type():
            # Returns a non-Tensor value.
            logger.info("NON-TENSOR RET TYPE: %s", str(func))
            return False
        return True

    # For out variant ops, we need to check the arguments of its functional func.
    for arg in g.functional.func.schema_order_arguments():
        maybe_method = ivalue_type_conversion_method(arg.type)
        if not maybe_method:
            # Type converting is unsupported yet.
            logger.info("NOT SUPPORTED TYPE CONVERTING: %s", g.functional.func)
            return False

    if not g.structured:
        # In case of unstructured op, we check if it has out variant implementation.
        # The out variant implementation satisfies the minimum requirement that it has the output tensor as the last
        # parameter.
        if (
            not hasattr(g, "out")
            or not str(func).endswith("Tensor(a!) out) -> Tensor(a!)")
            or not str(func.name).endswith(".out")
        ):
            return False
    # TODO: stop type testing by converting to C++
    if "at::Tensor &" != cpp.returns_type(func.returns, symint=False).cpp_type():
        logger.info("NON_TENSOR RET TYPE: %s", func)
        return False
    if has_alias(func.arguments.non_out):
        # This op may create an alias of inputs.
        logger.info("INPUTS ALIAS: %s", base_op_name)
        return False
    return True


def ivalue_type_conversion_method(
    arg_type: Union[BaseType, OptionalType, Type]
) -> Optional[Tuple[bool, str]]:
    """
    Return the method call expression of `c10::ivalue' to convert its contained value to
    the expected value of `arg_type` type. For example, for `arg_type` == BaseTy.Tensor,
    this function returns ".toTensor()", so that it can be appended to the ivalue's
    variable name to get the value of the expected type.
    """
    type_conversion_methods = {
        BaseTy.Tensor: ((True, "toTensor()"), (False, "toOptional<at::Tensor>()")),
        BaseTy.int: ((False, "toInt()"), (False, "toOptional<int64_t>()")),
        BaseTy.bool: ((False, "toBool()"), (False, "toOptional<bool>()")),
        BaseTy.Scalar: ((False, "toScalar()"), (False, "toOptional<at::Scalar>()")),
        BaseTy.ScalarType: (
            (False, "toScalarType()"),
            (False, "toOptional<at::ScalarType>()"),
        ),
        BaseTy.str: (
            (False, "toStringView()"),
            (False, "toOptional<c10::string_view>()"),
        ),
    }

    base_ty_object = None
    if isinstance(arg_type, BaseType):
        base_ty_object = arg_type.name
    elif isinstance(arg_type, OptionalType):
        if not isinstance(arg_type.elem, BaseType):
            # ListType is currently unsupported.
            return None
        base_ty_object = arg_type.elem.name
    else:
        return None

    if base_ty_object not in type_conversion_methods:
        return None
    methods = type_conversion_methods[base_ty_object]
    if isinstance(arg_type, BaseType):
        return methods[0]
    return methods[1]


should_use_int_tensor_ops_ = frozenset(
    (
        "bitwise_not",
        "bitwise_and",
        "bitwise_or",
        "bitwise_xor",
        "bitwise_left_shift",
        "bitwise_right_shift",
        "gcd",
        "lcm",
        "scatter",
        "gather",
        "_convert_indices_from_coo_to_csr",
        "_convert_indices_from_csr_to_coo",
    )
)
should_use_complex_tensor_ops_ = frozenset(("view_as_real", "imag", "_conj"))


def should_use_int_tensor(op_name: str) -> bool:
    return op_name in should_use_int_tensor_ops_


def should_use_complex_tensor(op_name: str) -> bool:
    return op_name in should_use_complex_tensor_ops_


test_tensor_dim_ops_1_ = frozenset(
    (
        "addmv",
        "index_add",
        "_convert_indices_from_coo_to_csr",
        "_convert_indices_from_csr_to_coo",
        "nll_loss_backward",
        "dot",
        "vdot",
        "outer",
        "ger",
    )
)
test_tensor_dim_ops_2_ = frozenset(
    ("addmm", "mm", "nuclear_norm", "diag", "_addmm_activation", "matrix_H", "t")
)


def test_tensor_dim(op_name: str) -> int:
    if op_name in test_tensor_dim_ops_1_:
        return 1
    if op_name in test_tensor_dim_ops_2_:
        return 2
    return 3


test_tensor_shapes_string = '{"view_as_complex": "{2, 2}"}'
test_tensor_shape_json: Dict[str, str] = json.loads(test_tensor_shapes_string)


def test_tensor_shape(op_name: str) -> str:
    if op_name in test_tensor_shape_json:
        return test_tensor_shape_json[op_name]
    else:
        return ""


def test_value_expression(
    arg_type: Union[BaseType, OptionalType, Type], index: int, op_name: str
) -> str:
    tensor_size_ex = test_tensor_shape(op_name)
    if tensor_size_ex == "":
        num_tensors = 16 if index == 0 else 64
        num_dim = test_tensor_dim(op_name)
        size_per_dim = math.ceil(num_tensors / float(num_dim))
        size_per_dim += size_per_dim % 2
        tensor_size_ex = "{{{}}}".format(",".join([f"{size_per_dim}"] * num_dim))
    if should_use_int_tensor(op_name):
        tensor_expression = f"at::randint(1, 100, {tensor_size_ex}, at::kInt)"
    elif should_use_complex_tensor(op_name):
        tensor_expression = f"at::randn({tensor_size_ex}, at::kComplexFloat)"
    else:
        tensor_expression = f"at::rand({tensor_size_ex})"

    value_expressions = {
        BaseTy.Tensor: tensor_expression,
        BaseTy.int: "1",
        BaseTy.bool: "false",
        BaseTy.Scalar: "2",
        BaseTy.ScalarType: "at::ScalarType::Float",
        BaseTy.str: '"floor"',
    }

    base_ty_object = None
    if isinstance(arg_type, BaseType):
        base_ty_object = arg_type.name
    else:
        assert isinstance(arg_type, OptionalType) and isinstance(
            arg_type.elem, BaseType
        )
        base_ty_object = arg_type.elem.name
    assert base_ty_object in value_expressions, "not expected type"
    value_expression = value_expressions[base_ty_object]
    return value_expression


def generate_test_value_definitions(schema: FunctionSchema, index: int) -> str:
    assert not schema.is_out_fn()
    schema_name = schema.name.name.base
    arg_map = {}
    for arg in schema.schema_order_arguments():
        test_value_exp = test_value_expression(arg.type, index, schema_name)
        arg_map[arg.name] = test_value_exp
    config.override_test_values(arg_map, schema_name, index)
    arg_populations = []
    for arg_name, arg_value in arg_map.items():
        arg_populations.append(f"auto {arg_name}{index} = {arg_value}")
    return ";\n    ".join(arg_populations) + ";"


def generate_test_value_names(schema: FunctionSchema, index: int) -> str:
    assert not schema.is_out_fn()
    return ",".join(f"{arg.name}{index}" for arg in schema.schema_order_arguments())


generate_test_ir_arguments_base_ty_to_type_str_ = {
    BaseTy.Tensor: "Tensor",
    BaseTy.int: "int",
    BaseTy.float: "float",
    BaseTy.str: "str",
    BaseTy.Scalar: "int",
    BaseTy.ScalarType: "int",
    BaseTy.bool: "bool",
}


def generate_test_ir_arguments(
    schema: FunctionSchema,
) -> List[Tuple[str, Optional[str]]]:
    def ir_argument(arg: Argument) -> Tuple[str, Optional[str]]:
        t = arg.type
        add_optional = False
        if isinstance(t, OptionalType):
            t = t.elem
            add_optional = True
        assert isinstance(t, BaseType)
        type_str = None
        if t.name in generate_test_ir_arguments_base_ty_to_type_str_:
            type_str = generate_test_ir_arguments_base_ty_to_type_str_[t.name]
        if type_str and add_optional:
            type_str = f"{type_str}?"
        return ("%" + arg.name, type_str)

    return [ir_argument(arg) for arg in schema.schema_order_arguments()]


def generate_arg_extraction(schema: FunctionSchema) -> str:
    arg_populations = []
    for i, arg in enumerate(schema.schema_order_arguments()):
        maybe_method = ivalue_type_conversion_method(arg.type)
        assert maybe_method
        is_reference, type_conversion_method = maybe_method
        reference = "&" if is_reference else ""
        arg_populations.append(
            f"const auto{reference} {arg.name} = p_node->Input({i}).{type_conversion_method}"
        )
    return ";\n    ".join(arg_populations) + ";"


def get_kernel_name(g: NativeFunctionsGroup, backend_index: BackendIndex) -> str:
    kernel = backend_index.get_kernel(g.functional)
    if g.structured or kernel is None:
        return cpp.name(g.functional.func)
    return kernel.kernel


def get_out_kernel_name(g: NativeFunctionsGroup, backend_index: BackendIndex) -> str:
    kernel = backend_index.get_kernel(g.out)
    if g.structured or kernel is None:
        return cpp.name(g.out.func)
    return kernel.kernel


def generate_non_out_variant_call(
    g: NativeFunctionsGroup, backend_index: BackendIndex
) -> str:
    schema = g.functional.func
    assert not schema.is_out_fn()
    kernel_name = get_kernel_name(g, backend_index)
    arg_names = (arg.name for arg in schema.schema_order_arguments())
    namespace_name = "cpu" if g.structured else "native"
    return f'at::{namespace_name}::{kernel_name}({",".join(arg_names)})'


def generate_call_to_view_ops(
    g: NativeFunctionsViewGroup, backend_index: BackendIndex
) -> str:
    schema = g.view.func
    kernel_name = cpp.name(schema)
    kernel = backend_index.get_kernel(g.view)
    if kernel:
        kernel_name = kernel.kernel
    arg_names = (arg.name for arg in schema.schema_order_arguments())
    namespace_name = "native"
    return f'at::{namespace_name}::{kernel_name}({",".join(arg_names)})'


def generate_out_variant_call(
    g: NativeFunctionsGroup, backend_index: BackendIndex
) -> str:
    schema = g.out.func
    assert schema.is_out_fn()
    arg_names = []
    kernel_name = get_out_kernel_name(g, backend_index)
    if g.structured:
        # structured op starts with the output tensor argument.
        arg_names = [out_arg.name for out_arg in schema.arguments.out]
    else:
        arg_names = []
    for arg in schema.arguments.non_out:
        if isinstance(arg, SelfArgument):
            arg_names.append(arg.argument.name)
        else:
            assert isinstance(arg, Argument)
            arg_names.append(arg.name)
    if not g.structured:
        assert len(schema.arguments.out) == 1
        arg_names.append(schema.arguments.out[0].name)
    cpp_arg_names = ",".join(arg_names)
    namespace_name = "cpu" if g.structured else "native"
    return f"at::{namespace_name}::{kernel_name}({cpp_arg_names})"


no_memory_resize_ops = frozenset(
    (
        "isin.Scalar_Tensor",
        "index_add",
        "dot",
        "vdot",
        "nuclear_norm",
        "histc",
        "l1_loss",
        "multi_margin_loss",
        "multilabel_margin_loss",
        "nll_loss",
        "nll_loss2d",
        "prod",
    )
)


def should_check_resize(schema: FunctionSchema) -> bool:
    schema_str = str(schema)
    type_variant_op_name = schema_str[: schema_str.find("(")]
    return type_variant_op_name not in no_memory_resize_ops


def op_name_from_group(g: NativeFunctionsGroup) -> str:
    return g.functional.func.name.name.base


class GenOpDispatcher:
    def out_variant(
        self, groups: Sequence[NativeFunctionsGroup], backend_index: BackendIndex
    ) -> str:
        if not groups:
            return ""
        generated_type_variants = []
        for g in groups:
            with native_function_manager(g):
                assert is_supported(g)
                assert isinstance(g, NativeFunctionsGroup)
                generated_type_variant = self.out_variant_op_generator(g, backend_index)
                generated_type_variants.append(generated_type_variant)
        op_name = op_name_from_group(groups[0])
        body = "\n".join(generated_type_variants)
        generated = f"""
REGISTER_OPERATOR_FUNCTOR(
    aten::{op_name},
    aten_{op_name},
    [](Node* n) -> SROperator {{
      {body}
      LogAndDumpSchema(n);
      return nullptr;
    }});
"""
        return generated

    def view(
        self, groups: Sequence[NativeFunctionsViewGroup], backend_index: BackendIndex
    ) -> str:
        if not groups:
            return ""
        generated_type_variants = []
        for g in groups:
            with native_function_manager(g):
                assert is_supported(g)
                assert isinstance(g, NativeFunctionsViewGroup)
                generated_type_variant = self.view_op_generator(g, backend_index)
                generated_type_variants.append(generated_type_variant)
        op_name = config.func_name_base_str(groups[0])
        body = "\n".join(generated_type_variants)
        generated = f"""
REGISTER_NATIVE_OPERATOR_FUNCTOR(
    aten::{op_name},
    aten_{op_name},
    [](Node* n) -> SROperator {{
      {body}
      LogAndDumpSchema(n);
      return nullptr;
    }});
"""
        return generated

    def out_variant_op_generator(
        self, g: NativeFunctionsGroup, backend_index: BackendIndex
    ) -> str:
        functional = g.functional
        schema = str(functional.func)
        populated_argument = generate_arg_extraction(g.functional.func)
        functional_variant_call = generate_non_out_variant_call(g, backend_index)
        assert len(g.out.func.arguments.out) == 1
        out_variable_name = str(g.out.func.arguments.out[0].name)
        out_variant_call = generate_out_variant_call(g, backend_index)
        generated = f"""
      if (n->matches(torch::schema("aten::{schema}"))) {{
        return [](ProcessedNode* p_node) {{
          {populated_argument}
          if (p_node->Output(0).isNone()) {{
            p_node->Output(0) = {functional_variant_call};
            return;
          }}
          auto& {out_variable_name} = p_node->Output(0).toTensor();
          fastResizeToZero({out_variable_name});
          {out_variant_call};
        }};
      }}"""
        return generated

    def view_op_generator(
        self, g: NativeFunctionsViewGroup, backend_index: BackendIndex
    ) -> str:
        schema = str(g.view.func)
        populated_argument = generate_arg_extraction(g.view.func)
        functional_variant_call = generate_call_to_view_ops(g, backend_index)
        generated = f"""
      if (n->matches(torch::schema("aten::{schema}"))) {{
        return [](ProcessedNode* p_node) {{
          {populated_argument}
            p_node->Output(0) = {functional_variant_call};
        }};
      }}"""
        return generated


class GenOpTestCase:
    def out_variant(self, groups: Sequence[NativeFunctionsGroup]) -> str:
        if not groups:
            return ""
        generated_type_variants = []
        for g in groups:
            with native_function_manager(g):
                assert is_supported(g)
                assert isinstance(g, NativeFunctionsGroup)
                generated_type_variant = self.out_variant_op_test_case_generator(g)
                generated_type_variants.append(generated_type_variant)
        return "\n".join(generated_type_variants)

    def view(self, groups: Sequence[NativeFunctionsViewGroup]) -> str:
        if not groups:
            return ""
        generated_type_variants = []
        for g in groups:
            with native_function_manager(g):
                assert is_supported(g)
                assert isinstance(g, NativeFunctionsViewGroup)
                generated_type_variant = self.view_op_test_case_generator(g)
                generated_type_variants.append(generated_type_variant)
        return "\n".join(generated_type_variants)

    def out_variant_op_test_case_generator(self, g: NativeFunctionsGroup) -> str:
        schema = g.functional.func
        schema_str = str(schema)
        assert schema_str.find("(") > 0
        type_variant_op_name = schema_str[: schema_str.find("(")].replace(".", "_")
        op_name = op_name_from_group(g)
        assert type_variant_op_name.startswith(op_name)

        arg_types = generate_test_ir_arguments(schema)
        arg_declarations = ", ".join(
            (
                arg_name if arg_type is None else f"{arg_name}: {arg_type}"
                for arg_name, arg_type in arg_types
            )
        )
        arg_names = ", ".join((arg_name for arg_name, _ in arg_types))
        assert (
            len(schema.returns) == 1
            and isinstance(schema.returns[0].type, BaseType)
            and schema.returns[0].type.name is BaseTy.Tensor
        )
        test_value_definitions = generate_test_value_definitions(schema, 0)
        test_value_names = generate_test_value_names(schema, 0)
        test_value_definitions2 = generate_test_value_definitions(schema, 1)
        test_value_names2 = generate_test_value_names(schema, 1)
        check_resize = "true" if should_check_resize(schema) else "false"
        generated = f"""
TEST(StaticRuntime, autogen_{type_variant_op_name}) {{
  const std::string script = R"IR(
    graph({arg_declarations}):
        %bias: None = prim::Constant()
        %ret = aten::{op_name}({arg_names})
        %cloned = aten::clone(%ret, %bias)
        return (%cloned)
  )IR";

  {test_value_definitions}
  std::vector<IValue> args{{{test_value_names}}};
  testStaticRuntime(script, args, {{}}, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/{check_resize});

  {test_value_definitions2}
  std::vector<IValue> args2{{{test_value_names2}}};
  testStaticRuntime(script, args, args2, /*use_allclose=*/false, /*use_equalnan=*/false, /*check_resize=*/{check_resize});

}}
"""
        return generated

    def view_op_test_case_generator(self, g: NativeFunctionsViewGroup) -> str:
        schema = g.view.func
        schema_str = str(schema)
        assert schema_str.find("(") > 0
        type_variant_op_name = schema_str[: schema_str.find("(")].replace(".", "_")
        op_name = g.view.root_name
        assert type_variant_op_name.startswith(op_name)

        arg_types = generate_test_ir_arguments(schema)
        arg_declarations = ", ".join(
            (
                arg_name if arg_type is None else f"{arg_name}: {arg_type}"
                for arg_name, arg_type in arg_types
            )
        )
        arg_names = ", ".join((arg_name for arg_name, _ in arg_types))
        assert (
            len(schema.returns) == 1
            and isinstance(schema.returns[0].type, BaseType)
            and schema.returns[0].type.name is BaseTy.Tensor
        )
        test_value_definitions = generate_test_value_definitions(schema, 0)
        test_value_names = generate_test_value_names(schema, 0)
        generated = f"""
TEST(StaticRuntime, autogen_{type_variant_op_name}) {{
  const std::string script = R"IR(
    graph({arg_declarations}):
        %bias: None = prim::Constant()
        %ret = aten::{op_name}({arg_names})
        %cloned = aten::clone(%ret, %bias)
        return (%cloned)
  )IR";

  {test_value_definitions}
  std::vector<IValue> args{{{test_value_names}}};
  testStaticRuntime(script, args);
}}
"""

        return generated