File size: 91,213 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
# coding=utf-8
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""PyTorch CLVP model."""

import copy
import math
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss

from ...activations import ACT2FN
from ...generation import GenerationConfig
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
from ...modeling_outputs import (
    BaseModelOutput,
    BaseModelOutputWithPastAndCrossAttentions,
    BaseModelOutputWithPooling,
    CausalLMOutputWithCrossAttentions,
)
from ...modeling_utils import PreTrainedModel, SequenceSummary
from ...pytorch_utils import Conv1D
from ...utils import (
    ModelOutput,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)
from .configuration_clvp import (
    ClvpConfig,
    ClvpDecoderConfig,
    ClvpEncoderConfig,
)


logger = logging.get_logger(__name__)

_CHECKPOINT_FOR_DOC = "susnato/clvp_dev"


# Copied from transformers.models.clip.modeling_clip.contrastive_loss
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
    return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))


# Copied from transformers.models.clip.modeling_clip.clip_loss with clip->clvp, image_loss->speech_loss
def clvp_loss(similarity: torch.Tensor) -> torch.Tensor:
    caption_loss = contrastive_loss(similarity)
    speech_loss = contrastive_loss(similarity.t())
    return (caption_loss + speech_loss) / 2.0


# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(q, k, v, cos, sin, position_ids, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`):
            The position indices of the tokens corresponding to the query and key tensors. For example, this can be
            used to pass offsetted position ids when working with a KV-cache.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    cos = cos[position_ids].unsqueeze(unsqueeze_dim)
    sin = sin[position_ids].unsqueeze(unsqueeze_dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    v_embed = (v * cos) + (rotate_half(v) * sin)
    return q_embed, k_embed, v_embed


def _pad_extra_bos_eos_tokens(
    input_ids,
    attention_mask=None,
    pad_token_id=0,
    bos_token_id=255,
    eos_token_id=0,
    add_bos_token=True,
    add_eos_token=True,
):
    """
    This method adds extra bos and eos tokens to input_ids and accordingly modifies the attention_mask which is used in
    `ClvpConditioningEncoder` and the generation loop of the `ClvpModelForConditionalGeneration`.
    """

    # add the bos token at the beginning
    if add_bos_token:
        input_ids = torch.nn.functional.pad(input_ids, (1, 0), value=bos_token_id)
        attention_mask = (
            torch.nn.functional.pad(attention_mask, (1, 0), value=1) if attention_mask is not None else attention_mask
        )

    modified_input_ids = input_ids
    if add_eos_token:
        modified_input_ids = torch.zeros(
            (input_ids.shape[0], input_ids.shape[1] + 1), dtype=input_ids.dtype, device=input_ids.device
        )
        for i, each_input_id in enumerate(input_ids):
            # locate where the valid tokens end and then add the eos token
            if torch.isin(each_input_id, pad_token_id).sum():
                pos = torch.where(each_input_id == pad_token_id)[0].min()
                modified_input_ids[i] = torch.concatenate(
                    [each_input_id[:pos], torch.tensor([eos_token_id], device=input_ids.device), each_input_id[pos:]]
                )
            else:
                # if there are no pad tokens present, then add eos to the end
                modified_input_ids[i] = torch.nn.functional.pad(each_input_id, (0, 1), value=eos_token_id)
        attention_mask = (
            torch.nn.functional.pad(attention_mask, (1, 0), value=1) if attention_mask is not None else attention_mask
        )

    return modified_input_ids, attention_mask


@dataclass
class ClvpEncoderOutput(ModelOutput):
    """
    Base class for CLVP encoder's outputs that contains a pooling of the last hidden states as well as a projection
    output (a linear layer on top of the pooled output).

    Args:
        embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)`, *optional*, returned when model is initialized with `with_projection=True`):
            The embeddings obtained by applying the projection layer to the pooler_output.
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
            The hidden state of the last layer of the model.
        pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
            Pooled output of the `last_hidden_state`.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of
            the model at the output of each layer plus the optional initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
            the self-attention heads.
    """

    embeds: Optional[torch.FloatTensor] = None
    last_hidden_state: torch.FloatTensor = None
    pooler_output: Optional[torch.FloatTensor] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None


@dataclass
class ClvpOutput(ModelOutput):
    """
    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
            Contrastive loss for speech-text similarity.
        speech_ids (`torch.LongTensor`, *optional*):
            speech_ids (or speech candidates) generated by the `ClvpForCausalLM` model.
        logits_per_speech (`torch.FloatTensor` of shape `(speech_batch_size, text_batch_size)`):
            The scaled dot product scores between `speech_embeds` and `text_embeds`. This represents the speech-text
            similarity scores.
        logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, speech_batch_size)`):
            The scaled dot product scores between `text_embeds` and `speech_embeds`. This represents the text-speech
            similarity scores.
        text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
            The text embeddings obtained by applying the projection layer to the pooled output of the text encoder
            model.
        speech_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
            The speech embeddings obtained by applying the projection layer to the pooled output of the speech encoder
            model.
        text_model_output (`BaseModelOutputWithPooling`):
            The pooled output of the `last_hidden_state` of the text encoder Model.
        speech_model_output (`BaseModelOutputWithPooling`):
            The pooled output of the `last_hidden_state` of the speech encoder Model.
        decoder_hidden_states (`torch.FloatTensor`, *optional*):
            The hidden states of the decoder model.
        text_encoder_hidden_states (`torch.FloatTensor`, *optional*):
            The hidden states of the text encoder model.
        speech_encoder_hidden_states (`torch.FloatTensor`, *optional*):
            The hidden states of the speech encoder model.
    """

    loss: Optional[torch.FloatTensor] = None
    speech_ids: Optional[torch.LongTensor] = None
    logits_per_speech: torch.FloatTensor = None
    logits_per_text: torch.FloatTensor = None
    text_embeds: torch.FloatTensor = None
    speech_embeds: torch.FloatTensor = None
    text_model_output: BaseModelOutputWithPooling = None
    speech_model_output: BaseModelOutputWithPooling = None
    decoder_hidden_states: torch.FloatTensor = None
    text_encoder_hidden_states: torch.FloatTensor = None
    speech_encoder_hidden_states: torch.FloatTensor = None


# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Clvp
class ClvpRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        ClvpRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)

    def extra_repr(self):
        return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"


class ClvpRotaryPositionalEmbedding(nn.Module):
    """
    Rotary Position Embedding Class for CLVP. It was proposed in the paper 'ROFORMER: ENHANCED TRANSFORMER WITH ROTARY
    POSITION EMBEDDING', Please see https://arxiv.org/pdf/2104.09864v1.pdf .
    """

    def __init__(self, config):
        super().__init__()
        dim = max(config.projection_dim // (config.num_attention_heads * 2), 32)
        inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim))

        self.register_buffer("inv_freq", inv_freq)
        self.cached_sequence_length = None
        self.cached_rotary_positional_embedding = None

    def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
        sequence_length = hidden_states.shape[1]

        if sequence_length == self.cached_sequence_length and self.cached_rotary_positional_embedding is not None:
            return self.cached_rotary_positional_embedding

        self.cached_sequence_length = sequence_length
        time_stamps = torch.arange(sequence_length, device=hidden_states.device).type_as(self.inv_freq)
        freqs = torch.einsum("i,j->ij", time_stamps, self.inv_freq)
        embeddings = torch.cat((freqs, freqs), dim=-1)

        self.cached_rotary_positional_embedding = embeddings.unsqueeze(0)
        return self.cached_rotary_positional_embedding


class ClvpSelfAttention(nn.Module):
    """
    Multi-headed attention to combine Absolute and Rotary Positional Embeddings into a single Attention module.
    """

    def __init__(self, config):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_heads
        if self.head_dim * self.num_heads != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
                f" {self.num_heads})."
            )
        self.scale = self.head_dim**-0.5
        self.dropout = config.attention_dropout

        if hasattr(config, "max_position_embeddings"):
            max_positions = config.max_position_embeddings
            bias = torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool))
            bias = bias.view(1, 1, max_positions, max_positions)
            self.register_buffer("bias", bias, persistent=False)

        self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_attention_bias)
        self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_attention_bias)
        self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_attention_bias)
        self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)

    # Copied from transformers.models.clip.modeling_clip.CLIPAttention._shape
    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        rotary_pos_emb: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        use_cache: Optional[bool] = False,
        head_mask: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
        # Raise error when position_ids is None but rotary_pos_emb is provided, because we need that when applying
        # rotary_pos_emb to query and key states.
        if rotary_pos_emb is not None and position_ids is None:
            raise ValueError("`position_ids` must be provided when `rotary_pos_emb` is not None.")

        bsz, _, embed_dim = hidden_states.size()

        # get query proj
        query_states = self._shape(self.q_proj(hidden_states), -1, bsz) * self.scale
        key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
        value_states = self._shape(self.v_proj(hidden_states), -1, bsz)

        if past_key_value is not None:
            past_key, past_value = past_key_value
            key_states = torch.cat((past_key, key_states), dim=-2)
            value_states = torch.cat((past_value, value_states), dim=-2)

        if use_cache is True:
            present = (key_states, value_states)
        else:
            present = None

        if rotary_pos_emb is not None:
            rotary_emb_dim = rotary_pos_emb.shape[-1]

            # Partial rotary embedding
            query_rot, query_pass = (
                query_states[..., :rotary_emb_dim],
                query_states[..., rotary_emb_dim:],
            )
            key_rot, key_pass = (
                key_states[..., :rotary_emb_dim],
                key_states[..., rotary_emb_dim:],
            )
            value_rot, value_pass = (
                value_states[..., :rotary_emb_dim],
                value_states[..., rotary_emb_dim:],
            )

            cos, sin = rotary_pos_emb.cos().squeeze(0), rotary_pos_emb.sin().squeeze(0)
            query_rot, key_rot, value_rot = apply_rotary_pos_emb(query_rot, key_rot, value_rot, cos, sin, position_ids)

            # [batch_size, num_heads, seq_length, head_dim]
            query_states = torch.cat((query_rot, query_pass), dim=-1)
            key_states = torch.cat((key_rot, key_pass), dim=-1)
            value_states = torch.cat((value_rot, value_pass), dim=-1)

        tgt_len = query_states.shape[2]
        src_len = key_states.shape[2]
        attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))

        if attention_mask is not None:
            if attention_mask.size() != (bsz, 1, tgt_len, src_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
                )
            attn_weights = attn_weights + attention_mask

        attn_weights = nn.functional.softmax(attn_weights, dim=-1)

        # Mask heads if we want to
        if head_mask is not None:
            attn_weights = attn_weights * head_mask

        attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
        attn_output = torch.matmul(attn_probs, value_states)

        if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = attn_output.transpose(1, 2).contiguous()
        attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)

        attn_output = self.out_proj(attn_output)

        if not output_attentions:
            attn_weights = None

        return attn_output, present, attn_weights


class ClvpGatedLinearUnit(nn.Module):
    """
    `ClvpGatedLinearUnit` uses the second half of the `hidden_states` to act as a gate for the first half of the
    `hidden_states` which controls the flow of data from the first of the tensor.
    """

    def __init__(self, config):
        super().__init__()
        self.activation_fn = ACT2FN[config.hidden_act]
        self.proj = nn.Linear(config.hidden_size, config.intermediate_size * 2)

    def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
        hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
        return hidden_states * self.activation_fn(gate)


class ClvpEncoderMLP(nn.Module):
    """
    This MLP is used in CLVP speech or text encoder models.
    """

    def __init__(self, config):
        super().__init__()
        self.config = config

        self.fc1 = ClvpGatedLinearUnit(config)
        self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
        self.dropout_layer = nn.Dropout(config.dropout)

    def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
        hidden_states = self.fc1(hidden_states)
        hidden_states = self.dropout_layer(hidden_states)
        hidden_states = self.fc2(hidden_states)
        return hidden_states


class ClvpEncoderLayer(nn.Module):
    def __init__(self, config: ClvpConfig):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.self_attn = ClvpSelfAttention(config)
        self.mlp = ClvpEncoderMLP(config)

        self.input_rmsnorm = ClvpRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
        self.post_attention_rmsnorm = ClvpRMSNorm(self.embed_dim, eps=config.layer_norm_eps)

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        rotary_pos_emb: torch.FloatTensor,
        attention_mask: torch.LongTensor,
        position_ids: torch.LongTensor,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.FloatTensor]:
        """
        Args:
            hidden_states (`torch.FloatTensor` of shape `(batch, seq_len, embed_dim)`):
                input to the layer.
            rotary_pos_emb (`torch.FloatTensor`):
                rotary position embeddings generated by `ClvpRotaryPositionalEmbedding` module.
            attention_mask (`torch.FloatTensor` of shape `(batch, 1, tgt_len, src_len)`):
                attention mask where padding elements are indicated by very large negative values.
            position_ids (`torch.LongTensor`):
                Denotes position ids of the input tokens.
            output_attentions (`bool`, *optional*, defaults to `False`):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
        """
        residual = hidden_states

        hidden_states = self.input_rmsnorm(hidden_states)

        attention_outputs = self.self_attn(
            hidden_states=hidden_states,
            rotary_pos_emb=rotary_pos_emb,
            attention_mask=attention_mask,
            position_ids=position_ids,
            output_attentions=output_attentions,
        )

        hidden_states = attention_outputs[0]

        hidden_states = residual + hidden_states

        residual = hidden_states
        hidden_states = self.post_attention_rmsnorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attention_outputs[-1],)

        return outputs


# Copied from transformers.models.gpt2.modeling_gpt2.GPT2MLP with GPT2->ClvpDecoderMLP
class ClvpDecoderMLP(nn.Module):
    def __init__(self, intermediate_size, config):
        super().__init__()
        embed_dim = config.hidden_size
        self.c_fc = Conv1D(intermediate_size, embed_dim)
        self.c_proj = Conv1D(embed_dim, intermediate_size)
        self.act = ACT2FN[config.activation_function]
        self.dropout = nn.Dropout(config.resid_pdrop)

    def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
        hidden_states = self.c_fc(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states = self.c_proj(hidden_states)
        hidden_states = self.dropout(hidden_states)
        return hidden_states


class ClvpDecoderLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        hidden_size = config.hidden_size
        inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size

        self.input_layernorm = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
        self.attn = ClvpSelfAttention(config)
        self.post_attention_layernorm = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)

        self.mlp = ClvpDecoderMLP(inner_dim, config)

    def forward(
        self,
        hidden_states: Optional[Tuple[torch.FloatTensor]],
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        attention_mask: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = False,
    ) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
        attn_outputs = self.attn(
            hidden_states,
            past_key_value=past_key_value,
            attention_mask=attention_mask,
            position_ids=position_ids,
            head_mask=head_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
        )
        attn_output = attn_outputs[0]
        outputs = attn_outputs[1:]
        # residual connection
        hidden_states = attn_output + residual

        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        feed_forward_hidden_states = self.mlp(hidden_states)
        # residual connection
        hidden_states = residual + feed_forward_hidden_states

        if use_cache:
            outputs = (hidden_states,) + outputs
        else:
            outputs = (hidden_states,) + outputs[1:]

        return outputs


class ClvpConditioningEncoder(nn.Module):
    """
    This class processes the log-mel spectrograms(extracted by the Feature Extractor) and text tokens(produced by the
    tokenizer) as inputs for the decoder model.

    First each log-mel spectrogram is processed into a single vector which captures valuable characteristics from each
    of them, then the text tokens are converted into token embeddings and position embeddings are added afterwards.
    Both of these vectors are concatenated and then passed to the decoder model.

    The text tokens helps to incorporate the "text information" and the log-mel spectrogram is used to specify the
    "voice characteristics" into the generated mel tokens.
    """

    def __init__(self, config: ClvpConfig):
        super().__init__()

        self.text_config = config.text_config
        self.decoder_config = config.decoder_config

        self.text_token_embedding = nn.Embedding(self.text_config.vocab_size, self.decoder_config.hidden_size)
        self.text_position_embedding = nn.Embedding(
            self.decoder_config.max_text_tokens, self.decoder_config.hidden_size
        )

        self.mel_conv = nn.Conv1d(self.decoder_config.feature_size, self.decoder_config.hidden_size, kernel_size=1)

        # define group norms to be used before each attention layer
        num_groups = self.compute_groupnorm_groups(self.decoder_config.hidden_size)
        self.group_norms = nn.ModuleList(
            [
                nn.GroupNorm(num_groups, self.decoder_config.hidden_size, eps=1e-5, affine=True)
                for _ in range(self.decoder_config.num_mel_attn_blocks)
            ]
        )

        # define the attention layers
        self.mel_attn_blocks = nn.ModuleList(
            [ClvpSelfAttention(self.decoder_config) for _ in range(self.decoder_config.num_mel_attn_blocks)]
        )

        self.gradient_checkpointing = False

    def compute_groupnorm_groups(self, channels: int, groups: int = 32):
        """
        Calculates the value of `num_groups` for nn.GroupNorm. This logic is taken from the official tortoise
        repository. link :
        https://github.com/neonbjb/tortoise-tts/blob/4003544b6ff4b68c09856e04d3eff9da26d023c2/tortoise/models/arch_util.py#L26
        """
        if channels <= 16:
            groups = 8
        elif channels <= 64:
            groups = 16
        while channels % groups != 0:
            groups = int(groups / 2)

        if groups <= 2:
            raise ValueError(
                f"Number of groups for the GroupNorm must be greater than 2, but it is {groups}."
                f"Please consider using a different `hidden_size`"
            )

        return groups

    def forward(
        self,
        input_features: torch.FloatTensor,
        input_ids: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.LongTensor] = None,
    ):
        # process text
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            batch_size, seq_length = input_ids.size()
        elif inputs_embeds is not None:
            batch_size, seq_length = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        # construct attention mask if not given
        if attention_mask is None:
            attention_mask = torch.ones([batch_size, seq_length], dtype=torch.long, device=input_ids.device)

        # We add bos and eos input_ids in the modeling file instead of the tokenizer file to keep the logic simple
        # This logic is specific to ClvpConditioningEncoder and not used by other modules.
        input_ids, attention_mask = _pad_extra_bos_eos_tokens(
            input_ids,
            attention_mask,
            bos_token_id=self.text_config.bos_token_id,
            eos_token_id=self.text_config.eos_token_id,
        )

        inputs_embeds = self.text_token_embedding(input_ids)
        position_ids = attention_mask.cumsum(-1) - 1
        position_embeds = self.text_position_embedding(position_ids)
        text_embeds = inputs_embeds + position_embeds

        if self.gradient_checkpointing and self.training:
            # process each log-mel spectrogram into a single vector
            mel_spec = torch.utils.checkpoint.checkpoint(self.mel_conv, input_features)

            for i, mel_attn_block in enumerate(self.mel_attn_blocks):
                residual_mel_spec = mel_spec.transpose(1, 2)

                mel_spec = torch.utils.checkpoint.checkpoint(self.group_norms[i], mel_spec).transpose(1, 2)
                mel_spec = torch.utils.checkpoint.checkpoint(mel_attn_block, mel_spec)[0] + residual_mel_spec
                mel_spec = mel_spec.transpose(1, 2)

        else:
            # process each log-mel spectrogram into a single vector
            mel_spec = self.mel_conv(input_features)

            for i, mel_attn_block in enumerate(self.mel_attn_blocks):
                residual_mel_spec = mel_spec.transpose(1, 2)

                mel_spec = self.group_norms[i](mel_spec).transpose(1, 2)
                mel_spec = mel_attn_block(mel_spec)[0] + residual_mel_spec
                mel_spec = mel_spec.transpose(1, 2)

        mel_spec = mel_spec[:, :, 0]
        mel_spec = mel_spec.unsqueeze(1)

        # repeat if there is either (1 text vs N audios) or (N texts vs 1 audio)
        if text_embeds.shape[0] == 1 and mel_spec.shape[0] != 1:
            text_embeds = text_embeds.repeat(mel_spec.shape[0], 1, 1)
        elif text_embeds.shape[0] != 1 and mel_spec.shape[0] == 1:
            mel_spec = mel_spec.repeat(text_embeds.shape[0], 1, 1)
        # If there is N texts and M audios we will raise error since the number of text and audio must be same.
        elif text_embeds.shape[0] != mel_spec.shape[0]:
            raise ValueError(
                f"The number of texts and number of audios must be same. "
                f"Found {text_embeds.shape[0]} texts vs {mel_spec.shape[0]} audios"
            )

        return torch.concat([mel_spec, text_embeds], dim=1)


class ClvpPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = ClvpConfig
    base_model_prefix = "clvp"
    supports_gradient_checkpointing = True
    _skip_keys_device_placement = "past_key_values"

    def _init_weights(self, module):
        """Initialize the weights"""
        factor = self.config.initializer_factor
        if isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=factor * 0.02)
        elif isinstance(module, (nn.Linear, Conv1D, nn.Conv1d)):
            module.weight.data.normal_(mean=0.0, std=factor * 0.02)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, ClvpEncoderMLP):
            factor = self.config.initializer_factor
            in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
            fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
            nn.init.normal_(module.fc1.proj.weight if getattr(module.fc1, "proj") else module.fc1.weight, std=fc_std)
            nn.init.normal_(module.fc2.weight, std=in_proj_std)
        elif isinstance(module, ClvpEncoder):
            config = self.config.text_config if hasattr(self.config, "text_config") else self.config
            factor = config.initializer_factor
            module.projection.weight.data.normal_(mean=0.0, std=factor * (config.hidden_size**-0.5))
        elif isinstance(module, ClvpConditioningEncoder):
            module.mel_conv.weight.data.normal_(mean=0.0, std=factor)
            module.mel_conv.bias.data.zero_()
        elif isinstance(module, ClvpForCausalLM):
            for name, p in module.named_parameters():
                if name == "c_proj.weight":
                    p.data.normal_(
                        mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.num_hidden_layers))
                    )
        if isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


CLVP_START_DOCSTRING = r"""
    This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
    and behavior.

    Parameters:
        config ([`ClvpConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""


CLVP_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, time_dim)`):
            Indicates log mel-spectrogram representations for audio returned by [`ClvpFeatureExtractor`].
        conditioning_encoder_inputs_embeds (`torch.FloatTensor`, *optional*):
            inputs_embeds for `ClvpConditioningEncoder`. Can be used in place of `input_ids`.
        text_encoder_inputs_embeds (`torch.FloatTensor`, *optional*):
            inputs_embeds for the text encoder model passed in place of `input_ids`.
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding text token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        return_loss (`bool`, *optional*):
            Whether or not to return the contrastive loss.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


CLVP_DECODER_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
            Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
            `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
            their past given to this model should not be passed as `input_ids` as they have already been computed.
        attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for
            `past_key_values`. In other words, the `attention_mask` always has to have the length:
            `len(past_key_values) + len(input_ids)`

            [What are attention masks?](../glossary#attention-mask)
        token_type_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
            Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
            1]`:

            - 0 corresponds to a *sentence A* token,
            - 1 corresponds to a *sentence B* token.

            [What are token type IDs?](../glossary#token-type-ids)
        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.max_position_embeddings - 1]`.

            [What are position IDs?](../glossary#position-ids)
        head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
            Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
            is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
            model's internal embedding lookup matrix.

            If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
            `past_key_values`).
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


class ClvpEncoder(ClvpPreTrainedModel):
    """
    Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
    [`ClvpEncoderLayer`].

    Args:
        config: ClvpConfig
    """

    def __init__(self, config: ClvpConfig):
        super().__init__(config)

        self.config = config
        self.token_embedding = nn.Embedding(config.vocab_size, config.hidden_size)
        self.rotary_pos_emb = ClvpRotaryPositionalEmbedding(config) if config.use_rotary_embedding else None
        self.layers = nn.ModuleList([ClvpEncoderLayer(config) for _ in range(config.num_hidden_layers)])

        self.sequence_summary = SequenceSummary(config)
        self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

        self.projection = nn.Linear(config.hidden_size, config.projection_dim, bias=False)

        self.gradient_checkpointing = False

        self.post_init()

    def get_input_embeddings(self):
        return self.token_embedding

    def set_input_embeddings(self, value):
        self.token_embedding = value

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutput]:
        r"""
        Args:
            input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
                Indices of input sequence tokens in the vocabulary.

                Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
                [`PreTrainedTokenizer.__call__`] for details.

                [What are input IDs?](../glossary#input-ids)
            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
                input embeddings for the model. This bypasses the model's internal embedding lookup matrix.
            attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            position_ids (`torch.LongTensor`, *optional*):
                Denotes the position ids of `input_ids`.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
            inputs_embeds = self.token_embedding(input_ids)
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        # expand attention_mask and create position_ids if needed
        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)

        if position_ids is None:
            device = input_ids.device if input_ids is not None else inputs_embeds.device
            position_ids = torch.arange(input_shape[1], dtype=torch.long, device=device)
            position_ids = position_ids.unsqueeze(0)

        encoder_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None

        rotary_pos_emb = self.rotary_pos_emb(inputs_embeds) if self.rotary_pos_emb is not None else None

        hidden_states = inputs_embeds
        for idx, encoder_layer in enumerate(self.layers):
            if output_hidden_states:
                encoder_states = encoder_states + (hidden_states,)
            if self.gradient_checkpointing and self.training:
                layer_outputs = torch.utils.checkpoint.checkpoint(
                    encoder_layer.__call__,
                    hidden_states,
                    rotary_pos_emb,
                    attention_mask,
                    position_ids,
                )
            else:
                layer_outputs = encoder_layer(
                    hidden_states,
                    rotary_pos_emb,
                    attention_mask,
                    position_ids,
                    output_attentions=output_attentions,
                )

            hidden_states = layer_outputs[0]

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        if output_hidden_states:
            encoder_states = encoder_states + (hidden_states,)

        last_hidden_state = hidden_states
        last_hidden_state = self.final_layer_norm(last_hidden_state)

        # take the mean over axis 1 and get pooled output
        pooled_output = self.sequence_summary(last_hidden_state)

        # apply the projection layer
        embeds = self.projection(pooled_output)

        if not return_dict:
            return tuple(
                v for v in [embeds, last_hidden_state, pooled_output, encoder_states, all_attentions] if v is not None
            )

        return ClvpEncoderOutput(
            embeds=embeds,
            last_hidden_state=last_hidden_state,
            pooler_output=pooled_output,
            hidden_states=encoder_states,
            attentions=all_attentions,
        )


class ClvpDecoder(ClvpPreTrainedModel):
    """
    Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`ClvpDecoderLayer`]
    """

    def __init__(self, config):
        super().__init__(config)

        self.config = config

        self.input_embeds_layer = nn.Embedding(self.config.vocab_size, self.config.hidden_size)
        self.position_embeds_layer = nn.Embedding(self.config.max_position_embeddings, self.config.hidden_size)

        self.drop = nn.Dropout(self.config.embd_pdrop)
        self.layers = nn.ModuleList([ClvpDecoderLayer(self.config) for _ in range(self.config.num_hidden_layers)])
        self.layer_norm = nn.LayerNorm(self.config.hidden_size, eps=self.config.layer_norm_epsilon)

        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.input_embeds_layer

    def set_input_embeddings(self, new_embeddings):
        self.input_embeds_layer = new_embeddings

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.layers[layer].attn.prune_heads(heads)

    @add_start_docstrings_to_model_forward(CLVP_DECODER_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
            input_ids.shape[0]
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
            inputs_embeds.shape[0]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, input_shape[-1])

        if past_key_values is None:
            past_key_values_length = 0
            past_key_values = tuple([None] * len(self.layers))
        else:
            past_key_values_length = past_key_values[0][0].size(-2)
        if position_ids is None:
            position_ids = torch.arange(
                past_key_values_length, input_shape[-1] + past_key_values_length, dtype=torch.long, device=device
            )
            position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])

        if inputs_embeds is None:
            inputs_embeds = self.input_embeds_layer(input_ids)
        position_embeds = self.position_embeds_layer(position_ids)
        inputs_embeds = inputs_embeds + position_embeds

        attention_mask = _prepare_4d_causal_attention_mask(
            attention_mask, input_shape, inputs_embeds, past_key_values_length
        )

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x num_attention_heads x N x N
        # head_mask has shape num_hidden_layers x batch x num_attention_heads x N x N
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

        hidden_states = inputs_embeds

        if token_type_ids is not None:
            token_type_embeds = self.input_embeds_layer(token_type_ids)
            hidden_states = hidden_states + token_type_embeds

        hidden_states = self.drop(hidden_states)

        output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        presents = () if use_cache else None
        all_self_attentions = () if output_attentions else None
        all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
        all_hidden_states = () if output_hidden_states else None
        for i, (block, past_key_value) in enumerate(zip(self.layers, past_key_values)):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            if self.gradient_checkpointing and self.training:
                outputs = torch.utils.checkpoint.checkpoint(
                    block.__call__,
                    hidden_states,
                    None,
                    attention_mask,
                    position_ids,
                    head_mask[i],
                )
            else:
                outputs = block(
                    hidden_states,
                    past_key_value=past_key_value,
                    attention_mask=attention_mask,
                    position_ids=position_ids,
                    head_mask=head_mask[i],
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                )

            hidden_states = outputs[0]
            if use_cache is True:
                presents = presents + (outputs[1],)

            if output_attentions:
                all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
                if self.config.add_cross_attention:
                    all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)

        hidden_states = self.layer_norm(hidden_states)

        hidden_states = hidden_states.view(output_shape)

        # Add last hidden state
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
                if v is not None
            )

        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=presents,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions,
            cross_attentions=all_cross_attentions,
        )


@add_start_docstrings(
    "The bare Clvp decoder model outputting raw hidden-states without any specific head on top.",
    CLVP_START_DOCSTRING,
)
class ClvpModel(ClvpPreTrainedModel):
    def __init__(self, config: ClvpDecoderConfig):
        super().__init__(config)
        self.config = config
        self.decoder = ClvpDecoder(self.config)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.decoder.input_embeds_layer

    def set_input_embeddings(self, value):
        self.decoder.input_embeds_layer = value

    def get_decoder(self):
        return self.decoder

    @add_start_docstrings_to_model_forward(CLVP_DECODER_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
        decoder_outputs = self.decoder(
            input_ids=input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        if not return_dict:
            return decoder_outputs

        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=decoder_outputs.last_hidden_state,
            past_key_values=decoder_outputs.past_key_values,
            hidden_states=decoder_outputs.hidden_states,
            attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
        )


@add_start_docstrings(
    "The CLVP decoder model with a language modelling head on top.",
    CLVP_START_DOCSTRING,
)
class ClvpForCausalLM(ClvpPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)

        self.config = config
        self.model = ClvpModel(self.config)

        self.final_norm = nn.LayerNorm(self.config.hidden_size)
        self.lm_head = nn.Linear(self.config.hidden_size, self.config.vocab_size, bias=True)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.decoder.input_embeds_layer

    def set_input_embeddings(self, new_embeddings):
        self.model.decoder.input_embeds_layer = new_embeddings

    def _prepare_model_inputs(
        self,
        inputs: Optional[torch.Tensor] = None,
        bos_token_id: Optional[int] = None,
        model_kwargs: Optional[Dict[str, torch.Tensor]] = None,
    ) -> Tuple[torch.Tensor, Optional[str], Dict[str, torch.Tensor]]:
        """
        This function extracts the model-specific `inputs` for generation.
        """
        input_name = self.main_input_name

        model_kwargs = {k: v for k, v in model_kwargs.items() if v is not None}

        inputs_kwarg = model_kwargs.pop(input_name, None)
        if inputs_kwarg is not None and inputs is not None:
            raise ValueError(
                f"`inputs`: {inputs}` were passed alongside {input_name} which is not allowed."
                f"Make sure to either pass {inputs} or {input_name}=..."
            )
        elif inputs_kwarg is not None:
            inputs = inputs_kwarg

        if input_name == "input_ids" and "inputs_embeds" in model_kwargs:
            model_kwargs["input_ids"] = self._maybe_initialize_input_ids_for_generation(
                inputs, bos_token_id, model_kwargs=model_kwargs
            )
            inputs, input_name = model_kwargs["inputs_embeds"], "inputs_embeds"

        # Check if conditioning_embeds are provided or not, if yes then concatenate the bos_token_id at the end of the conditioning_embeds.
        # Then we must subtract the positional_ids because during the forward pass it will be added anyways, so we must cancel them out here.
        conditioning_embeds = model_kwargs.get("conditioning_embeds", None)

        if conditioning_embeds is not None:
            mel_start_token_embedding = self.model.decoder.input_embeds_layer(
                torch.full(
                    (conditioning_embeds.shape[0], 1),
                    fill_value=self.config.bos_token_id,
                    device=conditioning_embeds.device,
                )
            )
            mel_start_token_embedding += self.model.decoder.position_embeds_layer(
                torch.full((conditioning_embeds.shape[0], 1), fill_value=0, device=conditioning_embeds.device)
            )
            conditioning_embeds = torch.concat([conditioning_embeds, mel_start_token_embedding], dim=1)

            # subtract the positional_ids here
            if hasattr(model_kwargs, "attention_mask"):
                position_ids = model_kwargs["attention_mask"].long().cumsum(-1) - 1
            else:
                position_ids = torch.range(
                    0, conditioning_embeds.shape[1] - 1, dtype=torch.long, device=conditioning_embeds.device
                )
            position_ids = position_ids.unsqueeze(0).repeat(conditioning_embeds.shape[0], 1)

            model_kwargs["inputs_embeds"] = conditioning_embeds - self.model.decoder.position_embeds_layer(
                position_ids
            )
            model_kwargs["input_ids"] = (
                torch.ones((model_kwargs["inputs_embeds"].shape[0], 1), dtype=torch.long, device=self.device)
                * self.config.bos_token_id
            )

            return model_kwargs["inputs_embeds"], "inputs_embeds", model_kwargs

        inputs = self._maybe_initialize_input_ids_for_generation(inputs, bos_token_id, model_kwargs)
        return inputs, input_name, model_kwargs

    def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, inputs_embeds=None, conditioning_embeds=None, **kwargs
    ):
        input_ids_length = input_ids.shape[-1]
        token_type_ids = kwargs.get("token_type_ids", None)
        # only last token for inputs_ids if past is defined in kwargs
        if past_key_values:
            past_length = past_key_values[0][0].shape[2]

            # Some generation methods already pass only the last input ID
            if input_ids.shape[1] > past_length:
                remove_prefix_length = past_length
            else:
                # Default to old behavior: keep only final ID
                remove_prefix_length = input_ids.shape[1] - 1

            input_ids = input_ids[:, remove_prefix_length:]
            if token_type_ids is not None:
                token_type_ids = token_type_ids[:, -input_ids.shape[1] :]

        attention_mask = kwargs.get("attention_mask", None)
        position_ids = kwargs.get("position_ids", None)

        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -1].unsqueeze(-1)
        else:
            position_ids = None

        if conditioning_embeds is not None and past_key_values is not None:
            position_ids = torch.tensor([input_ids_length], dtype=torch.long, device=input_ids.device)

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "position_ids": position_ids,
                "token_type_ids": token_type_ids,
            }
        )
        return model_inputs

    @add_start_docstrings_to_model_forward(CLVP_DECODER_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
            `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
            are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
        """

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.model(
            input_ids=input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]

        lm_logits = self.final_norm(hidden_states)
        lm_logits = self.lm_head(lm_logits)

        loss = None
        if labels is not None:
            labels = labels.to(lm_logits.device)
            # Shift so that tokens < n predict n
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))

        if not return_dict:
            output = (lm_logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutputWithCrossAttentions(
            loss=loss,
            logits=lm_logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            cross_attentions=outputs.cross_attentions,
        )

    @staticmethod
    # Copied from transformers.models.gpt2.modeling_gpt2.GPT2LMHeadModel._reorder_cache
    def _reorder_cache(
        past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
    ) -> Tuple[Tuple[torch.Tensor]]:
        """
        This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
        [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
        beam_idx at every generation step.
        """
        return tuple(
            tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
            for layer_past in past_key_values
        )


@add_start_docstrings(
    "The composite CLVP model with a text encoder, speech encoder and speech decoder model."
    "The speech decoder model generates the speech_ids from the text and the text encoder and speech encoder works"
    "together to filter out the best speech_ids.",
    CLVP_START_DOCSTRING,
)
class ClvpModelForConditionalGeneration(ClvpPreTrainedModel):
    config_class = ClvpConfig

    def __init__(self, config: ClvpConfig):
        super().__init__(config)

        if not isinstance(config.text_config, ClvpEncoderConfig):
            raise TypeError(
                "config.text_config is expected to be of type `ClvpEncoderConfig` but is of type"
                f" {type(config.text_config)}."
            )

        if not isinstance(config.speech_config, ClvpEncoderConfig):
            raise TypeError(
                "config.speech_config is expected to be of type `ClvpEncoderConfig` but is of type"
                f" {type(config.speech_config)}."
            )

        if not isinstance(config.decoder_config, ClvpDecoderConfig):
            raise TypeError(
                "config.decoder_config is expected to be of type `ClvpDecoderConfig` but is of type"
                f" {type(config.decoder_config)}."
            )

        self.conditioning_encoder = ClvpConditioningEncoder(config)

        self.speech_decoder_model = ClvpForCausalLM(config.decoder_config)

        self.text_encoder_model = ClvpEncoder(config.text_config)
        self.speech_encoder_model = ClvpEncoder(config.speech_config)

        self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))

        # Initialize weights and apply final processing
        self.post_init()

    # taken from the original repo,
    # link : https://github.com/neonbjb/tortoise-tts/blob/4003544b6ff4b68c09856e04d3eff9da26d023c2/tortoise/api.py#L117
    def fix_speech_decoder_output(self, speech_ids: torch.LongTensor) -> torch.LongTensor:
        """
        This method modifies the output of the decoder model, such as replacing the `eos_token_id` and changing the
        last few tokens of each sequence.

        Args:
            speech_ids (`torch.LongTensor`):
                This refers to the output of the decoder model.
        """
        decoder_fixing_codes = self.config.decoder_config.decoder_fixing_codes
        speech_ids = speech_ids[:, 1:]

        stop_token_indices = torch.where(speech_ids == self.speech_decoder_model.config.eos_token_id, 1, 0)
        speech_ids = torch.masked_fill(speech_ids, mask=stop_token_indices.bool(), value=decoder_fixing_codes[0])

        for i, each_seq_stop_token_index in enumerate(stop_token_indices):
            # This means that no stop tokens were found so the sentence was still being generated, in that case we don't need
            # to apply any padding so just skip to the next sequence of tokens.
            if each_seq_stop_token_index.sum() == 0:
                continue

            stm = each_seq_stop_token_index.argmax()
            speech_ids[i, stm:] = decoder_fixing_codes[0]
            if stm - 3 < speech_ids.shape[1]:
                speech_ids[i, -3:] = torch.tensor(
                    [decoder_fixing_codes[1:]], device=speech_ids.device, dtype=torch.long
                )

        return speech_ids

    def get_text_features(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        text_encoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.LongTensor] = None,
    ) -> torch.FloatTensor:
        r"""
        This method can be used to extract text_embeds from a text. The text embeddings obtained by applying the
        projection layer to the pooled output of the CLVP text encoder model.

        Args:
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
                Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
                provide it.

                [What are input IDs?](../glossary#input-ids)
            text_encoder_inputs_embeds (`torch.FloatTensor`, *optional*):
                inputs_embeds for the text encoder model passed in place of `input_ids`.
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)

        Returns:
            `torch.FloatTensor` of shape `(batch_size, output_dim)`:
                The text embeddings obtained by applying the projection layer to the pooled output of the CLVP Text
                Model.

        Examples:

        ```python
        >>> from transformers import ClvpProcessor, ClvpModelForConditionalGeneration

        >>> # Define the Text
        >>> text = "This is an example text."

        >>> # Define processor and model
        >>> processor = ClvpProcessor.from_pretrained("susnato/clvp_dev")
        >>> model = ClvpModelForConditionalGeneration.from_pretrained("susnato/clvp_dev")

        >>> # Generate processor output and text embeds
        >>> processor_output = processor(text=text, return_tensors="pt")
        >>> text_embeds = model.get_text_features(input_ids=processor_output["input_ids"])
        ```
        """

        outputs = self.text_encoder_model(
            input_ids=input_ids,
            inputs_embeds=text_encoder_inputs_embeds,
            attention_mask=attention_mask,
        )

        return outputs[0]

    def get_speech_features(
        self,
        speech_ids: Optional[torch.LongTensor] = None,
        input_ids: Optional[torch.LongTensor] = None,
        input_features: Optional[torch.FloatTensor] = None,
        conditioning_encoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        generation_config: Optional[GenerationConfig] = None,
        **kwargs,
    ) -> torch.FloatTensor:
        r"""
        This method can be used to extract speech_embeds. The speech embeddings are obtained by applying the speech
        model on speech_ids. If speech_ids is not present but both input_ids and input_features are given then the
        decoder model will be used to first generate the speech_ids and then applying the speech model.

        Args:
            speech_ids (`torch.LongTensor` of shape `(batch_size, num_speech_ids)`, *optional*):
                Speech Tokens. Padding will be ignored by default should you provide it. If speech_ids are provided
                then input_ids and input_features will be automatically ignored.
            input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Input text Tokens. Processed from the [`ClvpTokenizer`]. If speech_ids is not provided, then input_ids
                and input_features will be used.
            input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, time_dim)`, *optional*):
                Indicates log-melspectrogram representations for audio returned by [`ClvpFeatureExtractor`]. If
                speech_ids is not provided, then input_ids and input_features will be used.
            conditioning_encoder_inputs_embeds (`torch.FloatTensor`, *optional*):
                inputs_embeds for `ClvpConditioningEncoder`. Can be used in place of `input_ids`.
            attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding speech token indices. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            generation_config (`GenerationConfig`, *optional*):
                generation config to control the generation of speech_ids if they are not provided.

        Returns:
            `torch.FloatTensor` of shape `(batch_size, output_dim)`:
                The speech embeddings obtained by applying the projection layer to the pooled output of the CLVP Speech
                Model.

        Examples:

        ```python
        >>> import datasets
        >>> from transformers import ClvpProcessor, ClvpModelForConditionalGeneration

        >>> # Define the Text and Load the Audio (We are taking an audio example from HuggingFace Hub using `datasets` library)
        >>> text = "This is an example text."
        >>> ds = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
        >>> ds = ds.cast_column("audio", datasets.Audio(sampling_rate=22050))
        >>> _, audio, sr = ds.sort("id").select(range(1))[:1]["audio"][0].values()

        >>> # Define processor and model
        >>> processor = ClvpProcessor.from_pretrained("susnato/clvp_dev")
        >>> model = ClvpModelForConditionalGeneration.from_pretrained("susnato/clvp_dev")

        >>> # Generate processor output and model output
        >>> processor_output = processor(raw_speech=audio, sampling_rate=sr, text=text, return_tensors="pt")
        >>> speech_embeds = model.get_speech_features(
        ...     input_ids=processor_output["input_ids"], input_features=processor_output["input_features"]
        ... )
        ```
        """

        if speech_ids is None:
            if (input_ids is None and conditioning_encoder_inputs_embeds is None) or input_features is None:
                raise ValueError(
                    "Either speech_ids or input_ids/conditioning_encoder_inputs_embeds and input_features must be provided."
                )

            if generation_config is None:
                generation_config = self.generation_config
            generation_config.update(**kwargs)

            conditioning_embeds = self.conditioning_encoder(
                input_features=input_features,
                input_ids=input_ids,
                inputs_embeds=conditioning_encoder_inputs_embeds,
                attention_mask=attention_mask,
            )

            speech_ids = self.speech_decoder_model.generate(
                conditioning_embeds=conditioning_embeds,
                generation_config=generation_config,
            )

            speech_ids = self.fix_speech_decoder_output(speech_ids[0])

        outputs = self.speech_encoder_model(
            input_ids=speech_ids,
            attention_mask=attention_mask,
        )

        return outputs[0]

    @add_start_docstrings_to_model_forward(CLVP_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=ClvpOutput, config_class=ClvpConfig)
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        input_features: torch.FloatTensor = None,
        conditioning_encoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        text_encoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.LongTensor] = None,
        return_loss: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_attentions: Optional[bool] = False,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, ClvpOutput]:
        r"""
        Returns:

        Examples:

        ```python
        >>> import datasets
        >>> from transformers import ClvpProcessor, ClvpModelForConditionalGeneration

        >>> # Define the Text and Load the Audio (We are taking an audio example from HuggingFace Hub using `datasets` library)
        >>> text = "This is an example text."

        >>> ds = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
        >>> ds = ds.cast_column("audio", datasets.Audio(sampling_rate=22050))
        >>> _, audio, sr = ds.sort("id").select(range(1))[:1]["audio"][0].values()

        >>> # Define processor and model
        >>> processor = ClvpProcessor.from_pretrained("susnato/clvp_dev")
        >>> model = ClvpModelForConditionalGeneration.from_pretrained("susnato/clvp_dev")

        >>> # processor outputs and model outputs
        >>> processor_output = processor(raw_speech=audio, sampling_rate=sr, text=text, return_tensors="pt")
        >>> outputs = model(
        ...     input_ids=processor_output["input_ids"],
        ...     input_features=processor_output["input_features"],
        ...     return_dict=True,
        ... )
        ```
        """

        # Use CLVP model's config for some fields (if specified) instead of those of speech & text components.
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        conditioning_embeds = self.conditioning_encoder(
            input_features=input_features,
            input_ids=input_ids,
            inputs_embeds=conditioning_encoder_inputs_embeds,
            attention_mask=attention_mask,
        )

        decoder_outputs = self.speech_decoder_model(
            inputs_embeds=conditioning_embeds,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        speech_ids = decoder_outputs[0]

        # since we will get the embeds of shape `(batch_size, seq_len, embedding_dim)` during the forward pass
        # we must convert it to tokens, to make it compaitable with speech_transformer
        if speech_ids.ndim == 3:
            speech_ids = speech_ids.argmax(2)
        speech_ids = self.fix_speech_decoder_output(speech_ids)

        speech_outputs = self.speech_encoder_model(
            input_ids=speech_ids,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        text_outputs = self.text_encoder_model(
            input_ids=input_ids,
            inputs_embeds=text_encoder_inputs_embeds,
            attention_mask=attention_mask,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        speech_embeds = speech_outputs[0]
        text_embeds = text_outputs[0]

        # normalized features
        speech_embeds = speech_embeds / speech_embeds.norm(p=2, dim=-1, keepdim=True)
        text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)

        # cosine similarity as logits
        logit_scale = self.logit_scale.exp()
        logits_per_text = torch.matmul(text_embeds, speech_embeds.t()) * logit_scale
        logits_per_speech = logits_per_text.t()

        loss = None
        if return_loss:
            loss = clvp_loss(logits_per_text)

        if not return_dict:
            output = (
                logits_per_speech,
                logits_per_text,
                text_embeds,
                speech_embeds,
                text_outputs[2],
                speech_outputs[2],
            )
            if output_hidden_states:
                output += (
                    decoder_outputs[-1],
                    text_outputs[-1],
                    speech_outputs[-1],
                )

            return ((loss,) + output) if loss is not None else output

        return ClvpOutput(
            loss=loss,
            logits_per_speech=logits_per_speech,
            logits_per_text=logits_per_text,
            text_embeds=text_embeds,
            speech_embeds=speech_embeds,
            text_model_output=text_outputs[2],
            speech_model_output=speech_outputs[2],
            decoder_hidden_states=decoder_outputs.hidden_states,
            text_encoder_hidden_states=text_outputs.hidden_states,
            speech_encoder_hidden_states=speech_outputs.hidden_states,
        )

    @torch.no_grad()
    def generate(
        self,
        input_ids: torch.LongTensor = None,
        input_features: torch.FloatTensor = None,
        attention_mask: Optional[torch.LongTensor] = None,
        generation_config: Optional[GenerationConfig] = None,
        pad_to_max_mel_tokens: Optional[int] = None,
        output_hidden_states: Optional[bool] = None,
        **kwargs,
    ):
        """
        Generate method for `ClvpModelForConditionalGeneration`, this method calls the `generate` method of
        `ClvpForCausalLM` and then uses those generated `speech_ids` to process `text_embeds` and `speech_embeds` using
        `ClvpEncoder`.

        Args:
            input_ids (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Input text Tokens. Processed from the [`ClvpTokenizer`].
            input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, time_dim)`, *optional*):
                Indicates log-melspectrogram representations for audio returned by [`ClvpFeatureExtractor`].
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding text token indices. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            generation_config (`~generation.GenerationConfig`, *optional*):
                The generation configuration to be used as base parametrization for the generation call. `**kwargs`
                passed to generate matching the attributes of `generation_config` will override them. If
                `generation_config` is not provided, the default will be used, which had the following loading
                priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
                configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
                default values, whose documentation should be checked to parameterize generation.
            pad_to_max_mel_tokens (`int`, *optional*):
                Pads generated speech_ids to the specified value. This is to implement the same logic from the official
                repo, link: https://github.com/neonbjb/tortoise-tts/blob/80f89987a5abda5e2b082618cd74f9c7411141dc/tortoise/api.py#L430
                and to make sure the logits are same.
                This does not affect generation quality so please don't consider using it since it is less efficient.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of decoder model, text encoder and speech encoder models.

        Returns:
            `ClvpOutput` or tuple: A `ClvpOutput` (if `return_dict_in_generate=True` or when
            `config.return_dict_in_generate=True`) or a tuple.
        """

        # If the input sequences are larger than (self.config.decoder_config.max_text_tokens - 3) then raise error,
        # because we need to add 3 tokens ( 1 bos tokens and 2 eos tokens) to the input_ids in ClvpConditioningEncoder to
        # properly sample
        sequence_length = input_ids.shape[-1]
        if sequence_length > (self.config.decoder_config.max_text_tokens - 3):
            raise ValueError(
                f"Maximum sequence length reached! Found input_ids of length {sequence_length}."
                f"Please make sure that the maximum length of input_ids is {self.config.decoder_config.max_text_tokens - 3}"
            )

        if generation_config is None:
            generation_config = self.generation_config

        generation_config = copy.deepcopy(generation_config)
        model_kwargs = generation_config.update(**kwargs)  # All unused kwargs must be model kwargs
        generation_config.validate()
        self._validate_model_kwargs(model_kwargs.copy())

        # pad input_ids as specified in the original repo
        # link: https://github.com/neonbjb/tortoise-tts/blob/80f89987a5abda5e2b082618cd74f9c7411141dc/tortoise/api.py#L380
        input_ids, attention_mask = _pad_extra_bos_eos_tokens(
            input_ids,
            attention_mask,
            add_bos_token=False,
            bos_token_id=self.config.text_config.bos_token_id,
            eos_token_id=self.config.text_config.eos_token_id,
        )

        conditioning_embeds = self.conditioning_encoder(
            input_features=input_features,
            input_ids=input_ids,
            attention_mask=attention_mask,
        )

        decoder_outputs = self.speech_decoder_model.generate(
            conditioning_embeds=conditioning_embeds,
            generation_config=generation_config,
            output_hidden_states=output_hidden_states,
            return_dict=generation_config.return_dict_in_generate,
        )
        if isinstance(decoder_outputs, ModelOutput):
            speech_ids = decoder_outputs.sequences

        # pad to pad_to_max_mel_tokens if given, to replicate the original repo logic
        # link: https://github.com/neonbjb/tortoise-tts/blob/80f89987a5abda5e2b082618cd74f9c7411141dc/tortoise/api.py#L430
        if pad_to_max_mel_tokens is not None:
            padding_needed = pad_to_max_mel_tokens - speech_ids.shape[-1]
            speech_ids = torch.nn.functional.pad(
                speech_ids, (0, padding_needed), value=self.generation_config.eos_token_id
            )

        speech_ids = self.fix_speech_decoder_output(speech_ids)

        speech_outputs = self.speech_encoder_model(
            input_ids=speech_ids,
            output_hidden_states=output_hidden_states,
            return_dict=generation_config.return_dict_in_generate,
        )
        text_outputs = self.text_encoder_model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            output_hidden_states=output_hidden_states,
            return_dict=generation_config.return_dict_in_generate,
        )

        speech_embeds = speech_outputs[0]
        text_embeds = text_outputs[0]

        # normalized features
        speech_embeds = speech_embeds / speech_embeds.norm(p=2, dim=-1, keepdim=True)
        text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)

        # cosine similarity as logits
        logit_scale = self.logit_scale.exp()
        logits_per_text = torch.matmul(text_embeds, speech_embeds.t()) * logit_scale
        logits_per_speech = logits_per_text.t()

        if not generation_config.return_dict_in_generate:
            output = (
                speech_ids,
                logits_per_speech,
                logits_per_text,
                text_embeds,
                speech_embeds,
                text_outputs[2],
                speech_outputs[2],
            )
            if output_hidden_states:
                output += (
                    decoder_outputs[-1],
                    text_outputs[-1],
                    speech_outputs[-1],
                )

            return output

        return ClvpOutput(
            speech_ids=speech_ids,
            logits_per_speech=logits_per_speech,
            logits_per_text=logits_per_text,
            text_embeds=text_embeds,
            speech_embeds=speech_embeds,
            text_model_output=text_outputs[2],
            speech_model_output=speech_outputs[2],
            decoder_hidden_states=decoder_outputs.hidden_states,
            text_encoder_hidden_states=text_outputs.hidden_states,
            speech_encoder_hidden_states=speech_outputs.hidden_states,
        )