File size: 42,665 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import re
from typing import Any, Callable, Dict, List, Literal, Optional, Tuple, Union
from .. import is_torch_available
from ..utils import logging as transformers_logging
from ..utils.import_utils import is_pygments_available
from .agent_types import AgentAudio, AgentImage, AgentText
from .default_tools import BASE_PYTHON_TOOLS, FinalAnswerTool, setup_default_tools
from .llm_engine import HfEngine, MessageRole
from .prompts import (
DEFAULT_CODE_SYSTEM_PROMPT,
DEFAULT_REACT_CODE_SYSTEM_PROMPT,
DEFAULT_REACT_JSON_SYSTEM_PROMPT,
PLAN_UPDATE_FINAL_PLAN_REDACTION,
PROMPTS_FOR_INITIAL_PLAN,
PROMPTS_FOR_PLAN_UPDATE,
SUPPORTED_PLAN_TYPES,
SYSTEM_PROMPT_FACTS,
SYSTEM_PROMPT_FACTS_UPDATE,
USER_PROMPT_FACTS_UPDATE,
)
from .python_interpreter import LIST_SAFE_MODULES, evaluate_python_code
from .tools import (
DEFAULT_TOOL_DESCRIPTION_TEMPLATE,
Tool,
get_tool_description_with_args,
load_tool,
)
if is_pygments_available():
from pygments import highlight
from pygments.formatters import Terminal256Formatter
from pygments.lexers import PythonLexer
class CustomFormatter(logging.Formatter):
grey = "\x1b[38;20m"
bold_yellow = "\x1b[33;1m"
red = "\x1b[31;20m"
green = "\x1b[32;20m"
bold_red = "\x1b[31;1m"
bold_white = "\x1b[37;1m"
reset = "\x1b[0m"
format = "%(message)s"
FORMATS = {
logging.DEBUG: grey + format + reset,
logging.INFO: format,
logging.WARNING: bold_yellow + format + reset,
31: reset + format + reset,
32: green + format + reset,
33: bold_white + format + reset,
logging.ERROR: red + format + reset,
logging.CRITICAL: bold_red + format + reset,
}
def format(self, record):
log_fmt = self.FORMATS.get(record.levelno)
formatter = logging.Formatter(log_fmt)
return formatter.format(record)
logger = transformers_logging.get_logger(__name__)
logger.propagate = False
ch = logging.StreamHandler()
ch.setFormatter(CustomFormatter())
logger.addHandler(ch)
def parse_json_blob(json_blob: str) -> Dict[str, str]:
try:
first_accolade_index = json_blob.find("{")
last_accolade_index = [a.start() for a in list(re.finditer("}", json_blob))][-1]
json_blob = json_blob[first_accolade_index : last_accolade_index + 1].replace('\\"', "'")
json_data = json.loads(json_blob, strict=False)
return json_data
except json.JSONDecodeError as e:
place = e.pos
if json_blob[place - 1 : place + 2] == "},\n":
raise ValueError(
"JSON is invalid: you probably tried to provide multiple tool calls in one action. PROVIDE ONLY ONE TOOL CALL."
)
raise ValueError(
f"The JSON blob you used is invalid due to the following error: {e}.\n"
f"JSON blob was: {json_blob}, decoding failed on that specific part of the blob:\n"
f"'{json_blob[place-4:place+5]}'."
)
except Exception as e:
raise ValueError(f"Error in parsing the JSON blob: {e}")
def parse_code_blob(code_blob: str) -> str:
try:
pattern = r"```(?:py|python)?\n(.*?)\n```"
match = re.search(pattern, code_blob, re.DOTALL)
return match.group(1).strip()
except Exception as e:
raise ValueError(
f"""
The code blob you used is invalid: due to the following error: {e}
This means that the regex pattern {pattern} was not respected: make sure to include code with the correct pattern, for instance:
Thoughts: Your thoughts
Code:
```py
# Your python code here
```<end_action>"""
)
def parse_json_tool_call(json_blob: str) -> Tuple[str, Dict[str, str]]:
json_blob = json_blob.replace("```json", "").replace("```", "")
tool_call = parse_json_blob(json_blob)
if "action" in tool_call and "action_input" in tool_call:
return tool_call["action"], tool_call["action_input"]
elif "action" in tool_call:
return tool_call["action"], None
else:
raise ValueError(
f"Missing keys: {[key for key in ['action', 'action_input'] if key not in tool_call]} in blob {tool_call}"
)
def parse_text_tool_call(text: str) -> Tuple[str, Union[str, Dict[str, str]]]:
"""
Expects a text in the format: 'Action:', 'Action input:', 'Observation:'. 'Action input:' contains a json string with input arguments.
"""
try:
if "Observation:" in text:
text = text.split("Observation:")[0]
if "Action:" in text:
text = text.split("Action:")[1]
tool_name, tool_input = text.split("Action input:")
if "{" in tool_input:
tool_input = parse_json_blob(tool_input)
else:
tool_input = tool_input.strip().replace('"', "")
return tool_name.strip().replace('"', "").replace("\\", ""), tool_input
except Exception as e:
raise ValueError(
f"Error in parsing the text tool call: {e}. Be sure to provide the correct format. DO NOT repeat your previous incorrect tool call."
)
def to_text(input: Union[List[Dict[str, str]], Dict[str, str], str]) -> str:
if isinstance(input, list):
return "\n".join([m["content"] for m in input])
elif isinstance(input, dict):
return input["content"]
else:
return input
HUGGINGFACE_DEFAULT_TOOLS = {}
_tools_are_initialized = False
class Toolbox:
"""
The toolbox contains all tools that the agent can perform operations with, as well as a few methods to
manage them.
Args:
tools (`List[Tool]`):
The list of tools to instantiate the toolbox with
add_base_tools (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to add the tools available within `transformers` to the toolbox.
"""
def __init__(self, tools: List[Tool], add_base_tools: bool = False):
self._tools = {tool.name: tool for tool in tools}
if add_base_tools:
self.add_base_tools()
self._load_tools_if_needed()
def add_base_tools(self, add_python_interpreter: bool = False):
global _tools_are_initialized
global HUGGINGFACE_DEFAULT_TOOLS
if not _tools_are_initialized:
HUGGINGFACE_DEFAULT_TOOLS = setup_default_tools(logger)
_tools_are_initialized = True
for tool in HUGGINGFACE_DEFAULT_TOOLS.values():
if tool.name != "python_interpreter" or add_python_interpreter:
self.add_tool(tool)
self._load_tools_if_needed()
@property
def tools(self) -> Dict[str, Tool]:
"""Get all tools currently in the toolbox"""
return self._tools
def show_tool_descriptions(self, tool_description_template: str = None) -> str:
"""
Returns the description of all tools in the toolbox
Args:
tool_description_template (`str`, *optional*):
The template to use to describe the tools. If not provided, the default template will be used.
"""
return "\n".join(
[get_tool_description_with_args(tool, tool_description_template) for tool in self._tools.values()]
)
def add_tool(self, tool: Tool):
"""
Adds a tool to the toolbox
Args:
tool (`Tool`):
The tool to add to the toolbox.
"""
if tool.name in self._tools:
raise KeyError(f"Error: tool '{tool.name}' already exists in the toolbox.")
self._tools[tool.name] = tool
def remove_tool(self, tool_name: str):
"""
Removes a tool from the toolbox
Args:
tool_name (`str`):
The tool to remove from the toolbox.
"""
if tool_name not in self._tools:
raise KeyError(
f"Error: tool {tool_name} not found in toolbox for removal, should be instead one of {list(self._tools.keys())}."
)
del self._tools[tool_name]
def update_tool(self, tool: Tool):
"""
Updates a tool in the toolbox according to its name.
Args:
tool (`Tool`):
The tool to update to the toolbox.
"""
if tool.name not in self._tools:
raise KeyError(
f"Error: tool {tool.name} not found in toolbox for update, should be instead one of {list(self._tools.keys())}."
)
self._tools[tool.name] = tool
def clear_toolbox(self):
"""Clears the toolbox"""
self._tools = {}
def _load_tools_if_needed(self):
for name, tool in self._tools.items():
if not isinstance(tool, Tool):
task_or_repo_id = tool.task if tool.repo_id is None else tool.repo_id
self._tools[name] = load_tool(task_or_repo_id)
def __repr__(self):
toolbox_description = "Toolbox contents:\n"
for tool in self._tools.values():
toolbox_description += f"\t{tool.name}: {tool.description}\n"
return toolbox_description
class AgentError(Exception):
"""Base class for other agent-related exceptions"""
def __init__(self, message):
super().__init__(message)
self.message = message
class AgentParsingError(AgentError):
"""Exception raised for errors in parsing in the agent"""
pass
class AgentExecutionError(AgentError):
"""Exception raised for errors in execution in the agent"""
pass
class AgentMaxIterationsError(AgentError):
"""Exception raised for errors in execution in the agent"""
pass
class AgentGenerationError(AgentError):
"""Exception raised for errors in generation in the agent"""
pass
def format_prompt_with_tools(toolbox: Toolbox, prompt_template: str, tool_description_template: str) -> str:
tool_descriptions = toolbox.show_tool_descriptions(tool_description_template)
prompt = prompt_template.replace("<<tool_descriptions>>", tool_descriptions)
if "<<tool_names>>" in prompt:
tool_names = [f"'{tool_name}'" for tool_name in toolbox.tools.keys()]
prompt = prompt.replace("<<tool_names>>", ", ".join(tool_names))
return prompt
def format_prompt_with_imports(prompt_template: str, authorized_imports: List[str]) -> str:
if "<<authorized_imports>>" not in prompt_template:
raise AgentError("Tag '<<authorized_imports>>' should be provided in the prompt.")
return prompt_template.replace("<<authorized_imports>>", str(authorized_imports))
class Agent:
def __init__(
self,
tools: Union[List[Tool], Toolbox],
llm_engine: Callable = HfEngine(),
system_prompt=DEFAULT_REACT_JSON_SYSTEM_PROMPT,
tool_description_template=None,
additional_args={},
max_iterations: int = 6,
tool_parser=parse_json_tool_call,
add_base_tools: bool = False,
verbose: int = 0,
memory_verbose: bool = False,
):
self.agent_name = self.__class__.__name__
self.llm_engine = llm_engine
self.system_prompt_template = system_prompt
self.tool_description_template = (
tool_description_template if tool_description_template else DEFAULT_TOOL_DESCRIPTION_TEMPLATE
)
self.additional_args = additional_args
self.max_iterations = max_iterations
self.logger = logger
self.tool_parser = tool_parser
if isinstance(tools, Toolbox):
self._toolbox = tools
if add_base_tools:
if not is_torch_available():
raise ImportError("Using the base tools requires torch to be installed.")
self._toolbox.add_base_tools(add_python_interpreter=(self.__class__ == ReactJsonAgent))
else:
self._toolbox = Toolbox(tools, add_base_tools=add_base_tools)
self._toolbox.add_tool(FinalAnswerTool())
self.system_prompt = format_prompt_with_tools(
self._toolbox, self.system_prompt_template, self.tool_description_template
)
self.prompt = None
self.logs = []
self.task = None
self.memory_verbose = memory_verbose
if verbose == 0:
logger.setLevel(logging.WARNING)
elif verbose == 1:
logger.setLevel(logging.INFO)
elif verbose == 2:
logger.setLevel(logging.DEBUG)
@property
def toolbox(self) -> Toolbox:
"""Get the toolbox currently available to the agent"""
return self._toolbox
def initialize_for_run(self):
self.token_count = 0
self.system_prompt = format_prompt_with_tools(
self._toolbox,
self.system_prompt_template,
self.tool_description_template,
)
if hasattr(self, "authorized_imports"):
self.system_prompt = format_prompt_with_imports(
self.system_prompt, list(set(LIST_SAFE_MODULES) | set(self.authorized_imports))
)
self.logs = [{"system_prompt": self.system_prompt, "task": self.task}]
self.logger.warn("======== New task ========")
self.logger.log(33, self.task)
self.logger.debug("System prompt is as follows:")
self.logger.debug(self.system_prompt)
def write_inner_memory_from_logs(self, summary_mode: Optional[bool] = False) -> List[Dict[str, str]]:
"""
Reads past llm_outputs, actions, and observations or errors from the logs into a series of messages
that can be used as input to the LLM.
"""
prompt_message = {"role": MessageRole.SYSTEM, "content": self.logs[0]["system_prompt"]}
task_message = {
"role": MessageRole.USER,
"content": "Task: " + self.logs[0]["task"],
}
if summary_mode:
memory = [task_message]
else:
memory = [prompt_message, task_message]
for i, step_log in enumerate(self.logs[1:]):
if "llm_output" in step_log and not summary_mode:
thought_message = {"role": MessageRole.ASSISTANT, "content": step_log["llm_output"].strip()}
memory.append(thought_message)
if "facts" in step_log:
thought_message = {
"role": MessageRole.ASSISTANT,
"content": "[FACTS LIST]:\n" + step_log["facts"].strip(),
}
memory.append(thought_message)
if "plan" in step_log and not summary_mode:
thought_message = {"role": MessageRole.ASSISTANT, "content": "[PLAN]:\n" + step_log["plan"].strip()}
memory.append(thought_message)
if "tool_call" in step_log and summary_mode:
tool_call_message = {
"role": MessageRole.ASSISTANT,
"content": f"[STEP {i} TOOL CALL]: " + str(step_log["tool_call"]).strip(),
}
memory.append(tool_call_message)
if "task" in step_log:
tool_call_message = {
"role": MessageRole.USER,
"content": "New task:\n" + step_log["task"],
}
memory.append(tool_call_message)
if "error" in step_log or "observation" in step_log:
if "error" in step_log:
message_content = (
f"[OUTPUT OF STEP {i}] Error: "
+ str(step_log["error"])
+ "\nNow let's retry: take care not to repeat previous errors! If you have retried several times, try a completely different approach.\n"
)
elif "observation" in step_log:
message_content = f"[OUTPUT OF STEP {i}] Observation:\n{step_log['observation']}"
tool_response_message = {"role": MessageRole.TOOL_RESPONSE, "content": message_content}
memory.append(tool_response_message)
return memory
def get_succinct_logs(self):
return [{key: value for key, value in log.items() if key != "agent_memory"} for log in self.logs]
def extract_action(self, llm_output: str, split_token: str) -> str:
"""
Parse action from the LLM output
Args:
llm_output (`str`): Output of the LLM
split_token (`str`): Separator for the action. Should match the example in the system prompt.
"""
try:
split = llm_output.split(split_token)
rationale, action = (
split[-2],
split[-1],
) # NOTE: using indexes starting from the end solves for when you have more than one split_token in the output
except Exception as e:
self.logger.error(e, exc_info=1)
raise AgentParsingError(
f"Error: No '{split_token}' token provided in your output.\nYour output:\n{llm_output}\n. Be sure to include an action, prefaced with '{split_token}'!"
)
return rationale, action
def execute_tool_call(self, tool_name: str, arguments: Dict[str, str]) -> Any:
"""
Execute tool with the provided input and returns the result.
This method replaces arguments with the actual values from the state if they refer to state variables.
Args:
tool_name (`str`): Name of the Tool to execute (should be one from self.toolbox).
arguments (Dict[str, str]): Arguments passed to the Tool.
"""
if tool_name not in self.toolbox.tools:
error_msg = f"Error: unknown tool {tool_name}, should be instead one of {list(self.toolbox.tools.keys())}."
self.logger.error(error_msg, exc_info=1)
raise AgentExecutionError(error_msg)
try:
if isinstance(arguments, str):
observation = self.toolbox.tools[tool_name](arguments)
else:
for key, value in arguments.items():
# if the value is the name of a state variable like "image.png", replace it with the actual value
if isinstance(value, str) and value in self.state:
arguments[key] = self.state[value]
observation = self.toolbox.tools[tool_name](**arguments)
return observation
except Exception as e:
raise AgentExecutionError(
f"Error in tool call execution: {e}\nYou should only use this tool with a correct input.\n"
f"As a reminder, this tool's description is the following:\n{get_tool_description_with_args(self.toolbox.tools[tool_name])}"
)
def log_code_action(self, code_action: str) -> None:
self.logger.warning("==== Agent is executing the code below:")
if is_pygments_available():
self.logger.log(
31, highlight(code_action, PythonLexer(ensurenl=False), Terminal256Formatter(style="nord"))
)
else:
self.logger.log(31, code_action)
self.logger.warning("====")
def run(self, **kwargs):
"""To be implemented in the child class"""
raise NotImplementedError
class CodeAgent(Agent):
"""
A class for an agent that solves the given task using a single block of code. It plans all its actions, then executes all in one shot.
"""
def __init__(
self,
tools: List[Tool],
llm_engine: Callable = HfEngine(),
system_prompt: str = DEFAULT_CODE_SYSTEM_PROMPT,
tool_description_template: str = DEFAULT_TOOL_DESCRIPTION_TEMPLATE,
additional_authorized_imports: Optional[List[str]] = None,
**kwargs,
):
super().__init__(
tools=tools,
llm_engine=llm_engine,
system_prompt=system_prompt,
tool_description_template=tool_description_template,
**kwargs,
)
if not is_pygments_available():
transformers_logging.warning_once(
logger,
"pygments isn't installed. Installing pygments will enable color syntax highlighting in the "
"CodeAgent.",
)
self.python_evaluator = evaluate_python_code
self.additional_authorized_imports = additional_authorized_imports if additional_authorized_imports else []
self.authorized_imports = list(set(LIST_SAFE_MODULES) | set(self.additional_authorized_imports))
self.system_prompt = self.system_prompt.replace("<<authorized_imports>>", str(self.authorized_imports))
def parse_code_blob(self, result: str) -> str:
"""
Override this method if you want to change the way the code is
cleaned in the `run` method.
"""
return parse_code_blob(result)
def run(self, task: str, return_generated_code: bool = False, **kwargs):
"""
Runs the agent for the given task.
Args:
task (`str`): The task to perform
return_generated_code (`bool`, *optional*, defaults to `False`): Whether to return the generated code instead of running it
kwargs (additional keyword arguments, *optional*):
Any keyword argument to send to the agent when evaluating the code.
Example:
```py
from transformers.agents import CodeAgent, PythonInterpreterTool
python_interpreter = PythonInterpreterTool()
agent = CodeAgent(tools=[python_interpreter])
agent.run("What is the result of 2 power 3.7384?")
```
"""
self.task = task
if len(kwargs) > 0:
self.task += f"\nYou have been provided with these initial arguments: {str(kwargs)}."
self.state = kwargs.copy()
self.initialize_for_run()
# Run LLM
prompt_message = {"role": MessageRole.SYSTEM, "content": self.system_prompt}
task_message = {
"role": MessageRole.USER,
"content": "Task: " + self.task,
}
self.prompt = [prompt_message, task_message]
self.logger.info("====Executing with this prompt====")
self.logger.info(self.prompt)
llm_output = self.llm_engine(self.prompt, stop_sequences=["<end_action>"])
if return_generated_code:
return llm_output
# Parse
try:
_, code_action = self.extract_action(llm_output=llm_output, split_token="Code:")
except Exception as e:
self.logger.debug(
f"Error in extracting action, trying to parse the whole output as code. Error trace: {e}"
)
code_action = llm_output
try:
code_action = self.parse_code_blob(code_action)
except Exception as e:
error_msg = f"Error in code parsing: {e}. Be sure to provide correct code"
self.logger.error(error_msg, exc_info=1)
return error_msg
# Execute
self.log_code_action(code_action)
try:
available_tools = {**BASE_PYTHON_TOOLS.copy(), **self.toolbox.tools}
output = self.python_evaluator(
code_action,
static_tools=available_tools,
custom_tools={},
state=self.state,
authorized_imports=self.authorized_imports,
)
self.logger.info(self.state["print_outputs"])
return output
except Exception as e:
error_msg = f"Error in execution: {e}. Be sure to provide correct code."
self.logger.error(error_msg, exc_info=1)
return error_msg
class ReactAgent(Agent):
"""
This agent that solves the given task step by step, using the ReAct framework:
While the objective is not reached, the agent will perform a cycle of thinking and acting.
The action will be parsed from the LLM output: it consists in calls to tools from the toolbox, with arguments chosen by the LLM engine.
"""
def __init__(
self,
tools: List[Tool],
llm_engine: Callable = HfEngine(),
system_prompt: str = DEFAULT_REACT_CODE_SYSTEM_PROMPT,
tool_description_template: str = DEFAULT_TOOL_DESCRIPTION_TEMPLATE,
plan_type: Literal[tuple(SUPPORTED_PLAN_TYPES)] = SUPPORTED_PLAN_TYPES[0],
planning_interval: Optional[int] = None,
**kwargs,
):
assert plan_type in SUPPORTED_PLAN_TYPES, f"plan type {plan_type} is not supported"
super().__init__(
tools=tools,
llm_engine=llm_engine,
system_prompt=system_prompt,
tool_description_template=tool_description_template,
**kwargs,
)
self.planning_interval = planning_interval
self.plan_type = plan_type
def provide_final_answer(self, task) -> str:
"""
This method provides a final answer to the task, based on the logs of the agent's interactions.
"""
self.prompt = [
{
"role": MessageRole.SYSTEM,
"content": "An agent tried to answer an user query but it got stuck and failed to do so. You are tasked with providing an answer instead. Here is the agent's memory:",
}
]
self.prompt += self.write_inner_memory_from_logs()[1:]
self.prompt += [
{
"role": MessageRole.USER,
"content": f"Based on the above, please provide an answer to the following user request:\n{task}",
}
]
try:
return self.llm_engine(self.prompt)
except Exception as e:
return f"Error in generating final llm output: {e}."
def run(self, task: str, stream: bool = False, reset: bool = True, **kwargs):
"""
Runs the agent for the given task.
Args:
task (`str`): The task to perform
Example:
```py
from transformers.agents import ReactCodeAgent
agent = ReactCodeAgent(tools=[])
agent.run("What is the result of 2 power 3.7384?")
```
"""
self.task = task
if len(kwargs) > 0:
self.task += f"\nYou have been provided with these initial arguments: {str(kwargs)}."
self.state = kwargs.copy()
if reset:
self.initialize_for_run()
else:
self.logs.append({"task": task})
if stream:
return self.stream_run(task)
else:
return self.direct_run(task)
def stream_run(self, task: str):
"""
Runs the agent in streaming mode, yielding steps as they are executed: should be launched only in the `run` method.
"""
final_answer = None
iteration = 0
while final_answer is None and iteration < self.max_iterations:
try:
step_logs = self.step()
if "final_answer" in step_logs:
final_answer = step_logs["final_answer"]
except AgentError as e:
self.logger.error(e, exc_info=1)
self.logs[-1]["error"] = e
finally:
iteration += 1
yield self.logs[-1]
if final_answer is None and iteration == self.max_iterations:
error_message = "Reached max iterations."
final_step_log = {"error": AgentMaxIterationsError(error_message)}
self.logs.append(final_step_log)
self.logger.error(error_message, exc_info=1)
final_answer = self.provide_final_answer(task)
final_step_log["final_answer"] = final_answer
yield final_step_log
yield final_answer
def direct_run(self, task: str):
"""
Runs the agent in direct mode, returning outputs only at the end: should be launched only in the `run` method.
"""
final_answer = None
iteration = 0
while final_answer is None and iteration < self.max_iterations:
try:
if self.planning_interval is not None and iteration % self.planning_interval == 0:
self.planning_step(task, is_first_step=(iteration == 0), iteration=iteration)
step_logs = self.step()
if "final_answer" in step_logs:
final_answer = step_logs["final_answer"]
except AgentError as e:
self.logger.error(e, exc_info=1)
self.logs[-1]["error"] = e
finally:
iteration += 1
if final_answer is None and iteration == self.max_iterations:
error_message = "Reached max iterations."
final_step_log = {"error": AgentMaxIterationsError(error_message)}
self.logs.append(final_step_log)
self.logger.error(error_message, exc_info=1)
final_answer = self.provide_final_answer(task)
final_step_log["final_answer"] = final_answer
return final_answer
def planning_step(self, task, is_first_step: bool = False, iteration: int = None):
"""
Used periodically by the agent to plan the next steps to reach the objective.
Args:
task (`str`): The task to perform
is_first_step (`bool`): If this step is not the first one, the plan should be an update over a previous plan.
iteration (`int`): The number of the current step, used as an indication for the LLM.
"""
if is_first_step:
message_prompt_facts = {"role": MessageRole.SYSTEM, "content": SYSTEM_PROMPT_FACTS}
message_prompt_task = {
"role": MessageRole.USER,
"content": f"""Here is the task:
```
{task}
```
Now begin!""",
}
answer_facts = self.llm_engine([message_prompt_facts, message_prompt_task])
message_system_prompt_plan = {
"role": MessageRole.SYSTEM,
"content": PROMPTS_FOR_INITIAL_PLAN[self.plan_type]["system"],
}
message_user_prompt_plan = {
"role": MessageRole.USER,
"content": PROMPTS_FOR_INITIAL_PLAN[self.plan_type]["user"].format(
task=task,
tool_descriptions=self._toolbox.show_tool_descriptions(self.tool_description_template),
answer_facts=answer_facts,
),
}
answer_plan = self.llm_engine(
[message_system_prompt_plan, message_user_prompt_plan], stop_sequences=["<end_plan>"]
)
final_plan_redaction = f"""Here is the plan of action that I will follow to solve the task:
```
{answer_plan}
```"""
final_facts_redaction = f"""Here are the facts that I know so far:
```
{answer_facts}
```""".strip()
self.logs.append({"plan": final_plan_redaction, "facts": final_facts_redaction})
self.logger.debug("===== Initial plan: =====")
self.logger.debug(final_plan_redaction)
else: # update plan
agent_memory = self.write_inner_memory_from_logs(
summary_mode=False
) # This will not log the plan but will log facts
# Redact updated facts
facts_update_system_prompt = {
"role": MessageRole.SYSTEM,
"content": SYSTEM_PROMPT_FACTS_UPDATE,
}
facts_update_message = {
"role": MessageRole.USER,
"content": USER_PROMPT_FACTS_UPDATE,
}
facts_update = self.llm_engine([facts_update_system_prompt] + agent_memory + [facts_update_message])
# Redact updated plan
plan_update_message = {
"role": MessageRole.SYSTEM,
"content": PROMPTS_FOR_PLAN_UPDATE[self.plan_type]["system"].format(task=task),
}
plan_update_message_user = {
"role": MessageRole.USER,
"content": PROMPTS_FOR_PLAN_UPDATE[self.plan_type]["user"].format(
task=task,
tool_descriptions=self._toolbox.show_tool_descriptions(self.tool_description_template),
facts_update=facts_update,
remaining_steps=(self.max_iterations - iteration),
),
}
plan_update = self.llm_engine(
[plan_update_message] + agent_memory + [plan_update_message_user], stop_sequences=["<end_plan>"]
)
# Log final facts and plan
final_plan_redaction = PLAN_UPDATE_FINAL_PLAN_REDACTION.format(task=task, plan_update=plan_update)
final_facts_redaction = f"""Here is the updated list of the facts that I know:
```
{facts_update}
```"""
self.logs.append({"plan": final_plan_redaction, "facts": final_facts_redaction})
self.logger.debug("===== Updated plan: =====")
self.logger.debug(final_plan_redaction)
class ReactJsonAgent(ReactAgent):
"""
This agent that solves the given task step by step, using the ReAct framework:
While the objective is not reached, the agent will perform a cycle of thinking and acting.
The tool calls will be formulated by the LLM in JSON format, then parsed and executed.
"""
def __init__(
self,
tools: List[Tool],
llm_engine: Callable = HfEngine(),
system_prompt: str = DEFAULT_REACT_JSON_SYSTEM_PROMPT,
tool_description_template: str = DEFAULT_TOOL_DESCRIPTION_TEMPLATE,
planning_interval: Optional[int] = None,
**kwargs,
):
super().__init__(
tools=tools,
llm_engine=llm_engine,
system_prompt=system_prompt,
tool_description_template=tool_description_template,
planning_interval=planning_interval,
**kwargs,
)
def step(self):
"""
Perform one step in the ReAct framework: the agent thinks, acts, and observes the result.
The errors are raised here, they are caught and logged in the run() method.
"""
agent_memory = self.write_inner_memory_from_logs()
self.prompt = agent_memory
self.logger.debug("===== New step =====")
# Add new step in logs
current_step_logs = {}
self.logs.append(current_step_logs)
current_step_logs["agent_memory"] = agent_memory.copy()
self.logger.info("===== Calling LLM with this last message: =====")
self.logger.info(self.prompt[-1])
try:
llm_output = self.llm_engine(self.prompt, stop_sequences=["<end_action>", "Observation:"])
except Exception as e:
raise AgentGenerationError(f"Error in generating llm output: {e}.")
self.logger.debug("===== Output message of the LLM: =====")
self.logger.debug(llm_output)
current_step_logs["llm_output"] = llm_output
# Parse
self.logger.debug("===== Extracting action =====")
rationale, action = self.extract_action(llm_output=llm_output, split_token="Action:")
try:
tool_name, arguments = self.tool_parser(action)
except Exception as e:
raise AgentParsingError(f"Could not parse the given action: {e}.")
current_step_logs["rationale"] = rationale
current_step_logs["tool_call"] = {"tool_name": tool_name, "tool_arguments": arguments}
# Execute
self.logger.warning(f"Calling tool: '{tool_name}' with arguments: {arguments}")
if tool_name == "final_answer":
if isinstance(arguments, dict):
if "answer" in arguments:
answer = arguments["answer"]
if (
isinstance(answer, str) and answer in self.state.keys()
): # if the answer is a state variable, return the value
answer = self.state[answer]
else:
answer = arguments
else:
answer = arguments
current_step_logs["final_answer"] = answer
return current_step_logs
else:
observation = self.execute_tool_call(tool_name, arguments)
observation_type = type(observation)
if observation_type == AgentText:
updated_information = str(observation).strip()
else:
# TODO: observation naming could allow for different names of same type
if observation_type == AgentImage:
observation_name = "image.png"
elif observation_type == AgentAudio:
observation_name = "audio.mp3"
else:
observation_name = "object.object"
self.state[observation_name] = observation
updated_information = f"Stored '{observation_name}' in memory."
self.logger.info(updated_information)
current_step_logs["observation"] = updated_information
return current_step_logs
class ReactCodeAgent(ReactAgent):
"""
This agent that solves the given task step by step, using the ReAct framework:
While the objective is not reached, the agent will perform a cycle of thinking and acting.
The tool calls will be formulated by the LLM in code format, then parsed and executed.
"""
def __init__(
self,
tools: List[Tool],
llm_engine: Callable = HfEngine(),
system_prompt: str = DEFAULT_REACT_CODE_SYSTEM_PROMPT,
tool_description_template: str = DEFAULT_TOOL_DESCRIPTION_TEMPLATE,
additional_authorized_imports: Optional[List[str]] = None,
planning_interval: Optional[int] = None,
**kwargs,
):
super().__init__(
tools=tools,
llm_engine=llm_engine,
system_prompt=system_prompt,
tool_description_template=tool_description_template,
planning_interval=planning_interval,
**kwargs,
)
if not is_pygments_available():
transformers_logging.warning_once(
logger,
"pygments isn't installed. Installing pygments will enable color syntax highlighting in the "
"ReactCodeAgent.",
)
self.python_evaluator = evaluate_python_code
self.additional_authorized_imports = additional_authorized_imports if additional_authorized_imports else []
self.authorized_imports = list(set(LIST_SAFE_MODULES) | set(self.additional_authorized_imports))
self.system_prompt = self.system_prompt.replace("<<authorized_imports>>", str(self.authorized_imports))
self.custom_tools = {}
def step(self):
"""
Perform one step in the ReAct framework: the agent thinks, acts, and observes the result.
The errors are raised here, they are caught and logged in the run() method.
"""
agent_memory = self.write_inner_memory_from_logs()
self.prompt = agent_memory.copy()
self.logger.debug("===== New step =====")
# Add new step in logs
current_step_logs = {}
self.logs.append(current_step_logs)
current_step_logs["agent_memory"] = agent_memory.copy()
self.logger.info("===== Calling LLM with these last messages: =====")
self.logger.info(self.prompt[-2:])
try:
llm_output = self.llm_engine(self.prompt, stop_sequences=["<end_action>", "Observation:"])
except Exception as e:
raise AgentGenerationError(f"Error in generating llm output: {e}.")
self.logger.debug("===== Output message of the LLM: =====")
self.logger.debug(llm_output)
current_step_logs["llm_output"] = llm_output
# Parse
self.logger.debug("===== Extracting action =====")
try:
rationale, raw_code_action = self.extract_action(llm_output=llm_output, split_token="Code:")
except Exception as e:
self.logger.debug(f"Error in extracting action, trying to parse the whole output. Error trace: {e}")
rationale, raw_code_action = llm_output, llm_output
try:
code_action = parse_code_blob(raw_code_action)
except Exception as e:
error_msg = f"Error in code parsing: {e}. Make sure to provide correct code"
raise AgentParsingError(error_msg)
current_step_logs["rationale"] = rationale
current_step_logs["tool_call"] = {"tool_name": "code interpreter", "tool_arguments": code_action}
# Execute
self.log_code_action(code_action)
try:
result = self.python_evaluator(
code_action,
static_tools={
**BASE_PYTHON_TOOLS.copy(),
**self.toolbox.tools,
},
custom_tools=self.custom_tools,
state=self.state,
authorized_imports=self.authorized_imports,
)
information = self.state["print_outputs"]
self.logger.warning("Print outputs:")
self.logger.log(32, information)
current_step_logs["observation"] = information
except Exception as e:
error_msg = f"Code execution failed due to the following error:\n{str(e)}"
if "'dict' object has no attribute 'read'" in str(e):
error_msg += "\nYou get this error because you passed a dict as input for one of the arguments instead of a string."
raise AgentExecutionError(error_msg)
for line in code_action.split("\n"):
if line[: len("final_answer")] == "final_answer":
self.logger.warning(">>> Final answer:")
self.logger.log(32, result)
current_step_logs["final_answer"] = result
return current_step_logs
|