File size: 14,042 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""DPT model configuration"""

import copy

from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import verify_backbone_config_arguments
from ..auto.configuration_auto import CONFIG_MAPPING
from ..bit import BitConfig


logger = logging.get_logger(__name__)


class DPTConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`DPTModel`]. It is used to instantiate an DPT
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the DPT
    [Intel/dpt-large](https://huggingface.co/Intel/dpt-large) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        image_size (`int`, *optional*, defaults to 384):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 16):
            The size (resolution) of each patch.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        is_hybrid (`bool`, *optional*, defaults to `False`):
            Whether to use a hybrid backbone. Useful in the context of loading DPT-Hybrid models.
        qkv_bias (`bool`, *optional*, defaults to `True`):
            Whether to add a bias to the queries, keys and values.
        backbone_out_indices (`List[int]`, *optional*, defaults to `[2, 5, 8, 11]`):
            Indices of the intermediate hidden states to use from backbone.
        readout_type (`str`, *optional*, defaults to `"project"`):
            The readout type to use when processing the readout token (CLS token) of the intermediate hidden states of
            the ViT backbone. Can be one of [`"ignore"`, `"add"`, `"project"`].

            - "ignore" simply ignores the CLS token.
            - "add" passes the information from the CLS token to all other tokens by adding the representations.
            - "project" passes information to the other tokens by concatenating the readout to all other tokens before
              projecting the
            representation to the original feature dimension D using a linear layer followed by a GELU non-linearity.
        reassemble_factors (`List[int]`, *optional*, defaults to `[4, 2, 1, 0.5]`):
            The up/downsampling factors of the reassemble layers.
        neck_hidden_sizes (`List[str]`, *optional*, defaults to `[96, 192, 384, 768]`):
            The hidden sizes to project to for the feature maps of the backbone.
        fusion_hidden_size (`int`, *optional*, defaults to 256):
            The number of channels before fusion.
        head_in_index (`int`, *optional*, defaults to -1):
            The index of the features to use in the heads.
        use_batch_norm_in_fusion_residual (`bool`, *optional*, defaults to `False`):
            Whether to use batch normalization in the pre-activate residual units of the fusion blocks.
        use_bias_in_fusion_residual (`bool`, *optional*, defaults to `True`):
            Whether to use bias in the pre-activate residual units of the fusion blocks.
        add_projection (`bool`, *optional*, defaults to `False`):
            Whether to add a projection layer before the depth estimation head.
        use_auxiliary_head (`bool`, *optional*, defaults to `True`):
            Whether to use an auxiliary head during training.
        auxiliary_loss_weight (`float`, *optional*, defaults to 0.4):
            Weight of the cross-entropy loss of the auxiliary head.
        semantic_loss_ignore_index (`int`, *optional*, defaults to 255):
            The index that is ignored by the loss function of the semantic segmentation model.
        semantic_classifier_dropout (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the semantic classification head.
        backbone_featmap_shape (`List[int]`, *optional*, defaults to `[1, 1024, 24, 24]`):
            Used only for the `hybrid` embedding type. The shape of the feature maps of the backbone.
        neck_ignore_stages (`List[int]`, *optional*, defaults to `[0, 1]`):
            Used only for the `hybrid` embedding type. The stages of the readout layers to ignore.
        backbone_config (`Union[Dict[str, Any], PretrainedConfig]`, *optional*):
            The configuration of the backbone model. Only used in case `is_hybrid` is `True` or in case you want to
            leverage the [`AutoBackbone`] API.
        backbone (`str`, *optional*):
            Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this
            will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone`
            is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights.
        use_pretrained_backbone (`bool`, *optional*, defaults to `False`):
            Whether to use pretrained weights for the backbone.
        use_timm_backbone (`bool`, *optional*, defaults to `False`):
            Whether to load `backbone` from the timm library. If `False`, the backbone is loaded from the transformers
            library.
        backbone_kwargs (`dict`, *optional*):
            Keyword arguments to be passed to AutoBackbone when loading from a checkpoint
            e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set.

    Example:

    ```python
    >>> from transformers import DPTModel, DPTConfig

    >>> # Initializing a DPT dpt-large style configuration
    >>> configuration = DPTConfig()

    >>> # Initializing a model from the dpt-large style configuration
    >>> model = DPTModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "dpt"

    def __init__(
        self,
        hidden_size=768,
        num_hidden_layers=12,
        num_attention_heads=12,
        intermediate_size=3072,
        hidden_act="gelu",
        hidden_dropout_prob=0.0,
        attention_probs_dropout_prob=0.0,
        initializer_range=0.02,
        layer_norm_eps=1e-12,
        image_size=384,
        patch_size=16,
        num_channels=3,
        is_hybrid=False,
        qkv_bias=True,
        backbone_out_indices=[2, 5, 8, 11],
        readout_type="project",
        reassemble_factors=[4, 2, 1, 0.5],
        neck_hidden_sizes=[96, 192, 384, 768],
        fusion_hidden_size=256,
        head_in_index=-1,
        use_batch_norm_in_fusion_residual=False,
        use_bias_in_fusion_residual=None,
        add_projection=False,
        use_auxiliary_head=True,
        auxiliary_loss_weight=0.4,
        semantic_loss_ignore_index=255,
        semantic_classifier_dropout=0.1,
        backbone_featmap_shape=[1, 1024, 24, 24],
        neck_ignore_stages=[0, 1],
        backbone_config=None,
        backbone=None,
        use_pretrained_backbone=False,
        use_timm_backbone=False,
        backbone_kwargs=None,
        **kwargs,
    ):
        super().__init__(**kwargs)

        self.hidden_size = hidden_size
        self.is_hybrid = is_hybrid

        use_autobackbone = False
        if self.is_hybrid:
            if backbone_config is None:
                backbone_config = {
                    "global_padding": "same",
                    "layer_type": "bottleneck",
                    "depths": [3, 4, 9],
                    "out_features": ["stage1", "stage2", "stage3"],
                    "embedding_dynamic_padding": True,
                }

            if isinstance(backbone_config, dict):
                logger.info("Initializing the config with a `BiT` backbone.")
                backbone_config = BitConfig(**backbone_config)
            elif isinstance(backbone_config, PretrainedConfig):
                backbone_config = backbone_config
            else:
                raise ValueError(
                    f"backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}."
                )
            self.backbone_config = backbone_config
            self.backbone_featmap_shape = backbone_featmap_shape
            self.neck_ignore_stages = neck_ignore_stages

            if readout_type != "project":
                raise ValueError("Readout type must be 'project' when using `DPT-hybrid` mode.")

        elif backbone is not None or backbone_config is not None:
            use_autobackbone = True
            if isinstance(backbone_config, dict):
                backbone_model_type = backbone_config.get("model_type")
                config_class = CONFIG_MAPPING[backbone_model_type]
                backbone_config = config_class.from_dict(backbone_config)

            self.backbone_config = backbone_config
            self.backbone_featmap_shape = None
            self.neck_ignore_stages = []

            # We only use load_backbone when config.is_hydrid is False
            verify_backbone_config_arguments(
                use_timm_backbone=use_timm_backbone,
                use_pretrained_backbone=use_pretrained_backbone,
                backbone=backbone,
                backbone_config=backbone_config,
                backbone_kwargs=backbone_kwargs,
            )
        else:
            self.backbone_config = None
            self.backbone_featmap_shape = None
            self.neck_ignore_stages = []

        self.backbone = backbone
        self.use_pretrained_backbone = use_pretrained_backbone
        self.use_timm_backbone = use_timm_backbone
        self.backbone_kwargs = backbone_kwargs

        # ViT parameters used if not using a hybrid backbone
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.layer_norm_eps = layer_norm_eps
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.qkv_bias = qkv_bias
        self.use_autobackbone = use_autobackbone
        self.backbone_out_indices = None if use_autobackbone else backbone_out_indices

        if readout_type not in ["ignore", "add", "project"]:
            raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']")
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.readout_type = readout_type
        self.reassemble_factors = reassemble_factors
        self.neck_hidden_sizes = neck_hidden_sizes
        self.fusion_hidden_size = fusion_hidden_size
        self.head_in_index = head_in_index
        self.use_batch_norm_in_fusion_residual = use_batch_norm_in_fusion_residual
        self.use_bias_in_fusion_residual = use_bias_in_fusion_residual
        self.add_projection = add_projection

        # auxiliary head attributes (semantic segmentation)
        self.use_auxiliary_head = use_auxiliary_head
        self.auxiliary_loss_weight = auxiliary_loss_weight
        self.semantic_loss_ignore_index = semantic_loss_ignore_index
        self.semantic_classifier_dropout = semantic_classifier_dropout

    def to_dict(self):
        """
        Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns:
            `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
        """
        output = copy.deepcopy(self.__dict__)

        if output["backbone_config"] is not None:
            output["backbone_config"] = self.backbone_config.to_dict()

        output["model_type"] = self.__class__.model_type
        return output