File size: 20,933 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""CLVP model configuration"""
import os
from typing import TYPE_CHECKING, Union
if TYPE_CHECKING:
pass
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class ClvpEncoderConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ClvpEncoder`]. It is used to instantiate a CLVP
text or CLVP speech encoder according to the specified arguments. Instantiating a configuration with the defaults
will yield a similar configuration to that of the encoder of the CLVP
[susnato/clvp_dev](https://huggingface.co/susnato/clvp_dev) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 256):
Vocabulary size of the CLVP Encoder model.
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 1536):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
projection_dim (`int`, *optional*, defaults to 768):
Dimensionality of the projection vector.
num_hidden_layers (`int`, *optional*, defaults to 20):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the feed-forward layers in [`ClvpEncoderMLP`].
use_rotary_embedding (`bool`, *optional*, defaults to `True`):
Whether to use rotary_embedding or not.
use_attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use bias in Query, Key and Value layers during self attention.
summary_type (`str`, *optional*, defaults to `"mean"`):
What strategy to use to get pooler_output from the last_hidden_state. `"last"`, `"first"`, `"mean"` and
`"cls_index"` are supported.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
testing).
bos_token_id (`int`, *optional*, defaults to 255):
Beginning of sequence token id.
eos_token_id (`int`, *optional*, defaults to 0):
End of sequence token id.
Example:
```python
>>> from transformers import ClvpEncoderConfig, ClvpEncoder
>>> # Initializing a ClvpEncoderConfig with susnato/clvp_dev style configuration
>>> encoder_configuration = ClvpEncoderConfig()
>>> # Initializing a ClvpEncoder (with random weights) from the susnato/clvp_dev style configuration
>>> model = ClvpEncoder(encoder_configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "clvp_encoder"
def __init__(
self,
vocab_size=256,
hidden_size=768,
intermediate_size=1536,
projection_dim=768,
num_hidden_layers=20,
num_attention_heads=12,
hidden_act="gelu",
layer_norm_eps=1e-5,
attention_dropout=0.1,
dropout=0.1,
use_rotary_embedding=True,
use_attention_bias=False,
summary_type="mean",
initializer_factor=1.0,
bos_token_id=255,
eos_token_id=0,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.initializer_factor = initializer_factor
self.attention_dropout = attention_dropout
self.dropout = dropout
self.use_rotary_embedding = use_rotary_embedding
self.use_attention_bias = use_attention_bias
self.summary_type = summary_type
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
@classmethod
def from_pretrained(
cls, pretrained_model_name_or_path: Union[str, os.PathLike], config_type: str = "text_config", **kwargs
) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# make sure to have the config_type be either "text_config" or "speech_config"
# this is to make sure that we can load only text or speech configs from the nested ClvpConfig.
if config_type not in ["text_config", "speech_config"]:
raise ValueError(
f"We can only load either 'text_config' or 'speech_config' but you are trying to load" f"{config_type}"
)
# get the text config dict if we are loading from ClvpConfig
if config_dict.get("model_type") == "clvp":
config_dict = config_dict[config_type]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class ClvpDecoderConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ClvpDecoder`]. It is used to instantiate a CLVP
Decoder Model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Decoder part of the CLVP
[susnato/clvp_dev](https://huggingface.co/susnato/clvp_dev) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
The architecture is similar to GPT2.
Args:
vocab_size (`int`, *optional*, defaults to 8194):
Vocabulary size of the model.
max_position_embeddings (`int`, *optional*, defaults to 608):
The maximum sequence length of mel tokens that this model might ever be used with. Similar to `n_positions`
in `GPT2Config`.
max_text_tokens (`int`, *optional*, defaults to 404):
The maximum sequence length of text tokens that this model might ever be used with. Similar to
`n_positions` in `GPT2Config`.
hidden_size (`int`, *optional*, defaults to 1024):
Dimensionality of the embeddings and hidden states.
num_hidden_layers (`int`, *optional*, defaults to 30):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
n_inner (`int`, *optional*):
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times `hidden_size`.
num_mel_attn_blocks (`int`, *optional*, defaults to 6):
Denotes the number of self attention layers in [`ClvpConditioningEncoder`].
activation_function (`str`, *optional*, defaults to `"gelu_new"`):
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
resid_pdrop (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
embd_pdrop (`float`, *optional*, defaults to 0.1):
The dropout ratio for the embeddings.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
The epsilon to use in the layer normalization layers.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
summary_type (`string`, *optional*, defaults to `"cls_index"`):
Argument used when doing sequence summary.
Has to be one of the following options:
- `"last"`: Take the last token hidden state (like XLNet).
- `"first"`: Take the first token hidden state (like BERT).
- `"mean"`: Take the mean of all tokens hidden states.
- `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
- `"attn"`: Not implemented now, use multi-head attention.
summary_use_proj (`bool`, *optional*, defaults to `True`):
Whether or not to add a projection after the vector extraction.
summary_activation (`str`, *optional*):
Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
summary_first_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio to be used after the projection and activation.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
bos_token_id (`int`, *optional*, defaults to 8192):
Beginning of sequence token id, used at the start of the generation.
eos_token_id (`int`, *optional*, defaults to 8193):
End of sequence token id, used in the method
[`ClvpModelForConditionalGeneration.fix_speech_decoder_output()`] to correct decoder outputs.
feature_size (`int`, *optional*, defaults to 80):
The feature dimension of the extracted mel features. This value is used in [`ClvpConditioningEncoder`].
use_attention_bias (`bool`, *optional*, defaults to `True`):
Whether to use bias in Query, Key and Value layers during self attention.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
testing).
decoder_fixing_codes (`list`, *optional*, defaults to `[83, 45, 45, 248]`):
These values are used in the method `fix_speech_decoder_output` to fix decoder generated outputs.
Example:
```python
>>> from transformers import ClvpDecoderConfig, ClvpDecoder
>>> # Initializing a ClvpDecoderConfig with susnato/clvp_dev style configuration
>>> decoder_configuration = ClvpDecoderConfig()
>>> # Initializing a ClvpDecoder (with random weights) from the susnato/clvp_dev style configuration
>>> model = ClvpDecoder(decoder_configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "clvp_decoder"
def __init__(
self,
vocab_size=8194,
max_position_embeddings=608,
max_text_tokens=404,
hidden_size=1024,
num_hidden_layers=30,
num_attention_heads=16,
n_inner=None,
num_mel_attn_blocks=6,
activation_function="gelu_new",
resid_pdrop=0.1,
embd_pdrop=0.1,
attention_dropout=0.1,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
summary_type="cls_index",
summary_use_proj=True,
summary_activation=None,
summary_proj_to_labels=True,
summary_first_dropout=0.1,
use_cache=True,
bos_token_id=8192,
eos_token_id=8193,
feature_size=80,
use_attention_bias=True,
initializer_factor=1.0,
decoder_fixing_codes=[83, 45, 45, 248],
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.max_text_tokens = max_text_tokens
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.n_inner = n_inner
self.num_mel_attn_blocks = num_mel_attn_blocks
self.activation_function = activation_function
self.resid_pdrop = resid_pdrop
self.embd_pdrop = embd_pdrop
self.attention_dropout = attention_dropout
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_range = initializer_range
self.summary_type = summary_type
self.summary_use_proj = summary_use_proj
self.summary_activation = summary_activation
self.summary_first_dropout = summary_first_dropout
self.summary_proj_to_labels = summary_proj_to_labels
self.use_cache = use_cache
self.feature_size = feature_size
self.use_attention_bias = use_attention_bias
self.initializer_factor = initializer_factor
self.decoder_fixing_codes = decoder_fixing_codes
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the speech config dict if we are loading from ClvpConfig
if config_dict.get("model_type") == "clvp":
config_dict = config_dict["decoder_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class ClvpConfig(PretrainedConfig):
r"""
[`ClvpConfig`] is the configuration class to store the configuration of a [`ClvpModelForConditionalGeneration`]. It
is used to instantiate a CLVP model according to the specified arguments, defining the text model, speech model and
decoder model configs. Instantiating a configuration with the defaults will yield a similar configuration to that
of the CLVP [susnato/clvp_dev](https://huggingface.co/susnato/clvp_dev) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize the CLVP text encoder.
speech_config (`dict`, *optional*):
Dictionary of configuration options used to initialize CLVP speech encoder.
decoder_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`ClvpDecoderConfig`].
projection_dim (`int`, *optional*, defaults to 768):
Dimensionality of text and speech projection layers.
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
The initial value of the *logit_scale* parameter. Default is used as per the original CLVP implementation.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
testing).
kwargs (*optional*):
Dictionary of keyword arguments.
Example:
```python
>>> from transformers import ClvpConfig, ClvpModelForConditionalGeneration
>>> # Initializing a ClvpConfig with susnato/clvp_dev style configuration
>>> configuration = ClvpConfig()
>>> # Initializing a ClvpModelForConditionalGeneration (with random weights) from the susnato/clvp_dev style configuration
>>> model = ClvpModelForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> # We can also initialize a CLVPConfig from a CLVPTextConfig, CLVPSpeechConfig and a CLVPAutoRegressiveConfig
>>> from transformers import ClvpEncoderConfig, ClvpDecoderConfig
>>> # Initializing a CLVP text, CLVP speech and CLVP decoder configuration
>>> config_text = ClvpEncoderConfig()
>>> config_speech = ClvpEncoderConfig()
>>> decoder_config = ClvpDecoderConfig()
>>> config = ClvpConfig.from_sub_model_configs(config_text, config_speech, decoder_config)
```"""
model_type = "clvp"
is_composition = True
def __init__(
self,
text_config=None,
speech_config=None,
decoder_config=None,
projection_dim=768,
logit_scale_init_value=2.6592,
initializer_factor=1.0,
**kwargs,
):
super().__init__(**kwargs)
if text_config is None:
text_config = {}
logger.info("`text_config` is `None`. Initializing the `ClvpEncoderConfig` with default values.")
if speech_config is None:
speech_config = {}
logger.info("`speech_config` is `None`. initializing the `ClvpEncoderConfig` with default values.")
if decoder_config is None:
decoder_config = {}
logger.info("`decoder_config` is `None`. initializing the `ClvpDecoderConfig` with default values.")
self.text_config = ClvpEncoderConfig(**text_config)
self.speech_config = ClvpEncoderConfig(**speech_config)
self.decoder_config = ClvpDecoderConfig(**decoder_config)
self.projection_dim = projection_dim
self.logit_scale_init_value = logit_scale_init_value
self.initializer_factor = initializer_factor
@classmethod
def from_sub_model_configs(
cls,
text_config: ClvpEncoderConfig,
speech_config: ClvpEncoderConfig,
decoder_config: ClvpDecoderConfig,
**kwargs,
):
r"""
Instantiate a [`ClvpConfig`] (or a derived class) from CLVP text model configuration, CLVP speech model
configuration and CLVP decoder model configuration.
Args:
text_config (`ClvpEncoderConfig`):
Text model configuration of type [`ClvpEncoderConfig`].
speech_config (`ClvpEncoderConfig`):
Speech model configuration of type [`ClvpEncoderConfig`].
decoder_config (`ClvpDecoderConfig`):
Decoder model configuration of type [`ClvpDecoderConfig`].
Returns:
[`ClvpConfig`]: An instance of a configuration object
"""
return cls(
text_config=text_config.to_dict(),
speech_config=speech_config.to_dict(),
decoder_config=decoder_config.to_dict(),
**kwargs,
)
|