File size: 22,107 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple
import torch
from ..cache_utils import DynamicCache
from .logits_process import LogitsProcessorList, MinLengthLogitsProcessor
if TYPE_CHECKING:
from ..modeling_utils import PreTrainedModel
from .configuration_utils import GenerationConfig
class CandidateGenerator:
"""Abstract base class for all candidate generators that can be applied during assisted generation."""
def get_candidates(self, input_ids: torch.LongTensor) -> Tuple[torch.LongTensor, Optional[torch.FloatTensor]]:
"""
Fetches the candidates to be tried for the current input.
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
Return:
`torch.LongTensor` of shape `(batch_size, candidate_length)` containing the candidate sequences to be
assessed by the model and, optionally, a `torch.FloatTensor` of shape `(batch_size, candidate_length,
vocabulary_size)` containing the logits associated to each candidate.
"""
raise NotImplementedError(
f"{self.__class__} is an abstract class. Only classes inheriting this class can call `get_candidates`."
)
def update_candidate_strategy(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, num_matches: int):
"""
Updates the candidate generation strategy based on the outcomes.
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
scores (`torch.FloatTensor` of shape `(batch_size, candidate_length, config.vocab_size)`):
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using
beam search or log softmax for each vocabulary token when using beam search
num_matches (`int`):
The number of matches between the candidate sequences and the model predictions.
"""
raise NotImplementedError(
f"{self.__class__} is an abstract class. Only classes inheriting this class can call "
"`update_candidate_strategy`."
)
class AssistedCandidateGenerator(CandidateGenerator):
"""
`CandidateGenerator` class to be used for assisted generation and speculative decoding. This class generates
candidates through the use of a smaller model. Read the following blog post for more information:
https://huggingface.co/blog/assisted-generation
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
assistant_model (`PreTrainedModel`):
The model to be used for generating candidates. This model should be smaller than the main model.
generation_config (`~generation.GenerationConfig`, *optional*):
The generation configuration to be used as base parametrization for the generation call.
logits_processor (`LogitsProcessorList`):
An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
used to modify the prediction scores of the language modeling head applied at each generation step.
model_kwargs (`Dict`):
The keyword arguments that will be passed to the main model, and are used as base inputs for the assistant
model as well.
inputs_tensor (`torch.Tensor`, *optional*):
The model input tensor. In encoder-decoder models, this is the encoder input.
"""
def __init__(
self,
input_ids: torch.LongTensor,
assistant_model: "PreTrainedModel",
generation_config: "GenerationConfig",
model_kwargs: Dict,
inputs_tensor: Optional[torch.Tensor] = None,
logits_processor: "LogitsProcessorList" = None,
):
# Make sure all data at the same device as assistant model
device = assistant_model.device
input_ids = input_ids.to(device)
if inputs_tensor is not None:
inputs_tensor = inputs_tensor.to(device)
# Prepare the assistant and the starting number of candidate tokens
self.assistant_model = assistant_model
self.num_assistant_tokens = assistant_model.generation_config.num_assistant_tokens
# Set eos in assistant same as in target model
self.assistant_model.generation_config.eos_token_id = generation_config.eos_token_id
# Prepare the kwargs for the assistant model
assistant_kwargs = {}
for key, value in model_kwargs.items(): # deepcopy crashes if we attempt to copy encoder outputs with grads
if key not in ("encoder_outputs", "assistant_encoder_outputs", "past_key_values"):
assistant_kwargs[key] = (
value.detach().to(device) if isinstance(value, torch.Tensor) else copy.deepcopy(value)
)
if "assistant_encoder_outputs" in model_kwargs:
assistant_kwargs["encoder_outputs"] = model_kwargs["assistant_encoder_outputs"]
elif assistant_model.config.is_encoder_decoder:
inputs_tensor, model_input_name, assistant_kwargs = assistant_model._prepare_model_inputs(
inputs_tensor, assistant_model.generation_config.bos_token_id, assistant_kwargs
)
assistant_kwargs = assistant_model._prepare_encoder_decoder_kwargs_for_generation(
inputs_tensor, assistant_kwargs, model_input_name, assistant_model.generation_config
)
elif "encoder_outputs" in model_kwargs:
assistant_kwargs["encoder_outputs"] = model_kwargs["encoder_outputs"]
self.assistant_kwargs = assistant_kwargs
# Prepare assistant model's keys of inputs
if assistant_model.config.is_encoder_decoder:
# both are encoder-decoder
self.input_ids_key = "decoder_input_ids"
elif "encoder_outputs" in assistant_kwargs:
# special case for encoder-decoder with decoder-only assistant (like DistilWhisper)
self.input_ids_key = "input_ids"
self.assistant_kwargs["attention_mask"] = self.assistant_kwargs.get(
"decoder_attention_mask",
torch.ones((input_ids.shape[0], 1), device=input_ids.device, dtype=torch.long),
)
else:
# both are decoder-only
self.input_ids_key = "input_ids"
# Prepare generation-related options.
self.logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
self.generation_config = copy.deepcopy(generation_config)
self.generation_config.return_dict_in_generate = True
self.generation_config.output_scores = True
# Disable sampling -- this implementation of assisted generation/speculative decoding uses the assistant
# greedily to maximize matches. Disables sampling-related flags to prevent warnings
self.generation_config.do_sample = False
for attr in ("temperature", "top_p", "min_p", "typical_p", "top_k", "epsilon_cutoff", "eta_cutoff"):
setattr(self.generation_config, attr, None)
# avoid unnecessary warnings that min_length is larger than max_new_tokens
# remove the `MinLengthLogitsProcessor` if exists (NOTE: no need to check for `MinNewTokensLogitsProcessor`)
self.main_model_min_length = self.generation_config.min_length
self.generation_config.min_length = 0
self.generation_config.min_new_tokens = None
for processor in self.logits_processor:
if isinstance(processor, MinLengthLogitsProcessor):
raise ValueError(
"Passing `MinLengthLogitsProcessor` when using `assisted_generation is disabled. "
"Please pass in `min_length` into `.generate()` instead"
)
# We need to roll back the cache in assisted generation, only DynamicCache is supported
self.generation_config.cache_implementation = None
def get_candidates(self, input_ids: torch.LongTensor) -> Tuple[torch.LongTensor, Optional[torch.FloatTensor]]:
"""
Fetches the candidates to be tried for the current input.
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
Return:
`torch.LongTensor` of shape `(batch_size, candidate_length)` containing the candidate sequences to be
assessed by the model and a `torch.FloatTensor` of shape `(batch_size, candidate_length,
vocabulary_size)` containing the logits associated to each candidate.
"""
input_ids = input_ids.to(self.assistant_model.device)
# Don't generate more than `max_length - 1` candidates since the target model generates one extra token.
new_cur_len = input_ids.shape[-1]
max_new_tokens = min(int(self.num_assistant_tokens), self.generation_config.max_length - new_cur_len - 1)
min_new_tokens = max(min(max_new_tokens, self.main_model_min_length - new_cur_len), 0)
if max_new_tokens == 0:
return input_ids, None
# 1. If it is not the first round of candidate generation, prepare the inputs based on the input_ids length
# (which implicitly contains the number of accepted candidates from the previous round)
has_past_key_values = self.assistant_kwargs.get("past_key_values", None) is not None
if has_past_key_values:
new_cache_size = new_cur_len - 1
self.assistant_kwargs["past_key_values"] = _crop_past_key_values(
self.assistant_model, self.assistant_kwargs["past_key_values"], new_cache_size - 1
) # the assistant does not have the token after the last match, hence the -1
self.assistant_kwargs = _prepare_attention_mask(
self.assistant_kwargs, new_cur_len, self.assistant_model.config.is_encoder_decoder
)
self.assistant_kwargs = _prepare_token_type_ids(self.assistant_kwargs, new_cur_len)
# 2. Forecast next N tokens using the assistant model.
assistant_generation_kwargs = {
self.input_ids_key: input_ids,
"min_new_tokens": min_new_tokens,
"max_new_tokens": max_new_tokens,
"generation_config": self.generation_config,
"logits_processor": self.logits_processor,
}
assistant_output = self.assistant_model.generate(**assistant_generation_kwargs, **self.assistant_kwargs)
# 3. Update variables for the next round of candidate generation
self.assistant_kwargs["past_key_values"] = assistant_output.past_key_values
# 4. Prepare variables for output
candidate_logits = torch.stack(assistant_output.scores, dim=1)
candidate_ids = assistant_output.sequences
return candidate_ids, candidate_logits
def update_candidate_strategy(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, num_matches: int):
"""
Updates the candidate generation strategy based on the outcomes.
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
scores (`torch.FloatTensor` of shape `(batch_size, candidate_length, config.vocab_size)`):
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using
beam search or log softmax for each vocabulary token when using beam search
num_matches (`int`):
The number of matches between the candidate sequences and the model predictions.
"""
# Adjust the max number of assistant tokens to use in the next iteration. This is a simple heuristic,
# probably can be improved -- we want to balance the benefits of getting assistant tokens correct with the
# cost of forecasting incorrect assistant tokens.
if self.assistant_model.generation_config.num_assistant_tokens_schedule in {
"heuristic",
"heuristic_transient",
}:
if num_matches == int(self.num_assistant_tokens):
self.num_assistant_tokens += 2.0
else:
self.num_assistant_tokens = max(1.0, self.num_assistant_tokens - 1.0)
class PromptLookupCandidateGenerator(CandidateGenerator):
"""
`CandidateGenerator` class to be used for prompt lookup generation. This class generates candidates by looking up
likely continuations in the provided prompt (input_ids) itself.
Read the following blog post for more information: https://github.com/apoorvumang/prompt-lookup-decoding
Args:
max_matching_ngram_size (`int`):
The maximum ngram size to be considered for matching in the prompt
num_output_tokens (`int`):
The number of tokens to be output as candidate tokens.
max_length (`int`):
The number of total maximum tokens that can be generated. For decoder-only models that includes the prompt length.
Defaults to 20, which is the max length used as default in generation config.
"""
def __init__(
self,
eos_token_id: torch.Tensor = None,
num_output_tokens: int = 10,
max_matching_ngram_size: int = None,
max_length: int = 20,
):
self.num_output_tokens = num_output_tokens
self.max_matching_ngram_size = max_matching_ngram_size if max_matching_ngram_size else 2
self.max_length = max_length
self.eos_token_id = eos_token_id
if self.max_matching_ngram_size <= 0 or self.num_output_tokens <= 0:
raise ValueError("Invalid max_matching_ngram_size or num_output_tokens")
def get_candidates(self, input_ids: torch.LongTensor) -> Tuple[torch.LongTensor, Optional[torch.FloatTensor]]:
"""
Fetches the candidates to be tried for the current input.
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
Return:
`torch.LongTensor` of shape `(num_candidates, candidate_length)`: The candidate sequences to be tried.
"""
input_length = input_ids.size(1)
# Don't generate more than `max_length - 1` candidates since the target model generates one extra token.
if self.max_length == input_length + 1:
return input_ids, None
chosen_ids = None
match_found = False
for ngram_size in range(min(self.max_matching_ngram_size, input_length - 1), 0, -1):
# Create sliding windows of size ngram_size
windows = input_ids.unfold(dimension=1, size=ngram_size, step=1)
# Convert ngram to a tensor for comparison
ngram_tensor = input_ids[0, -ngram_size:]
# Find where the windows match the ngram
matches = (windows == ngram_tensor).all(dim=2)
# Get the indices of matches
match_indices = matches.nonzero(as_tuple=True)[1]
# Iterate through match indices to find a valid continuation
for idx in match_indices:
start_idx = idx + ngram_size
end_idx = start_idx + self.num_output_tokens
end_idx = min(end_idx, input_length, self.max_length)
if start_idx < end_idx:
chosen_ids = input_ids[0, start_idx:end_idx]
match_found = True
# remove remaining candidate ids if an "eos" token is found, otherwise the target model may
# accept eos and the rest as valid, thus not stopping generation after "eos"
# NOTE: below code is written based on the fact that assisted decoding supports only bs=1
mask = torch.isin(chosen_ids, self.eos_token_id)
match_indices_eos = torch.nonzero(mask)
if match_indices_eos.numel() > 0:
first_eos_index = match_indices_eos[0].item()
chosen_ids = chosen_ids[:first_eos_index]
break
if match_found:
break
if chosen_ids is None or len(chosen_ids) == 0:
# In case we didn't find a match return the input sequence unchanged, reverts back to autoregressive decoding
return input_ids, None
# Now need extend input_ids with chosen_ids
chosen_ids = chosen_ids.unsqueeze(0)
candidate_input_ids = torch.cat((input_ids, chosen_ids), dim=1)
# assisted_generation expects logits as well, but we don't have those here, so returning None
return candidate_input_ids, None
def update_candidate_strategy(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, num_matches: int):
"""
Updates the candidate generation strategy based on the outcomes.
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. [What are input IDs?](../glossary#input-ids)
scores (`torch.FloatTensor` of shape `(batch_size, candidate_length, config.vocab_size)`):
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using
beam search or log softmax for each vocabulary token when using beam search
num_matches (`int`):
The number of matches between the candidate sequences and the model predictions.
"""
# Currently does nothing
return
def _crop_past_key_values(model, past_key_values, max_length):
"""Crops the past key values up to a certain maximum length."""
new_past = []
if model.config.is_encoder_decoder:
for idx in range(len(past_key_values)):
new_past.append(
(
past_key_values[idx][0][:, :, :max_length, :],
past_key_values[idx][1][:, :, :max_length, :],
past_key_values[idx][2],
past_key_values[idx][3],
)
)
past_key_values = tuple(new_past)
# gptbigcode is special and stores kv in shape (batch_size, seq_len, dim), if it's a multi_query model
elif "gptbigcode" in model.__class__.__name__.lower() or (
model.config.architectures is not None and "gptbigcode" in model.config.architectures[0].lower()
):
if model.config.multi_query:
for idx in range(len(past_key_values)):
past_key_values[idx] = past_key_values[idx][:, :max_length, :]
else:
for idx in range(len(past_key_values)):
past_key_values[idx] = past_key_values[idx][:, :, :max_length, :]
elif isinstance(past_key_values, DynamicCache):
past_key_values.crop(max_length)
elif past_key_values is not None:
for idx in range(len(past_key_values)):
new_past.append(
(
past_key_values[idx][0][:, :, :max_length, :],
past_key_values[idx][1][:, :, :max_length, :],
)
)
past_key_values = tuple(new_past)
return past_key_values
def _prepare_attention_mask(model_kwargs: Dict[str, Any], new_length: int, is_encoder_decoder: bool) -> Dict[str, Any]:
"""Expands or crops the model's mask for decoding purposes, to the defined length"""
mask_key = "decoder_attention_mask" if is_encoder_decoder else "attention_mask"
if mask_key not in model_kwargs:
return model_kwargs
mask = model_kwargs[mask_key]
mask_length_diff = new_length - mask.shape[1]
if mask_length_diff < 0:
model_kwargs[mask_key] = mask[:, :mask_length_diff]
elif mask_length_diff > 0:
model_kwargs[mask_key] = torch.cat([mask, mask.new_ones((mask.shape[0], mask_length_diff))], dim=-1)
return model_kwargs
def _prepare_token_type_ids(model_kwargs: Dict[str, Any], new_length: int) -> Dict[str, Any]:
"""Expands or crops the model's token_type_ids for decoding purposes, to the defined length"""
if "token_type_ids" not in model_kwargs or model_kwargs["token_type_ids"] is None:
return model_kwargs
token_type_ids = model_kwargs["token_type_ids"]
final_token_type = token_type_ids[:, -1].unsqueeze(-1)
type_length_diff = new_length - token_type_ids.shape[1]
if type_length_diff < 0:
token_type_ids = token_type_ids[:, :type_length_diff]
elif type_length_diff > 0:
token_type_copies = final_token_type.repeat(1, type_length_diff)
model_kwargs["token_type_ids"] = torch.cat([model_kwargs["token_type_ids"], token_type_copies], dim=-1)
return model_kwargs
|