File size: 5,319 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#!/usr/bin/env python
# coding=utf-8

# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib.util
import json
import math
from dataclasses import dataclass
from math import sqrt
from typing import Dict

from huggingface_hub import hf_hub_download, list_spaces

from ..utils import is_offline_mode
from .python_interpreter import LIST_SAFE_MODULES, evaluate_python_code
from .tools import TASK_MAPPING, TOOL_CONFIG_FILE, Tool


def custom_print(*args):
    return " ".join(map(str, args))


BASE_PYTHON_TOOLS = {
    "print": custom_print,
    "isinstance": isinstance,
    "range": range,
    "float": float,
    "int": int,
    "bool": bool,
    "str": str,
    "set": set,
    "list": list,
    "dict": dict,
    "tuple": tuple,
    "round": round,
    "ceil": math.ceil,
    "floor": math.floor,
    "log": math.log,
    "exp": math.exp,
    "sin": math.sin,
    "cos": math.cos,
    "tan": math.tan,
    "asin": math.asin,
    "acos": math.acos,
    "atan": math.atan,
    "atan2": math.atan2,
    "degrees": math.degrees,
    "radians": math.radians,
    "pow": math.pow,
    "sqrt": sqrt,
    "len": len,
    "sum": sum,
    "max": max,
    "min": min,
    "abs": abs,
    "enumerate": enumerate,
    "zip": zip,
    "reversed": reversed,
    "sorted": sorted,
    "all": all,
    "any": any,
    "map": map,
    "filter": filter,
    "ord": ord,
    "chr": chr,
    "next": next,
    "iter": iter,
    "divmod": divmod,
    "callable": callable,
    "getattr": getattr,
    "hasattr": hasattr,
    "setattr": setattr,
    "issubclass": issubclass,
    "type": type,
}


@dataclass
class PreTool:
    name: str
    inputs: Dict[str, str]
    output_type: type
    task: str
    description: str
    repo_id: str


HUGGINGFACE_DEFAULT_TOOLS_FROM_HUB = [
    "image-transformation",
    "text-to-image",
]


def get_remote_tools(logger, organization="huggingface-tools"):
    if is_offline_mode():
        logger.info("You are in offline mode, so remote tools are not available.")
        return {}

    spaces = list_spaces(author=organization)
    tools = {}
    for space_info in spaces:
        repo_id = space_info.id
        resolved_config_file = hf_hub_download(repo_id, TOOL_CONFIG_FILE, repo_type="space")
        with open(resolved_config_file, encoding="utf-8") as reader:
            config = json.load(reader)
        task = repo_id.split("/")[-1]
        tools[config["name"]] = PreTool(
            task=task,
            description=config["description"],
            repo_id=repo_id,
            name=task,
            inputs=config["inputs"],
            output_type=config["output_type"],
        )

    return tools


def setup_default_tools(logger):
    default_tools = {}
    main_module = importlib.import_module("transformers")
    tools_module = main_module.agents

    for task_name, tool_class_name in TASK_MAPPING.items():
        tool_class = getattr(tools_module, tool_class_name)
        tool_instance = tool_class()
        default_tools[tool_class.name] = PreTool(
            name=tool_instance.name,
            inputs=tool_instance.inputs,
            output_type=tool_instance.output_type,
            task=task_name,
            description=tool_instance.description,
            repo_id=None,
        )

    return default_tools


class PythonInterpreterTool(Tool):
    name = "python_interpreter"
    description = "This is a tool that evaluates python code. It can be used to perform calculations."

    output_type = "text"
    available_tools = BASE_PYTHON_TOOLS.copy()

    def __init__(self, *args, authorized_imports=None, **kwargs):
        if authorized_imports is None:
            self.authorized_imports = list(set(LIST_SAFE_MODULES))
        else:
            self.authorized_imports = list(set(LIST_SAFE_MODULES) | set(authorized_imports))
        self.inputs = {
            "code": {
                "type": "text",
                "description": (
                    "The code snippet to evaluate. All variables used in this snippet must be defined in this same snippet, "
                    f"else you will get an error. This code can only import the following python libraries: {authorized_imports}."
                ),
            }
        }
        super().__init__(*args, **kwargs)

    def forward(self, code):
        output = str(
            evaluate_python_code(code, static_tools=self.available_tools, authorized_imports=self.authorized_imports)
        )
        return output


class FinalAnswerTool(Tool):
    name = "final_answer"
    description = "Provides a final answer to the given problem."
    inputs = {"answer": {"type": "text", "description": "The final answer to the problem"}}
    output_type = "any"

    def forward(self, answer):
        return answer