File size: 79,099 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
import copy
import importlib.metadata
import json
import os
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union

import torch
from packaging import version

from .configuration_utils import PretrainedConfig
from .utils import is_hqq_available, is_quanto_available, is_torchdynamo_compiling, logging


if is_quanto_available():
    quanto_version = version.parse(importlib.metadata.version("quanto"))
    if quanto_version >= version.parse("0.2.0"):
        from quanto import AffineQuantizer, MaxOptimizer, qint2, qint4

if is_hqq_available():
    from hqq.core.quantize import Quantizer as HQQQuantizer

logger = logging.get_logger(__name__)


class Cache(torch.nn.Module):
    """
    Base, abstract class for all caches. The actual data structure is specific to each subclass.
    """

    def __init__(self):
        super().__init__()

    def update(
        self,
        key_states: torch.Tensor,
        value_states: torch.Tensor,
        layer_idx: int,
        cache_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.

        Parameters:
            key_states (`torch.Tensor`):
                The new key states to cache.
            value_states (`torch.Tensor`):
                The new value states to cache.
            layer_idx (`int`):
                The index of the layer to cache the states for.
            cache_kwargs (`Dict[str, Any]`, `optional`):
                Additional arguments for the cache subclass. These are specific to each subclass and allow new types of
                cache to be created.

        Return:
            A tuple containing the updated key and value states.
        """
        raise NotImplementedError("Make sure to implement `update` in a subclass.")

    def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
        """Returns the sequence length of the cached states. A layer index can be optionally passed."""
        # TODO: deprecate this function in favor of `cache_position`
        raise NotImplementedError("Make sure to implement `get_seq_length` in a subclass.")

    def get_max_length(self) -> Optional[int]:
        """Returns the maximum sequence length of the cached states, if there is any."""
        raise NotImplementedError("Make sure to implement `get_max_length` in a subclass.")

    def get_usable_length(self, new_seq_length: int, layer_idx: Optional[int] = 0) -> int:
        """Given the sequence length of the new inputs, returns the usable length of the cache."""
        # Cache without size limit -> all cache is usable
        # Cache with size limit -> if the length cache plus the length of the new inputs is larger the maximum cache
        #   length, we will need to evict part of the cache (and thus not all cache is usable)
        max_length = self.get_max_length()
        previous_seq_length = self.get_seq_length(layer_idx)
        if max_length is not None and previous_seq_length + new_seq_length > max_length:
            return max_length - new_seq_length
        return previous_seq_length

    def reorder_cache(self, beam_idx: torch.LongTensor):
        """Reorders the cache for beam search, given the selected beam indices."""
        for layer_idx in range(len(self.key_cache)):
            device = self.key_cache[layer_idx].device
            self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
            device = self.value_cache[layer_idx].device
            self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))

    @property
    def seen_tokens(self):
        logger.warning_once(
            "The `seen_tokens` attribute is deprecated and will be removed in v4.41. Use the `cache_position` "
            "model input instead."
        )
        if hasattr(self, "_seen_tokens"):
            return self._seen_tokens
        else:
            return None


@dataclass
class CacheConfig:
    """
    Base class for cache configs
    """

    cache_implementation: None

    @classmethod
    def from_dict(cls, config_dict, **kwargs):
        """
        Constructs a CacheConfig instance from a dictionary of parameters.
        Args:
            config_dict (Dict[str, Any]): Dictionary containing configuration parameters.
            **kwargs: Additional keyword arguments to override dictionary values.

        Returns:
            CacheConfig: Instance of CacheConfig constructed from the dictionary.
        """
        config = cls(**config_dict)
        to_remove = []
        for key, value in kwargs.items():
            if hasattr(config, key):
                setattr(config, key, value)
                to_remove.append(key)
        for key in to_remove:
            kwargs.pop(key, None)
        return config

    # Copied from transformers.utils.quantization_config.QuantizationConfigMixin.to_json_file
    def to_json_file(self, json_file_path: Union[str, os.PathLike]):
        """
        Save this instance to a JSON file.

        Args:
            json_file_path (`str` or `os.PathLike`):
                Path to the JSON file in which this configuration instance's parameters will be saved.
            use_diff (`bool`, *optional*, defaults to `True`):
                If set to `True`, only the difference between the config instance and the default
                `QuantizationConfig()` is serialized to JSON file.
        """
        with open(json_file_path, "w", encoding="utf-8") as writer:
            config_dict = self.to_dict()
            json_string = json.dumps(config_dict, indent=2, sort_keys=True) + "\n"

            writer.write(json_string)

    # Copied from transformers.utils.quantization_config.QuantizationConfigMixin.to_dict
    def to_dict(self) -> Dict[str, Any]:
        """
        Serializes this instance to a Python dictionary. Returns:
            `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
        """
        return copy.deepcopy(self.__dict__)

    # Copied from transformers.utils.quantization_config.QuantizationConfigMixin.__iter__
    def __iter__(self):
        """allows `dict(obj)` for situations where obj may be a dict or QuantizationConfigMixin"""
        for attr, value in copy.deepcopy(self.__dict__).items():
            yield attr, value

    # Copied from transformers.utils.quantization_config.QuantizationConfigMixin.__repr__
    def __repr__(self):
        return f"{self.__class__.__name__} {self.to_json_string()}"

    def to_json_string(self):
        """
        Serializes this instance to a JSON formatted string.
        Returns:
            str: JSON formatted string representing the configuration instance.
        """
        return json.dumps(self.__dict__, indent=2) + "\n"

    # Copied from transformers.utils.quantization_config.QuantizationConfigMixin.update
    def update(self, **kwargs):
        """
        Updates attributes of this class instance with attributes from `kwargs` if they match existing attributes,
        returning all the unused kwargs.

        Args:
            kwargs (`Dict[str, Any]`):
                Dictionary of attributes to tentatively update this class.

        Returns:
            `Dict[str, Any]`: Dictionary containing all the key-value pairs that were not used to update the instance.
        """
        to_remove = []
        for key, value in kwargs.items():
            if hasattr(self, key):
                setattr(self, key, value)
                to_remove.append(key)

        # Remove all the attributes that were updated, without modifying the input dict
        unused_kwargs = {key: value for key, value in kwargs.items() if key not in to_remove}
        return unused_kwargs


@dataclass
class QuantizedCacheConfig(CacheConfig):
    """
    Configuration class for quantized cache settings.

    Attributes:
        backend (`str`, *optional*, defaults to `"quanto"`):
            Backend to use when performing quantization, Can be one of [`quanto`, `HQQ`]
        nbits (`Optional[int]`, *optional*, defaults to 4):
            Number of bits, can be 2 or 4 for the `quanto` backend and one of [1, 2, 3, 4, 8] for the `HQQ` backend. Defaults to 2.
        axis_key (`int`, *optional*, defaults to 0):
            Axis over which to perform grouping for the key tensors. Can be [0, -1] for `quanto` backend and [0, 1] for `HQQ` backend.
        axis_value (`int`, *optional*, defaults to 0):
            Axis over which to perform grouping for the value tensors. Can be [0, -1] for `quanto` backend and [0, 1] for `HQQ` backend.
        q_group_size (`Optional[int]`, *optional*, defaults to 64):
            Size of the quantization group, should be a divisor of the model's hidden dimension.
            Defaults to 64.
        residual_length (`Optional[int]`, *optional*, defaults to 128):
            Length of the residual cache which will always be stored in original presicion.
            Defaults to 128.
        compute_dtype (`torch.dtype`, *optional*, defaults to `torch.float16`):
            The defualt dtype used for computations in the model. Keys and Values will be cast to this dtype after dequantization.
        device (`str`, *optional*, defaults to `"cpu"`):
            Device on which to perform computations, should be same as the model's device.
    """

    def __init__(
        self,
        backend: str = "quanto",
        nbits: Optional[int] = 4,
        axis_key: Optional[int] = 0,
        axis_value: Optional[int] = 0,
        q_group_size: Optional[int] = 64,
        residual_length: Optional[int] = 128,
        compute_dtype: Optional[torch.dtype] = torch.float16,
        device: Optional[str] = "cpu",
    ):
        self.backend = backend
        self.nbits = nbits
        self.axis_key = axis_key
        self.axis_value = axis_value
        self.q_group_size = q_group_size
        self.residual_length = residual_length
        self.compute_dtype = compute_dtype
        self.device = device

    def validate(self):
        """Validates if the arguments passed are correct"""

        incorrect_arg_msg = (
            "Some of the keys in `cache_config` are defined incorrectly. `{key}` should be {correct_value}` "
            "but found {found_value}"
        )
        # Check that the values are reasonable in general (nbits, axis)
        # Later in QuantizedCache init we check if they are supported for that particular backend
        if self.nbits not in [1, 2, 3, 4, 8]:
            raise ValueError(
                incorrect_arg_msg.format(
                    key="nbits",
                    correct_value="2 or 4 or 8",
                    found_value=self.nbits,
                ),
            )
        if self.q_group_size <= 0:
            raise ValueError(
                incorrect_arg_msg.format(
                    key="q_group_size",
                    correct_value="a positive integer",
                    found_value=self.q_group_size,
                ),
            )
        if self.residual_length < 0:
            raise ValueError(
                incorrect_arg_msg.format(
                    key="residual_length",
                    correct_value="a positive integer",
                    found_value=self.residual_length,
                ),
            )

        if self.axis_key not in [0, 1, -1]:
            raise ValueError(
                incorrect_arg_msg.format(
                    key="axis_key",
                    correct_value="`1` or `0`, `-1`",
                    found_value=self.axis_key,
                ),
            )

        if self.axis_value not in [0, 1, -1]:
            raise ValueError(
                incorrect_arg_msg.format(
                    key="axis_value",
                    correct_value="`1` or `0` or `-1`",
                    found_value=self.axis_value,
                ),
            )


class DynamicCache(Cache):
    """
    A cache that grows dynamically as more tokens are generated. This is the default for generative models.

    It stores the Key and Value states as a list of tensors, one for each layer. The expected shape for each tensor is
    `[batch_size, num_heads, seq_len, head_dim]`.

    Example:

        ```python
        >>> from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache

        >>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
        >>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")

        >>> inputs = tokenizer(text="My name is GPT2", return_tensors="pt")

        >>> # Prepare a cache class and pass it to model's forward
        >>> past_key_values = DynamicCache()
        >>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
        >>> past_kv_length = outputs.past_key_values # access cache filled with key/values from generation
        ```
    """

    def __init__(self) -> None:
        super().__init__()
        self.key_cache: List[torch.Tensor] = []
        self.value_cache: List[torch.Tensor] = []
        self._seen_tokens = 0  # Used in `generate` to keep tally of how many tokens the cache has seen

    def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]:
        """
        Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0].shape[2]` to get the
        sequence length.
        """
        if layer_idx < len(self):
            return (self.key_cache[layer_idx], self.value_cache[layer_idx])
        else:
            raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")

    def __iter__(self):
        """
        Support for backwards-compatible `past_key_value` iteration, e.g. `for x in past_key_value:` to iterate over
        keys and values
        """
        for layer_idx in range(len(self)):
            yield (self.key_cache[layer_idx], self.value_cache[layer_idx])

    def __len__(self):
        """
        Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
        to the number of layers in the model.
        """
        return len(self.key_cache)

    def update(
        self,
        key_states: torch.Tensor,
        value_states: torch.Tensor,
        layer_idx: int,
        cache_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.

        Parameters:
            key_states (`torch.Tensor`):
                The new key states to cache.
            value_states (`torch.Tensor`):
                The new value states to cache.
            layer_idx (`int`):
                The index of the layer to cache the states for.
            cache_kwargs (`Dict[str, Any]`, `optional`):
                Additional arguments for the cache subclass. No additional arguments are used in `DynamicCache`.

        Return:
            A tuple containing the updated key and value states.
        """
        # Update the number of seen tokens
        if layer_idx == 0:
            self._seen_tokens += key_states.shape[-2]

        # Update the cache
        if len(self.key_cache) <= layer_idx:
            self.key_cache.append(key_states)
            self.value_cache.append(value_states)
        else:
            self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
            self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)

        return self.key_cache[layer_idx], self.value_cache[layer_idx]

    def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
        """Returns the sequence length of the cached states. A layer index can be optionally passed."""
        # TODO: deprecate this function in favor of `cache_position`
        if len(self.key_cache) <= layer_idx:
            return 0
        return self.key_cache[layer_idx].shape[-2]

    def get_max_length(self) -> Optional[int]:
        """Returns the maximum sequence length of the cached states. DynamicCache does not have a maximum length."""
        return None

    def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
        """Converts the `DynamicCache` instance into the its equivalent in the legacy cache format. Used for
        backward compatibility."""
        legacy_cache = ()
        for layer_idx in range(len(self)):
            legacy_cache += ((self.key_cache[layer_idx], self.value_cache[layer_idx]),)
        return legacy_cache

    @classmethod
    def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache":
        """Converts a cache in the legacy cache format into an equivalent `DynamicCache`. Used for
        backward compatibility."""
        cache = cls()
        if past_key_values is not None:
            for layer_idx in range(len(past_key_values)):
                key_states, value_states = past_key_values[layer_idx]
                cache.update(key_states, value_states, layer_idx)
        return cache

    def crop(self, max_length: int):
        """Crop the past key values up to a new `max_length` in terms of tokens. `max_length` can also be
        negative to remove `max_length` tokens. This is used in assisted decoding and contrastive search."""
        # In case it is negative
        if max_length < 0:
            max_length = self.get_seq_length() - abs(max_length)

        if self.get_seq_length() <= max_length:
            return

        self._seen_tokens = max_length
        for idx in range(len(self.key_cache)):
            self.key_cache[idx] = self.key_cache[idx][..., :max_length, :]
            self.value_cache[idx] = self.value_cache[idx][..., :max_length, :]

    def batch_split(self, full_batch_size: int, split_size: int) -> List["DynamicCache"]:
        """Split the current instance into a list of `DynamicCache` by the batch size. This will be used by
        `_split_model_inputs()` in `generation.utils`"""
        out = []
        for i in range(0, full_batch_size, split_size):
            current_split = DynamicCache()
            current_split._seen_tokens = self._seen_tokens
            current_split.key_cache = [tensor[i : i + split_size] for tensor in self.key_cache]
            current_split.value_cache = [tensor[i : i + split_size] for tensor in self.value_cache]
            out.append(current_split)
        return out

    @classmethod
    def from_batch_splits(cls, splits: List["DynamicCache"]) -> "DynamicCache":
        """This is the opposite of the above `batch_split()` method. This will be used by `stack_model_outputs` in
        `generation.utils`"""
        cache = cls()
        for idx in range(len(splits[0])):
            layer_keys = torch.cat([current.key_cache[idx] for current in splits], dim=0)
            layer_values = torch.cat([current.value_cache[idx] for current in splits], dim=0)
            cache.update(layer_keys, layer_values, idx)
        return cache

    def batch_repeat_interleave(self, repeats: int):
        """Repeat the cache `repeats` times in the batch dimension. Used in contrastive search."""
        for layer_idx in range(len(self)):
            self.key_cache[layer_idx] = self.key_cache[layer_idx].repeat_interleave(repeats, dim=0)
            self.value_cache[layer_idx] = self.value_cache[layer_idx].repeat_interleave(repeats, dim=0)

    def batch_select_indices(self, indices: torch.Tensor):
        """Only keep the `indices` in the batch dimension of the cache. Used in contrastive search."""
        for layer_idx in range(len(self)):
            self.key_cache[layer_idx] = self.key_cache[layer_idx][indices, ...]
            self.value_cache[layer_idx] = self.value_cache[layer_idx][indices, ...]


class OffloadedCache(DynamicCache):
    """
    A drop-in replacement for DynamicCache that conserves GPU memory at the expense of more CPU memory.
    Useful for generating from models with very long context.

    In addition to the default CUDA stream, where all forward() computations happen,
    this class uses another stream, the prefetch stream, which it creates itself.
    Since scheduling of operations on separate streams happens independently, this class uses
    the prefetch stream to asynchronously prefetch the KV cache of layer k+1 when layer k is executing.
    The movement of the layer k-1 cache to the CPU is handled by the default stream as a simple way to
    ensure the eviction is scheduled after all computations on that cache are finished.
    """

    def __init__(self) -> None:
        if not torch.cuda.is_available():
            raise RuntimeError("OffloadedCache can only be used with a GPU")
        super().__init__()
        self.original_device = []
        self.prefetch_stream = torch.cuda.Stream()
        self.beam_idx = None  # used to delay beam search operations

    def prefetch_layer(self, layer_idx: int):
        "Starts prefetching the next layer cache"
        if layer_idx < len(self):
            with torch.cuda.stream(self.prefetch_stream):
                # Prefetch next layer tensors to GPU
                device = self.original_device[layer_idx]
                self.key_cache[layer_idx] = self.key_cache[layer_idx].to(device, non_blocking=True)
                self.value_cache[layer_idx] = self.value_cache[layer_idx].to(device, non_blocking=True)

    def evict_previous_layer(self, layer_idx: int):
        "Moves the previous layer cache to the CPU"
        if len(self) > 2:
            # We do it on the default stream so it occurs after all earlier computations on these tensors are done
            prev_layer_idx = (layer_idx - 1) % len(self)
            self.key_cache[prev_layer_idx] = self.key_cache[prev_layer_idx].to("cpu", non_blocking=True)
            self.value_cache[prev_layer_idx] = self.value_cache[prev_layer_idx].to("cpu", non_blocking=True)

    def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]:
        "Gets the cache for this layer to the device. Prefetches the next and evicts the previous layer."
        if layer_idx < len(self):
            # Evict the previous layer if necessary
            torch.cuda.current_stream().synchronize()
            self.evict_previous_layer(layer_idx)
            # Load current layer cache to its original device if not already there
            original_device = self.original_device[layer_idx]
            self.prefetch_stream.synchronize()
            key_tensor = self.key_cache[layer_idx]
            value_tensor = self.value_cache[layer_idx]
            # Now deal with beam search ops which were delayed
            if self.beam_idx is not None:
                self.beam_idx = self.beam_idx.to(original_device)
                key_tensor = key_tensor.index_select(0, self.beam_idx)
                value_tensor = value_tensor.index_select(0, self.beam_idx)
            # Prefetch the next layer
            self.prefetch_layer((layer_idx + 1) % len(self))
            return (key_tensor, value_tensor)
        else:
            raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")

    def reorder_cache(self, beam_idx: torch.LongTensor):
        """Saves the beam indices and reorders the cache when the tensor is back to its device."""
        # We delay this operation until the tensors are back to their original
        # device because performing torch.index_select on the CPU is very slow
        del self.beam_idx
        self.beam_idx = beam_idx.clone()

    def update(
        self,
        key_states: torch.Tensor,
        value_states: torch.Tensor,
        layer_idx: int,
        cache_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
        Parameters:
            key_states (`torch.Tensor`):
                The new key states to cache.
            value_states (`torch.Tensor`):
                The new value states to cache.
            layer_idx (`int`):
                The index of the layer to cache the states for.
            cache_kwargs (`Dict[str, Any]`, `optional`):
                Additional arguments for the cache subclass. No additional arguments are used in `OffloadedCache`.
        Return:
            A tuple containing the updated key and value states.
        """
        # Update the number of seen tokens
        if layer_idx == 0:
            self._seen_tokens += key_states.shape[-2]

        # Update the cache
        if len(self.key_cache) <= layer_idx:
            self.key_cache.append(key_states)
            self.value_cache.append(value_states)
            self.original_device.append(key_states.device)
            self.evict_previous_layer(layer_idx)
        else:
            key_tensor, value_tensor = self[layer_idx]
            self.key_cache[layer_idx] = torch.cat([key_tensor, key_states], dim=-2)
            self.value_cache[layer_idx] = torch.cat([value_tensor, value_states], dim=-2)

        return self.key_cache[layer_idx], self.value_cache[layer_idx]

    # According to https://docs.python.org/3/library/exceptions.html#NotImplementedError
    # if a method is not supposed to be supported in a subclass we should set it to None
    from_legacy_cache = None

    to_legacy_cache = None


class QuantizedCache(DynamicCache):
    """
    A quantizer cache similar to what is described in the [KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache paper](https://arxiv.org/abs/2402.02750).
    It allows the model to generate longer sequence length without allocating too much memory for Key and Value cache by applying quantization.

    The cache has two types of storage, one for original precision and one for the quantized cache. A `residual length` is set as a maximum capacity for the
    original precision cache. When the length goes beyond maximum capacity, the original precision cache is discarded and moved into the quantized cache. The
    quantization is done per-channel with a set `q_group_size` for both Keys and Values, in contrast to what was described in the paper.

    It stores Keys and Values a list of quantized tensors (tuples in case we need to store metadata), one for each layer. Additionally, it stores the Key and
    Value in original precision states as a list of tensors, one for each layer. The size of each tensor
    is `[batch_size, num_heads, seq_len - residual_length, head_dim]`
    """

    def __init__(self, cache_config: QuantizedCacheConfig) -> None:
        super().__init__()
        self._quantized_key_cache: List[torch.Tensor] = []
        self._quantized_value_cache: List[torch.Tensor] = []

        self.nbits = cache_config.nbits
        self.residual_length = cache_config.residual_length
        self.q_group_size = cache_config.q_group_size
        self.axis_key = cache_config.axis_key
        self.axis_value = cache_config.axis_value
        self.compute_dtype = cache_config.compute_dtype
        self.device = cache_config.device

        super().__init__()

    def update(
        self,
        key_states: torch.Tensor,
        value_states: torch.Tensor,
        layer_idx: int,
        cache_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # Update the number of seen tokens
        if layer_idx == 0:
            self._seen_tokens += key_states.shape[-2]

        if len(self.key_cache) <= layer_idx:
            self._quantized_key_cache.append(self._quantize(key_states.contiguous(), axis=self.axis_key))
            self._quantized_value_cache.append(self._quantize(value_states.contiguous(), axis=self.axis_value))
            self.key_cache.append(torch.zeros(0, dtype=key_states.dtype, device=key_states.device))
            self.value_cache.append(torch.zeros(0, dtype=key_states.dtype, device=key_states.device))
            keys_to_return, values_to_return = key_states, value_states
        else:
            dequant_key = self._dequantize(self._quantized_key_cache[layer_idx])
            dequant_value = self._dequantize(self._quantized_value_cache[layer_idx])
            keys_to_return = [dequant_key, self.key_cache[layer_idx], key_states]
            values_to_return = [dequant_value, self.value_cache[layer_idx], value_states]

            keys_to_return = torch.cat(keys_to_return, dim=-2)
            values_to_return = torch.cat(values_to_return, dim=-2)
            if (
                self.key_cache[layer_idx].dim() == 4
                and self.key_cache[layer_idx].shape[-2] + 1 >= self.residual_length
            ):
                self._quantized_key_cache[layer_idx] = self._quantize(keys_to_return.contiguous(), axis=self.axis_key)
                self._quantized_value_cache[layer_idx] = self._quantize(
                    values_to_return.contiguous(), axis=self.axis_value
                )
                self.key_cache[layer_idx] = torch.zeros(0, dtype=key_states.dtype, device=key_states.device)
                self.value_cache[layer_idx] = torch.zeros(0, dtype=key_states.dtype, device=key_states.device)
            else:
                self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
                self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)

        return keys_to_return, values_to_return

    def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
        """Returns the sequence length of the cached states. A layer index can be optionally passed."""
        if len(self.key_cache) <= layer_idx:
            return 0
        # since we cannot get the seq_length of each layer directly and rely on `_seen_tokens` which is
        # updated every "layer_idx" == 0, this is a hack to get the actual seq_length for the given layer_idx
        # this part of code otherwise fails when used to verify attn_weight shape in some models
        return self._seen_tokens if layer_idx == 0 else self._seen_tokens - 1

    def _quantize(self, tensor, axis):
        """Quantizes a key/value using a defined quantization method."""
        raise NotImplementedError("Make sure to implement `_quantize` in a subclass.")

    def _dequantize(self, q_tensor):
        """Dequantizes back the tensor that was quantized by `self._quantize()`"""
        raise NotImplementedError("Make sure to implement `_dequantize` in a subclass.")


class QuantoQuantizedCache(QuantizedCache):
    """
    Quantized Cache class that uses `quanto` as a backend to perform quantization. Current implementation supports `int2` and `int4` dtypes only.

    Parameters:
        cache_config (`QuantizedCacheConfig`):
            A configuration containing all the arguments to be used by the quantizer, including axis, qtype and group size.

    Example:

        ```python
        >>> # Run pip install quanto first if you don't have it yet
        >>> from transformers import AutoTokenizer, AutoModelForCausalLM, QuantoQuantizedCache, QuantizedCacheConfig

        >>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
        >>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")

        >>> inputs = tokenizer(text="My name is GPT2", return_tensors="pt")

        >>> # Prepare a cache class and pass it to model's forward
        >>> cache_config = QuantizedCacheConfig(nbits=4)
        >>> past_key_values = QuantoQuantizedCache(cache_config=cache_config)
        >>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
        >>> past_kv_length = outputs.past_key_values # access cache filled with key/values from generation
        ```
    """

    def __init__(self, cache_config: CacheConfig) -> None:
        super().__init__(cache_config)
        quanto_version = version.parse(importlib.metadata.version("quanto"))
        if quanto_version < version.parse("0.2.0"):
            raise ImportError(
                f"You need quanto package version to be greater or equal than 0.2.0 to use `QuantoQuantizedCache`. Detected version {quanto_version}. "
                f"Please upgrade quanto with `pip install -U quanto`"
            )

        if self.nbits not in [2, 4]:
            raise ValueError(f"`nbits` for `quanto` backend has to be one of [`2`, `4`] but got {self.nbits}")

        if self.axis_key not in [0, -1]:
            raise ValueError(f"`axis_key` for `quanto` backend has to be one of [`0`, `-1`] but got {self.axis_key}")

        if self.axis_value not in [0, -1]:
            raise ValueError(
                f"`axis_value` for `quanto` backend has to be one of [`0`, `-1`] but got {self.axis_value}"
            )

        self.qtype = qint4 if self.nbits == 4 else qint2
        self.optimizer = MaxOptimizer()  # hardcode as it's the only one for per-channel quantization

    def _quantize(self, tensor, axis):
        scale, zeropoint = self.optimizer(tensor, self.qtype.bits, axis, self.q_group_size)
        qtensor = AffineQuantizer.apply(tensor, self.qtype, axis, self.q_group_size, scale, zeropoint)
        return qtensor

    def _dequantize(self, qtensor):
        return qtensor.dequantize()


class HQQQuantizedCache(QuantizedCache):
    """
    Quantized Cache class that uses `HQQ` as a backend to perform quantization. Current implementation supports `int2`, `int4`, `int8` dtypes.

    Parameters:
        cache_config (`QuantizedCacheConfig`):
            A configuration containing all the arguments to be used by the quantizer, including axis, qtype and group size.

    Example:

        ```python
        >>> # Run pip install hqq first if you don't have it yet
        >>> from transformers import AutoTokenizer, AutoModelForCausalLM, HQQQuantizedCache, QuantizedCacheConfig

        >>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
        >>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")

        >>> inputs = tokenizer(text="My name is GPT2", return_tensors="pt")

        >>> # Prepare a cache class and pass it to model's forward
        >>> cache_config = QuantizedCacheConfig(nbits=4, axis_key=1, axis_value=1)
        >>> past_key_values = HQQQuantizedCache(cache_config=cache_config)
        >>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
        >>> past_kv_length = outputs.past_key_values # access cache filled with key/values from generation
        ```
    """

    def __init__(self, cache_config: CacheConfig) -> None:
        super().__init__(cache_config)
        if self.nbits not in [1, 2, 3, 4, 8]:
            raise ValueError(
                f"`nbits` for `HQQ` backend has to be one of [`1`, `2`, `3`, `4`, `8`] but got {self.nbits}"
            )

        if self.axis_key not in [0, 1]:
            raise ValueError(f"`axis_key` for `HQQ` backend has to be one of [`0`, `1`] but got {self.axis_key}")

        if self.axis_value not in [0, 1]:
            raise ValueError(f"`axis_value` for `HQQ` backend has to be one of [`0`, `1`] but got {self.axis_value}")

        self.quantizer = HQQQuantizer

    def _quantize(self, tensor, axis):
        qtensor, meta = self.quantizer.quantize(
            tensor,
            axis=axis,
            device=self.device,
            compute_dtype=self.compute_dtype,
            nbits=self.nbits,
            group_size=self.q_group_size,
        )
        meta["compute_dtype"] = self.compute_dtype
        self.quantizer.cuda(qtensor, meta=meta, device=self.device)  # Move to device and cast to dtype
        return qtensor, meta

    def _dequantize(self, qtensor):
        quant_tensor, meta = qtensor
        tensor = self.quantizer.dequantize(quant_tensor, meta)
        return tensor


class SinkCache(Cache):
    """
    A cache that as described in the [Attention Sinks paper](https://arxiv.org/abs/2309.17453). It allows the model to
    generate beyond the length of its context window, without losing fluency in the conversation. As it discards past
    tokens, the model will lose the ability to generate tokens that depend on the context that was discarded.

    It stores the Key and Value states as a list of tensors, one for each layer. The expected shape for each tensor is
    `[batch_size, num_heads, seq_len, head_dim]`.

    Parameters:
        window_length (`int`):
            The length of the context window.
        num_sink_tokens (`int`):
            The number of sink tokens. See the original paper for more information.

    Example:

        ```python
        >>> from transformers import AutoTokenizer, AutoModelForCausalLM, SinkCache

        >>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
        >>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")

        >>> inputs = tokenizer(text="My name is GPT2", return_tensors="pt")

        >>> # Prepare a cache class and pass it to model's forward
        >>> past_key_values = SinkCache(window_length=256, num_sink_tokens=4)
        >>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
        >>> past_kv_length = outputs.past_key_values # access cache filled with key/values from generation
        ```
    """

    def __init__(self, window_length: int, num_sink_tokens: int) -> None:
        super().__init__()
        self.key_cache: List[torch.Tensor] = []
        self.value_cache: List[torch.Tensor] = []
        self.window_length = window_length
        self.num_sink_tokens = num_sink_tokens
        self.cos_sin_rerotation_cache = {}
        self._cos_cache = None
        self._sin_cache = None
        self._seen_tokens = 0  # Used in `generate` to keep tally of how many tokens the cache has seen

    @staticmethod
    def _rotate_half(x):
        x1 = x[..., : x.shape[-1] // 2]
        x2 = x[..., x.shape[-1] // 2 :]
        return torch.cat((-x2, x1), dim=-1)

    def _apply_key_rotary_pos_emb(
        self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
    ) -> torch.Tensor:
        rotated_key_states = (key_states * cos) + (self._rotate_half(key_states) * sin)
        return rotated_key_states

    def _get_rerotation_cos_sin(
        self, key_states: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        if key_states.shape[-2] not in self.cos_sin_rerotation_cache:
            # Upcast to float32 temporarily for better accuracy
            cos = cos.to(torch.float32)
            sin = sin.to(torch.float32)

            # Compute the cos and sin required for back- and forward-rotating to one position earlier in the sequence
            original_cos = cos[self.num_sink_tokens + key_states.shape[-2] :]
            shifted_cos = cos[self.num_sink_tokens : -key_states.shape[-2]]
            original_sin = sin[self.num_sink_tokens + key_states.shape[-2] :]
            shifted_sin = sin[self.num_sink_tokens : -key_states.shape[-2]]
            rerotation_cos = original_cos * shifted_cos + original_sin * shifted_sin
            rerotation_sin = -original_sin * shifted_cos + original_cos * shifted_sin

            self.cos_sin_rerotation_cache[key_states.shape[-2]] = (
                rerotation_cos.to(key_states.dtype).unsqueeze(0),
                rerotation_sin.to(key_states.dtype).unsqueeze(0),
            )
        return self.cos_sin_rerotation_cache[key_states.shape[-2]]

    def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
        """Returns the sequence length of the cached states. A layer index can be optionally passed."""
        # TODO: deprecate this function in favor of `cache_position`
        # Workaround to make 'key_states.shape[-2] + past_key_value.get_seq_length(self.layer_idx)' <= window_length
        if len(self.key_cache) <= layer_idx:
            return 0
        return self.key_cache[layer_idx].shape[-2]

    def get_max_length(self) -> Optional[int]:
        """Returns the maximum sequence length of the cached states."""
        return self.window_length

    def update(
        self,
        key_states: torch.Tensor,
        value_states: torch.Tensor,
        layer_idx: int,
        cache_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.

        Parameters:
            key_states (`torch.Tensor`):
                The new key states to cache.
            value_states (`torch.Tensor`):
                The new value states to cache.
            layer_idx (`int`):
                The index of the layer to cache the states for.
            cache_kwargs (`Dict[str, Any]`, `optional`):
                Additional arguments for the cache subclass. The following arguments can be used in `SinkCache`: `sin`,
                `cos` and `partial_rotation_size`. These arguments are used with models using RoPE, to recompute the
                rotation as the tokens are shifted.

        Return:
            A tuple containing the updated key and value states.
        """
        # Optional kwargs for `SinkCache` -- needed on models using RoPE. `partial_rotation_size` is used on models
        # with partially rotated position embeddings, like Phi or Persimmon.
        sin = cache_kwargs.get("sin")
        cos = cache_kwargs.get("cos")
        partial_rotation_size = cache_kwargs.get("partial_rotation_size")
        using_rope = cos is not None and sin is not None

        # Update the number of seen tokens
        if layer_idx == 0:
            self._seen_tokens += key_states.shape[-2]

        # Update the sin/cos cache, which holds sin/cos values for all possible positions
        if using_rope and layer_idx == 0:
            # BC: some models still pass `sin`/`cos` with 2 dims. In those models, they are the full sin/cos. Remove
            # after all RoPE models have a llama-like cache utilization.
            if cos.dim() == 2:
                self._cos_cache = cos
                self._sin_cache = sin
            else:
                if self._cos_cache is None:
                    self._cos_cache = cos[0, ...]
                    self._sin_cache = sin[0, ...]
                elif self._cos_cache.shape[0] < self.window_length:
                    self._cos_cache = torch.cat([self._cos_cache, cos[0, ...]], dim=0)
                    self._sin_cache = torch.cat([self._sin_cache, sin[0, ...]], dim=0)

        # [bsz, num_heads, seq_len, head_dim]
        if len(self.key_cache) <= layer_idx:
            # Empty cache
            self.key_cache.append(key_states)
            self.value_cache.append(value_states)

        elif key_states.shape[-2] + self.get_seq_length(layer_idx) < self.window_length:
            # Growing cache
            self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
            self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)

        else:
            # Shifting cache
            keys_to_keep = self.key_cache[layer_idx][
                :, :, -self.window_length + self.num_sink_tokens + key_states.shape[-2] :
            ]

            # On RoPE models, we need to recompute the Key rotation as the tokens are shifted
            if using_rope:
                rerotation_cos, rerotation_sin = self._get_rerotation_cos_sin(
                    key_states, self._cos_cache[: self.window_length], self._sin_cache[: self.window_length]
                )
                if partial_rotation_size is not None:
                    keys_to_keep, keys_pass = (
                        keys_to_keep[..., :partial_rotation_size],
                        keys_to_keep[..., partial_rotation_size:],
                    )
                keys_to_keep = self._apply_key_rotary_pos_emb(keys_to_keep, rerotation_cos, rerotation_sin)
                if partial_rotation_size is not None:
                    keys_to_keep = torch.cat((keys_to_keep, keys_pass), dim=-1)

            # Concatenate sink tokens, shifted & rotated tokens (if needed), and new tokens
            sink_keys = self.key_cache[layer_idx][:, :, : self.num_sink_tokens]
            self.key_cache[layer_idx] = torch.cat([sink_keys, keys_to_keep, key_states], dim=-2)

            sink_values = self.value_cache[layer_idx][:, :, : self.num_sink_tokens]
            values_to_keep = self.value_cache[layer_idx][
                :, :, -self.window_length + self.num_sink_tokens + value_states.shape[-2] :
            ]
            self.value_cache[layer_idx] = torch.cat([sink_values, values_to_keep, value_states], dim=-2)

        return self.key_cache[layer_idx], self.value_cache[layer_idx]


class StaticCache(Cache):
    """
    Static Cache class to be used with `torch.compile(model)` and `torch.export()`.

    Parameters:
        config (`PretrainedConfig`):
            The configuration file defining the shape-related attributes required to initialize the static cache.
        max_batch_size (`int`):
            The maximum batch size with which the model will be used.
        max_cache_len (`int`):
            The maximum sequence length with which the model will be used.
        device (`torch.device`):
            The device on which the cache should be initialized. Should be the same as the layer.
        dtype (*optional*, defaults to `torch.float32`):
            The default `dtype` to use when initializing the layer.

    Example:

        ```python
        >>> from transformers import AutoTokenizer, AutoModelForCausalLM, StaticCache

        >>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
        >>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")

        >>> inputs = tokenizer(text="My name is GPT2", return_tensors="pt")

        >>> # Prepare a cache class and pass it to model's forward
        >>> # Leave empty space for 10 new tokens, which can be used when calling forward iteratively 10 times to generate
        >>> max_generated_length = inputs.input_ids.shape[1] + 10
        >>> past_key_values = StaticCache(config=model.config, max_batch_size=1, max_cache_len=max_generated_length, device=model.device, dtype=model.dtype)
        >>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
        >>> past_kv_length = outputs.past_key_values # access cache filled with key/values from generation
        ```
    """

    def __init__(self, config: PretrainedConfig, max_batch_size: int, max_cache_len: int, device, dtype=None) -> None:
        super().__init__()
        self.max_batch_size = max_batch_size
        self.max_cache_len = config.max_position_embeddings if max_cache_len is None else max_cache_len
        # Some model define a custom `head_dim` != config.hidden_size // config.num_attention_heads
        self.head_dim = (
            config.head_dim if hasattr(config, "head_dim") else config.hidden_size // config.num_attention_heads
        )

        self.dtype = dtype if dtype is not None else torch.float32
        self.num_key_value_heads = (
            config.num_attention_heads if config.num_key_value_heads is None else config.num_key_value_heads
        )

        self.key_cache: List[torch.Tensor] = []
        self.value_cache: List[torch.Tensor] = []
        # Note: There will be significant perf decrease if switching to use 5D tensors instead.
        cache_shape = (max_batch_size, self.num_key_value_heads, self.max_cache_len, self.head_dim)
        for idx in range(config.num_hidden_layers):
            new_layer_key_cache = torch.zeros(cache_shape, dtype=self.dtype, device=device)
            new_layer_value_cache = torch.zeros(cache_shape, dtype=self.dtype, device=device)
            # Notes:
            # 1. `mark_static_address` is used to tag the cache as an fixed data pointer, preventing cuda graph
            #     breaks when updating the cache. It can't be used if the cache code is being compiled (but in that case
            #     it is not needed anyway)
            # 2. `torch.export()` requires mutations to be registered as buffers.
            if not is_torchdynamo_compiling():
                self.register_buffer(f"key_cache_{idx}", torch.zeros(cache_shape, dtype=dtype, device=device))
                self.register_buffer(f"value_cache_{idx}", torch.zeros(cache_shape, dtype=dtype, device=device))
                new_layer_key_cache = getattr(self, f"key_cache_{idx}")
                new_layer_value_cache = getattr(self, f"value_cache_{idx}")
                torch._dynamo.mark_static_address(new_layer_key_cache)
                torch._dynamo.mark_static_address(new_layer_value_cache)
            self.key_cache.append(new_layer_key_cache)
            self.value_cache.append(new_layer_value_cache)

    def update(
        self,
        key_states: torch.Tensor,
        value_states: torch.Tensor,
        layer_idx: int,
        cache_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
        It is VERY important to index using a tensor, otherwise you introduce a copy to the device.

        Parameters:
            key_states (`torch.Tensor`):
                The new key states to cache.
            value_states (`torch.Tensor`):
                The new value states to cache.
            layer_idx (`int`):
                The index of the layer to cache the states for.
            cache_kwargs (`Dict[str, Any]`, `optional`):
                Additional arguments for the cache subclass. The `StaticCache` needs the `cache_position` input
                to know how where to write in the cache.

        Return:
            A tuple containing the updated key and value states.
        """
        cache_position = cache_kwargs.get("cache_position")
        k_out = self.key_cache[layer_idx]
        v_out = self.value_cache[layer_idx]

        if cache_position is None:
            k_out.copy_(key_states)
            v_out.copy_(value_states)
        else:
            # Note: here we use `tensor.index_copy_(dim, index, tensor)` that is equivalent to
            # `tensor[:, :, index] = tensor`, but the first one is compile-friendly and it does explicitly an in-place
            # operation, that avoids copies and uses less memory.
            try:
                # If using several devices (e.g.: multiple GPUs), we need to ensure everything is on the same one
                cache_position.to(device=k_out.device)
                k_out.index_copy_(2, cache_position, key_states)
                v_out.index_copy_(2, cache_position, value_states)
            except NotImplementedError:
                # The operator 'aten::index_copy.out' is not currently implemented for the MPS device.
                k_out[:, :, cache_position] = key_states
                v_out[:, :, cache_position] = value_states

        return k_out, v_out

    def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
        """Returns the sequence length of the cached states that were seen by the model."""
        # Occupied cache == any slot in the 3rd dim (sequence length) holds a non-zero value. To save on compute, let's
        # limit the check to the first batch member and head dimension.
        # TODO: deprecate this function in favor of `cache_position`
        return (self.key_cache[layer_idx][0, 0].any(dim=-1)).sum()

    def get_max_length(self) -> Optional[int]:
        """Returns the maximum sequence length of the cached states."""
        return self.max_cache_len

    def reset(self):
        """Resets the cache values while preserving the objects"""
        for layer_idx in range(len(self.key_cache)):
            # In-place ops prevent breaking the static address
            self.key_cache[layer_idx].zero_()
            self.value_cache[layer_idx].zero_()


class SlidingWindowCache(StaticCache):
    """
    Sliding Window Cache class to be used with `torch.compile` for models like Mistral that support sliding window attention.
    Every time when we try to update the cache, we compute the `indices` based on `cache_position >= self.config.sliding_window - 1`,
    if true(which means the cache can not hold all the old key value states and new states together because of the sliding window constraint),
    we need to do a cycle shift based on `indices` to replace the oldest states by the new key value states passed in.

    The `to_shift` is only true once we are above sliding_window. Thus with `sliding_window==64`:

    indices = (slicing + to_shift[-1].int()-1) % self.config.sliding_window
    tensor([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
        19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
        37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
        55, 56, 57, 58, 59, 60, 61, 62, 63,  0])

    We overwrite the cache using these, then we always write at cache_position (clamped to `sliding_window`)

    Parameters:
        config (`PretrainedConfig`):
            The configuration file defining the shape-related attributes required to initialize the static cache.
        max_batch_size (`int`):
            The maximum batch size with which the model will be used.
        max_cache_len (`int`):
            The maximum sequence length with which the model will be used.
        device (`torch.device`):
            The device on which the cache should be initialized. Should be the same as the layer.
        dtype (*optional*, defaults to `torch.float32`):
            The default `dtype` to use when initializing the layer.

    Example:

        ```python
        >>> from transformers import AutoTokenizer, AutoModelForCausalLM, SlidingWindowCache

        >>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
        >>> tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")

        >>> inputs = tokenizer(text="My name is GPT2", return_tensors="pt")

        >>> # Prepare a cache class and pass it to model's forward
        >>> # Leave empty space for 10 new tokens, which can be used when calling forward iteratively 10 times to generate
        >>> max_generated_length = inputs.input_ids.shape[1] + 10
        >>> past_key_values = SlidingWindowCache(config=model.config, max_batch_size=1, max_cache_len=max_generated_length, device=model.device, dtype=model.dtype)
        >>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
        >>> past_kv_length = outputs.past_key_values # access cache filled with key/values from generation
        ```
    """

    def __init__(self, config: PretrainedConfig, max_batch_size: int, max_cache_len: int, device, dtype=None) -> None:
        super().__init__()
        if not hasattr(config, "sliding_window") or config.sliding_window is None:
            raise ValueError(
                "Setting `cache_implementation` to 'sliding_window' requires the model config supporting "
                "sliding window attention, please check if there is a `sliding_window` field in the model "
                "config and it's not set to None."
            )
        max_cache_len = min(config.sliding_window, max_cache_len)
        super().__init__(
            config=config, max_batch_size=max_batch_size, max_cache_len=max_cache_len, device=device, dtype=dtype
        )

    def update(
        self,
        key_states: torch.Tensor,
        value_states: torch.Tensor,
        layer_idx: int,
        cache_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Tuple[torch.Tensor]:
        cache_position = cache_kwargs.get("cache_position")
        k_out = self.key_cache[layer_idx]
        v_out = self.value_cache[layer_idx]

        # assume this only happens in prefill phase when prompt length > sliding_window_size (= max_cache_len)
        if cache_position.shape[0] > self.max_cache_len:
            k_out = key_states[:, :, -self.max_cache_len :, :]
            v_out = value_states[:, :, -self.max_cache_len :, :]
            # Assumption: caches are all zeros at this point, `+=` is equivalent to `=` but compile-friendly
            self.key_cache[layer_idx] += k_out
            self.value_cache[layer_idx] += v_out
            # we should return the whole states instead of k_out, v_out to take the whole prompt
            # into consideration when building kv cache instead of just throwing away tokens outside of the window
            return key_states, value_states

        slicing = torch.ones(self.max_cache_len, dtype=torch.long, device=value_states.device).cumsum(0)
        cache_position = cache_position.clamp(0, self.max_cache_len - 1)
        to_shift = cache_position >= self.max_cache_len - 1
        indices = (slicing + to_shift[-1].int() - 1) % self.max_cache_len

        k_out = k_out[:, :, indices]
        v_out = v_out[:, :, indices]

        try:
            cache_position.to(device=k_out.device)
            k_out.index_copy_(2, cache_position, key_states)
            v_out.index_copy_(2, cache_position, value_states)
        except NotImplementedError:
            # The operator 'aten::index_copy.out' is not currently implemented for the MPS device.
            k_out[:, :, cache_position] = key_states
            v_out[:, :, cache_position] = value_states

        # `_.zero()` followed by `+=` is equivalent `=`, but compile-friendly (without graph breaks due to assignment)
        self.key_cache[layer_idx].zero_()
        self.value_cache[layer_idx].zero_()

        self.key_cache[layer_idx] += k_out
        self.value_cache[layer_idx] += v_out

        return k_out, v_out

    def get_max_length(self) -> Optional[int]:
        # in theory there is no limit because the sliding window size is fixed no matter how long the sentence is
        return None

    def reset(self):
        for layer_idx in range(len(self.key_cache)):
            # In-place ops prevent breaking the static address
            self.key_cache[layer_idx].zero_()
            self.value_cache[layer_idx].zero_()


class EncoderDecoderCache(Cache):
    """
    Base, abstract class for all encoder-decoder caches. Can be used to hold combinations of self-attention and
    cross-attention caches.

    Example:

        ```python
        >>> from transformers import AutoProcessor, AutoModelForCausalLM, DynamicCache, EncoderDecoderCache

        >>> model = AutoModelForCausalLM.from_pretrained("openai/whisper-small")
        >>> processor = AutoProcessor.from_pretrained("openai/whisper-small")

        >>> inputs = processor(audio=YOUR-AUDIO, return_tensors="pt")

        >>> # Prepare cache classes for encoder and decoder and pass it to model's forward
        >>> self_attention_cache = DynamicCache()
        >>> cross_attention_cache = DynamicCache()
        >>> past_key_values = EncoderDecoderCache(self_attention_cache, cross_attention_cache)
        >>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
        >>> past_kv_length = outputs.past_key_values # access cache filled with key/values from generation
        ```

    """

    def __init__(self, self_attention_cache: Cache, cross_attention_cache: Cache):
        super().__init__()
        self.self_attention_cache = self_attention_cache
        self.cross_attention_cache = cross_attention_cache

        self.is_updated = {}
        for layer_idx in range(len(cross_attention_cache.key_cache)):
            self.is_updated[layer_idx] = bool(cross_attention_cache.get_seq_length(layer_idx) > 0)

    def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]:
        """
        Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0].shape[2]` to get the
        sequence length.
        """
        if layer_idx < len(self):
            return (
                self.self_attention_cache.key_cache[layer_idx],
                self.self_attention_cache.value_cache[layer_idx],
                self.cross_attention_cache.key_cache[layer_idx],
                self.cross_attention_cache.value_cache[layer_idx],
            )
        else:
            raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")

    def __len__(self):
        """
        Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
        to the number of layers in the model.
        """
        return len(self.self_attention_cache)

    def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
        """Converts the `EncoderDecoderCache` instance into  its equivalent in the legacy cache format."""
        legacy_cache = ()
        if len(self.cross_attention_cache) > 0:
            for self_attn, cross_attn in zip(
                self.self_attention_cache.to_legacy_cache(), self.cross_attention_cache.to_legacy_cache()
            ):
                legacy_cache += (self_attn + cross_attn,)
        else:
            legacy_cache = self.self_attention_cache.to_legacy_cache()
        return legacy_cache

    @classmethod
    def from_legacy_cache(
        cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    ) -> "EncoderDecoderCache":
        """Converts a cache in the legacy cache format into an equivalent `EncoderDecoderCache`."""
        cache = cls(self_attention_cache=DynamicCache(), cross_attention_cache=DynamicCache())
        if past_key_values is not None:
            for layer_idx in range(len(past_key_values)):
                key_states, value_states = past_key_values[layer_idx][:2]
                cache.self_attention_cache.update(key_states, value_states, layer_idx)
                if len(past_key_values[layer_idx]) > 2:
                    key_states, value_states = past_key_values[layer_idx][2:]
                    cache.cross_attention_cache.update(key_states, value_states, layer_idx)
                    cache.is_updated[layer_idx] = True
        return cache

    def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
        """Returns the sequence length of the cached states. A layer index can be optionally passed."""
        if len(self.self_attention_cache.key_cache) <= layer_idx:
            return 0
        return (self.self_attention_cache.key_cache[layer_idx][0, 0].any(dim=-1)).sum()

    def reset(self):
        if hasattr(self.self_attention_cache, "reset"):
            self.self_attention_cache.reset()
        if hasattr(self.cross_attention_cache, "reset"):
            self.cross_attention_cache.reset()
        elif not hasattr(self.self_attention_cache, "reset") and not hasattr(self.cross_attention_cache, "reset"):
            raise ValueError(
                "Neither self nor cross-attention cache have valid `.reset()` methods. `.reset()` should "
                "only be called on compatible cache classes, such as `StaticCache` or `SlidingWindowCache`. "
                f"Got {self.self_attention_cache.__str__()} for the self attention cache and "
                f"{self.cross_attention_cache.__str__()} for the cross attention cache."
            )
        for layer_idx in self.is_updated:
            self.is_updated[layer_idx] = False

    def reorder_cache(self, beam_idx: torch.LongTensor):
        """Reorders the cache for beam search, given the selected beam indices."""
        self.self_attention_cache.reorder_cache(beam_idx)
        self.cross_attention_cache.reorder_cache(beam_idx)

    def check_dynamic_cache(self, method: str):
        if not (
            isinstance(self.self_attention_cache, DynamicCache)
            and isinstance(self.cross_attention_cache, DynamicCache)
        ):
            raise ValueError(
                f"`{method}` is only defined for dynamic cache, got {self.self_attention_cache.__str__()} for the self "
                f"attention cache and {self.cross_attention_cache.__str__()} for the cross attention cache."
            )

    # TODO(gante, sanchit-gandhi): move following functionality into `.generate`
    def crop(self, maximum_length: int):
        """Crop the past key values up to a new `maximum_length` in terms of tokens. `maximum_length` can also be
        negative to remove `maximum_length` tokens. This is used in assisted decoding and contrastive search."""
        self.check_dynamic_cache(self.crop.__name__)
        self.self_attention_cache.crop(maximum_length)

    def batch_split(self, full_batch_size: int, split_size: int) -> "List[EncoderDecoderCache]":
        """Split the current instance into a list of `DynamicCache` by the batch size. This will be used by
        `_split_model_inputs()` in `generation.utils`"""
        self.check_dynamic_cache(self.batch_split.__name__)
        self_attention_cache = self.self_attention_cache.batch_split(full_batch_size, split_size)
        cross_attention_cache = self.cross_attention_cache.batch_split(full_batch_size, split_size)

        out = []
        for self_attn, cross_attn in zip(self_attention_cache, cross_attention_cache):
            out.append(EncoderDecoderCache(self_attn, cross_attn))
        return out

    @classmethod
    def from_batch_splits(cls, splits: List["EncoderDecoderCache"]) -> "EncoderDecoderCache":
        """This is the opposite of the above `batch_split()` method. This will be used by `stack_model_outputs` in
        `generation.utils`"""
        self_attention_cache = DynamicCache()
        cross_attention_cache = DynamicCache()
        for idx in range(len(splits[0])):
            layer_keys = torch.cat([current.self_attention_cache.key_cache[idx] for current in splits], dim=0)
            layer_values = torch.cat([current.self_attention_cache.value_cache[idx] for current in splits], dim=0)
            self_attention_cache.update(layer_keys, layer_values, idx)

            layer_keys = torch.cat([current.cross_attention_cache.key_cache[idx] for current in splits], dim=0)
            layer_values = torch.cat([current.cross_attention_cache.value_cache[idx] for current in splits], dim=0)
            cross_attention_cache.update(layer_keys, layer_values, idx)
        return cls(self_attention_cache, cross_attention_cache)

    def batch_repeat_interleave(self, repeats: int):
        """Repeat the cache `repeats` times in the batch dimension. Used in contrastive search."""
        self.check_dynamic_cache(self.batch_repeat_interleave.__name__)
        self.self_attention_cache.batch_repeat_interleave(repeats)
        self.cross_attention_cache.batch_repeat_interleave(repeats)

    def batch_select_indices(self, indices: torch.Tensor):
        """Only keep the `indices` in the batch dimension of the cache. Used in contrastive search."""
        self.check_dynamic_cache(self.batch_select_indices.__name__)
        self.self_attention_cache.batch_select_indices(indices)
        self.cross_attention_cache.batch_select_indices(indices)


class HybridCache(Cache):
    """
    Hybrid Cache class to be used with `torch.compile` for Gemma2 models that alternate between a local sliding window attention
    and global attention in every other layer. Under the hood, Hybrid Cache leverages ["SlidingWindowCache"] for sliding window attention
    and ["StaticCache"] for global attention. For more information, see the documentation of each subcomponeent cache class.

    Parameters:
        config (`PretrainedConfig):
            The configuration file defining the shape-related attributes required to initialize the static cache.
        max_batch_size (`int`):
            The maximum batch size with which the model will be used.
        max_cache_len (`int`):
            The maximum sequence length with which the model will be used.
        device (`torch.device`, *optional*, defaults to `"cpu"`):
            The device on which the cache should be initialized. Should be the same as the layer.
        dtype (*optional*, defaults to `torch.float32`):
            The default `dtype` to use when initializing the layer.

    Example:

        ```python
        >>> from transformers import AutoTokenizer, AutoModelForCausalLM, HybridCache

        >>> model = AutoModelForCausalLM.from_pretrained("google/gemma-2-9b")
        >>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")

        >>> inputs = tokenizer(text="My name is Gemma", return_tensors="pt")

        >>> # Prepare a cache class and pass it to model's forward
        >>> # Leave empty space for 10 new tokens, which can be used when calling forward iteratively 10 times to generate
        >>> max_generated_length = inputs.input_ids.shape[1] + 10
        >>> past_key_values = HybridCache(config=model.config, max_batch_size=1, max_cache_len=max_generated_length, device=model.device, dtype=model.dtype)
        >>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
        >>> past_kv_length = outputs.past_key_values # access cache filled with key/values from generation
        ```
    """

    def __init__(self, config: PretrainedConfig, max_batch_size, max_cache_len, device="cpu", dtype=None) -> None:
        super().__init__()
        if not hasattr(config, "sliding_window") or config.sliding_window is None:
            raise ValueError(
                "Setting `cache_implementation` to 'sliding_window' requires the model config supporting "
                "sliding window attention, please check if there is a `sliding_window` field in the model "
                "config and it's not set to None."
            )
        self.max_cache_len = max_cache_len
        self.max_batch_size = max_batch_size
        # Some model define a custom `head_dim` != config.hidden_size // config.num_attention_heads
        self.head_dim = (
            config.head_dim if hasattr(config, "head_dim") else config.hidden_size // config.num_attention_heads
        )

        self.dtype = dtype if dtype is not None else torch.float32
        self.num_key_value_heads = (
            config.num_attention_heads if config.num_key_value_heads is None else config.num_key_value_heads
        )
        self.is_sliding = torch.tensor(
            [not bool(i % 2) for i in range(config.num_hidden_layers)], dtype=torch.bool, device=device
        )
        self.key_cache: List[torch.Tensor] = []
        self.value_cache: List[torch.Tensor] = []
        global_cache_shape = (max_batch_size, self.num_key_value_heads, max_cache_len, self.head_dim)
        sliding_cache_shape = (
            max_batch_size,
            self.num_key_value_heads,
            min(config.sliding_window, max_cache_len),
            self.head_dim,
        )
        for i in range(config.num_hidden_layers):
            # Note: `mark_static_address` is used to tag the cache as an fixed data pointer, preventing cuda graph
            # breaks when updating the cache.
            cache_shape = global_cache_shape if not self.is_sliding[i] else sliding_cache_shape
            new_layer_key_cache = torch.zeros(cache_shape, dtype=self.dtype, device=device)
            new_layer_value_cache = torch.zeros(cache_shape, dtype=self.dtype, device=device)
            torch._dynamo.mark_static_address(new_layer_key_cache)
            torch._dynamo.mark_static_address(new_layer_value_cache)
            self.key_cache.append(new_layer_key_cache)
            self.value_cache.append(new_layer_value_cache)

    def _sliding_update(self, cache_position, layer_idx, key_states, value_states, k_out, v_out, max_cache_len):
        if cache_position.shape[0] > max_cache_len:
            k_out = key_states[:, :, -max_cache_len:, :]
            v_out = value_states[:, :, -max_cache_len:, :]
            # Assumption: caches are all zeros at this point, `+=` is equivalent to `=` but compile-friendly
            self.key_cache[layer_idx] += k_out
            self.value_cache[layer_idx] += v_out
            # we should return the whole states instead of k_out, v_out to take the whole prompt
            # into consideration when building kv cache instead of just throwing away tokens outside of the window
            return key_states, value_states

        slicing = torch.ones(max_cache_len, dtype=torch.long, device=value_states.device).cumsum(0)
        cache_position = cache_position.clamp(0, max_cache_len - 1)
        to_shift = cache_position >= max_cache_len - 1
        indices = (slicing + to_shift[-1].int() - 1) % max_cache_len
        k_out = k_out[:, :, indices]
        v_out = v_out[:, :, indices]

        k_out[:, :, cache_position] = key_states
        v_out[:, :, cache_position] = value_states
        # `_.zero()` followed by `+=` is equivalent `=`, but compile-friendly (without graph breaks due to assignment)
        self.key_cache[layer_idx].zero_()
        self.value_cache[layer_idx].zero_()

        self.key_cache[layer_idx] += k_out
        self.value_cache[layer_idx] += v_out
        return k_out, v_out

    def _static_update(self, cache_position, layer_idx, key_states, value_states, k_out, v_out, max_cache_len):
        k_out[:, :, cache_position] = key_states
        v_out[:, :, cache_position] = value_states

        self.key_cache[layer_idx] = k_out
        self.value_cache[layer_idx] = v_out
        return k_out, v_out

    def update(
        self,
        key_states: torch.Tensor,
        value_states: torch.Tensor,
        layer_idx: int,
        cache_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Tuple[torch.Tensor]:
        cache_position = cache_kwargs.get("cache_position")
        sliding_window = cache_kwargs.get("sliding_window")
        self.key_cache[layer_idx] = self.key_cache[layer_idx].to(device=key_states.device)
        self.value_cache[layer_idx] = self.value_cache[layer_idx].to(device=value_states.device)
        k_out = self.key_cache[layer_idx]
        v_out = self.value_cache[layer_idx]
        if sliding_window:
            update_fn = self._sliding_update
        else:
            update_fn = self._static_update

        return update_fn(
            cache_position,
            layer_idx,
            key_states,
            value_states,
            k_out,
            v_out,
            k_out.shape[2],
        )

    def get_max_length(self) -> Optional[int]:
        # in theory there is no limit because the sliding window size is fixed
        # no matter how long the sentence is
        return self.max_cache_len

    def get_seq_length(self, layer_idx: Optional[int] = 0):
        return None

    def reset(self):
        """Resets the cache values while preserving the objects"""
        for layer_idx in range(len(self.key_cache)):
            # In-place ops prevent breaking the static address
            self.key_cache[layer_idx].zero_()
            self.value_cache[layer_idx].zero_()


class MambaCache:
    """
    Cache for mamba model which does not have attention mechanism and key value states.

    Arguments:
        config (`PretrainedConfig):
            The configuration file defining the shape-related attributes required to initialize the static cache.
        max_batch_size (`int`):
            The maximum batch size with which the model will be used.
        dtype (*optional*, defaults to `torch.float16`):
            The default `dtype` to use when initializing the layer.
        device (`torch.device`, *optional*):
            The device on which the cache should be initialized. Should be the same as the layer.

    Attributes:
        dtype: (`torch.dtype`):
            The default `dtype` used to initializing the cache.
        intermediate_size: (`int`):
            Model's intermediate_size taken from config.
        ssm_state_size: (`int`):
            Model's state_size taken from config.
        conv_kernel_size: (`int`):
            Model's convolution kernel size taken from config
        conv_states: (`torch.Tensor`):
            A tensor of shape `[layer_idx, batch_size, intermediate_size, conv_kernel_size]` that holds convolutional states.
        ssm_states: (`torch.Tensor`):
            A tensor of shape `[layer_idx, batch_size, intermediate_size, ssm_state_size]` that holds ssm states

    Example:

        ```python
        >>> from transformers import AutoTokenizer, MambaForCausalLM, MambaCache

        >>> model = MambaForCausalLM.from_pretrained("state-spaces/mamba-130m-hf")
        >>> tokenizer = AutoTokenizer.from_pretrained("state-spaces/mamba-130m-hf")

        >>> inputs = tokenizer(text="My name is Mamba", return_tensors="pt")

        >>> # Prepare a cache class and pass it to model's forward
        >>> past_key_values = MambaCache(config=model.config, max_batch_size=1, device=model.device, dtype=model.dtype)
        >>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
        >>> past_kv = outputs.past_key_values
        ```
    """

    def __init__(
        self,
        config: PretrainedConfig,
        max_batch_size: int,
        dtype: torch.dtype = torch.float16,
        device: Optional[str] = None,
        **kwargs,
    ):
        self.dtype = dtype
        self.max_batch_size = max_batch_size
        self.intermediate_size = config.intermediate_size
        self.ssm_state_size = config.state_size
        self.conv_kernel_size = config.conv_kernel

        self.conv_states: torch.Tensor = torch.zeros(
            config.num_hidden_layers,
            self.max_batch_size,
            self.intermediate_size,
            self.conv_kernel_size,
            device=device,
            dtype=dtype,
        )
        self.ssm_states: torch.Tensor = torch.zeros(
            config.num_hidden_layers,
            self.max_batch_size,
            self.intermediate_size,
            self.ssm_state_size,
            device=device,
            dtype=dtype,
        )

        torch._dynamo.mark_static_address(self.conv_states)
        torch._dynamo.mark_static_address(self.ssm_states)

    def update_conv_state(
        self, layer_idx: int, new_conv_state: torch.Tensor, cache_position: torch.LongTensor
    ) -> torch.Tensor:
        conv_state = self.conv_states[layer_idx]
        cache_position = cache_position.clamp(0, self.conv_kernel_size - 1)

        conv_state = conv_state.roll(shifts=-1, dims=-1)
        conv_state[:, :, cache_position] = new_conv_state.to(conv_state.device)
        self.conv_states[layer_idx].zero_()
        self.conv_states[layer_idx] += conv_state
        return self.conv_states[layer_idx]

    def update_ssm_state(self, layer_idx: int, new_ssm_state: torch.Tensor):
        self.ssm_states[layer_idx] = new_ssm_state.to(self.ssm_states.device)
        return self.ssm_states[layer_idx]

    def reset(self):
        self.conv_states.zero_()
        self.ssm_states.zero_()