File size: 18,469 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert ESM checkpoint."""
import argparse
import pathlib
from pathlib import Path
from tempfile import TemporaryDirectory
import esm as esm_module
import torch
from esm.esmfold.v1.misc import batch_encode_sequences as esmfold_encode_sequences
from esm.esmfold.v1.pretrained import esmfold_v1
from transformers.models.esm.configuration_esm import EsmConfig, EsmFoldConfig
from transformers.models.esm.modeling_esm import (
EsmForMaskedLM,
EsmForSequenceClassification,
EsmIntermediate,
EsmLayer,
EsmOutput,
EsmSelfAttention,
EsmSelfOutput,
)
from transformers.models.esm.modeling_esmfold import EsmForProteinFolding
from transformers.models.esm.tokenization_esm import EsmTokenizer
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
SAMPLE_DATA = [
(
"protein1",
"MNGTEGPNFYVPFSNATGVVRSPFEYPQYYLAEPWQFSMLAAYMFLLIVLGFPINFLTLYVTVQHKKLRTPLNYILLNLAVADLFMVLGGFTSTLYTSLHGYFVFGPTGCNLEGFFATLGGEIALWSLVVLAIERYVVVCKPMSNFRFGENHAIMGVAFTWVMALACAAPPLAGWSRYIPEGLQCSCGIDYYTLKPEVNNESFVIYMFVVHFTIPMIIIFFCYGQLVFTVKEAAAQQQESATTQKAEKEVTRMVIIMVIAFLICWVPYASVAFYIFTHQGSNFGPIFMTIPAFFAKSAAIYNPVIYIMMNKQFRNCMLTTICCGKNPLGDDEASATVSKTETSQVAPA",
),
("protein2", "MKTVRQERLKSIVRILERSKEPVSGAQLAEELSVSRQVIVQDIAYLRSLGYNIVATPRGYVLA"),
("protein3", "MKTVRQERLKSI<mask>RILERSKEPVSGAQLAEELS<mask>SRQVIVQDIAYLRSLGYN<mask>VATPRGYVLAGG"),
("protein4", "MKTVRQERLKSI<mask>RILERSKEPVSGAQLAEELS<mask>SRQVIVQDIAYLRSLGYN<mask>VATPRGYVLA"),
]
MODEL_MAPPING = {
"esm1b_t33_650M_UR50S": esm_module.pretrained.esm1b_t33_650M_UR50S,
"esm1v_t33_650M_UR90S_1": esm_module.pretrained.esm1v_t33_650M_UR90S_1,
"esm1v_t33_650M_UR90S_2": esm_module.pretrained.esm1v_t33_650M_UR90S_2,
"esm1v_t33_650M_UR90S_3": esm_module.pretrained.esm1v_t33_650M_UR90S_3,
"esm1v_t33_650M_UR90S_4": esm_module.pretrained.esm1v_t33_650M_UR90S_4,
"esm1v_t33_650M_UR90S_5": esm_module.pretrained.esm1v_t33_650M_UR90S_5,
"esm2_t48_15B_UR50D": esm_module.pretrained.esm2_t48_15B_UR50D,
"esm2_t36_3B_UR50D": esm_module.pretrained.esm2_t36_3B_UR50D,
"esm2_t33_650M_UR50D": esm_module.pretrained.esm2_t33_650M_UR50D,
"esm2_t30_150M_UR50D": esm_module.pretrained.esm2_t30_150M_UR50D,
"esm2_t12_35M_UR50D": esm_module.pretrained.esm2_t12_35M_UR50D,
"esm2_t6_8M_UR50D": esm_module.pretrained.esm2_t6_8M_UR50D,
"esmfold_v1": esmfold_v1,
}
restypes = list("ARNDCQEGHILKMFPSTWYV")
restypes_with_x = restypes + ["X"]
restypes_with_extras = restypes_with_x + ["<pad>", "<mask>", "<cls>", "<sep>", "<eos>"]
def get_esmfold_tokenizer():
with TemporaryDirectory() as tempdir:
vocab = "\n".join(restypes_with_extras)
vocab_file = Path(tempdir) / "vocab.txt"
vocab_file.write_text(vocab)
hf_tokenizer = EsmTokenizer(vocab_file=str(vocab_file))
hf_tokenizer.pad_token_id = 0 # Overlaps with 'A' but that seems to be what they want
return hf_tokenizer
def transfer_and_check_weights(original_module, our_module):
status = our_module.load_state_dict(original_module.state_dict())
if status.missing_keys:
raise ValueError(f"Missing keys: {status.missing_keys}")
if status.unexpected_keys:
raise ValueError(f"Unexpected keys: {status.unexpected_keys}")
def convert_esm_checkpoint_to_pytorch(
model: str, pytorch_dump_folder_path: str, classification_head: bool, push_to_repo: str, auth_token: str
):
"""
Copy/paste/tweak esm's weights to our BERT structure.
"""
if model.startswith("esmfold"):
esm = MODEL_MAPPING[model]()
else:
esm, alphabet = MODEL_MAPPING[model]()
esm.eval() # disable dropout
if model.startswith("esmfold"):
embed_dim = esm.esm.embed_dim
num_layers = esm.esm.num_layers
num_attention_heads = esm.esm.attention_heads
intermediate_size = 4 * embed_dim
token_dropout = esm.esm.token_dropout
emb_layer_norm_before = False # This code path does not exist in ESM-2
position_embedding_type = "rotary"
is_folding_model = True
esmfold_config = EsmFoldConfig()
for key, val in esm.cfg.items():
if hasattr(esmfold_config, key) and key != "trunk":
setattr(esmfold_config, key, val)
for key, val in esm.cfg.trunk.items():
if hasattr(esmfold_config.trunk, key) and key != "structure_module":
setattr(esmfold_config.trunk, key, val)
for key, val in esm.cfg.trunk.structure_module.items():
if hasattr(esmfold_config.trunk.structure_module, key):
setattr(esmfold_config.trunk.structure_module, key, val)
elif hasattr(esm, "args"):
# Indicates an ESM-1b or ESM-1v model
embed_dim = esm.args.embed_dim
num_layers = esm.args.layers
num_attention_heads = esm.args.attention_heads
intermediate_size = esm.args.ffn_embed_dim
token_dropout = esm.args.token_dropout
emb_layer_norm_before = True if esm.emb_layer_norm_before else False
position_embedding_type = "absolute"
is_folding_model = False
esmfold_config = None
else:
# Indicates an ESM-2 model
embed_dim = esm.embed_dim
num_layers = esm.num_layers
num_attention_heads = esm.attention_heads
intermediate_size = 4 * embed_dim # This is hardcoded in ESM-2
token_dropout = esm.token_dropout
emb_layer_norm_before = False # This code path does not exist in ESM-2
position_embedding_type = "rotary"
is_folding_model = False
esmfold_config = None
if is_folding_model:
alphabet = esm.esm.alphabet
vocab_list = tuple(alphabet.all_toks)
mask_token_id = alphabet.mask_idx
pad_token_id = alphabet.padding_idx
if is_folding_model:
original_esm_model = esm.esm
else:
original_esm_model = esm
config = EsmConfig(
vocab_size=original_esm_model.embed_tokens.num_embeddings,
mask_token_id=mask_token_id,
hidden_size=embed_dim,
num_hidden_layers=num_layers,
num_attention_heads=num_attention_heads,
intermediate_size=intermediate_size,
max_position_embeddings=1026,
layer_norm_eps=1e-5, # PyTorch default used in fairseq
attention_probs_dropout_prob=0.0,
hidden_dropout_prob=0.0,
pad_token_id=pad_token_id,
emb_layer_norm_before=emb_layer_norm_before,
token_dropout=token_dropout,
position_embedding_type=position_embedding_type,
is_folding_model=is_folding_model,
esmfold_config=esmfold_config,
vocab_list=vocab_list,
)
if classification_head:
config.num_labels = esm.classification_heads["mnli"].out_proj.weight.shape[0]
print("Our ESM config:", config)
if model.startswith("esmfold"):
model_class = EsmForProteinFolding
elif classification_head:
model_class = EsmForSequenceClassification
else:
model_class = EsmForMaskedLM
model = model_class(config)
model.eval()
# Now let's copy all the weights.
# Embeddings
model.esm.embeddings.word_embeddings.weight = original_esm_model.embed_tokens.weight
if position_embedding_type == "absolute":
model.esm.embeddings.position_embeddings.weight = original_esm_model.embed_positions.weight
if config.emb_layer_norm_before:
model.esm.embeddings.layer_norm.weight = original_esm_model.emb_layer_norm_before.weight
model.esm.embeddings.layer_norm.bias = original_esm_model.emb_layer_norm_before.bias
model.esm.encoder.emb_layer_norm_after.weight = original_esm_model.emb_layer_norm_after.weight
model.esm.encoder.emb_layer_norm_after.bias = original_esm_model.emb_layer_norm_after.bias
for i in range(config.num_hidden_layers):
# Encoder: start of layer
layer: EsmLayer = model.esm.encoder.layer[i]
# esm_layer: TransformerSentenceEncoderLayer = original_esm_model.layers[i]
esm_layer = original_esm_model.layers[i]
# self attention
self_attn: EsmSelfAttention = layer.attention.self
assert (
esm_layer.self_attn.k_proj.weight.data.shape
== esm_layer.self_attn.q_proj.weight.data.shape
== esm_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size))
)
self_attn.query.weight.data = esm_layer.self_attn.q_proj.weight
self_attn.query.bias.data = esm_layer.self_attn.q_proj.bias
self_attn.key.weight.data = esm_layer.self_attn.k_proj.weight
self_attn.key.bias.data = esm_layer.self_attn.k_proj.bias
self_attn.value.weight.data = esm_layer.self_attn.v_proj.weight
self_attn.value.bias.data = esm_layer.self_attn.v_proj.bias
if getattr(esm_layer.self_attn, "rot_emb", None) is not None:
# Matt: Although inv_freq is not a trainable weight, it is computed at model init and cached.
# During the training of ESM-2 the model was converted to float16 precision, which also converts
# the inv_freq tensor, and the loss of precision remains even if the model is loaded later as float32.
# If we recompute inv_freq without this loss of precision then we will get subtly different rotary
# embeddings, which are enough to cause significant discrepancies in model outputs. To avoid this,
# we make sure the new model copies the data from the old inv_freq.
self_attn.rotary_embeddings.inv_freq.data = esm_layer.self_attn.rot_emb.inv_freq
# LayerNorm changes for pre-activation
layer.attention.LayerNorm.weight = esm_layer.self_attn_layer_norm.weight
layer.attention.LayerNorm.bias = esm_layer.self_attn_layer_norm.bias
layer.LayerNorm.weight = esm_layer.final_layer_norm.weight
layer.LayerNorm.bias = esm_layer.final_layer_norm.bias
# self-attention output
self_output: EsmSelfOutput = layer.attention.output
assert self_output.dense.weight.shape == esm_layer.self_attn.out_proj.weight.shape
self_output.dense.weight = esm_layer.self_attn.out_proj.weight
self_output.dense.bias = esm_layer.self_attn.out_proj.bias
# intermediate
intermediate: EsmIntermediate = layer.intermediate
assert intermediate.dense.weight.shape == esm_layer.fc1.weight.shape
intermediate.dense.weight = esm_layer.fc1.weight
intermediate.dense.bias = esm_layer.fc1.bias
# output
bert_output: EsmOutput = layer.output
assert bert_output.dense.weight.shape == esm_layer.fc2.weight.shape
bert_output.dense.weight = esm_layer.fc2.weight
bert_output.dense.bias = esm_layer.fc2.bias
# end of layer
if is_folding_model:
model.esm_s_combine.data = esm.esm_s_combine.data
model.af2_to_esm.data = esm.af2_to_esm.data
transfer_and_check_weights(esm.embedding, model.embedding)
transfer_and_check_weights(esm.esm_s_mlp, model.esm_s_mlp)
transfer_and_check_weights(esm.trunk, model.trunk)
transfer_and_check_weights(esm.distogram_head, model.distogram_head)
transfer_and_check_weights(esm.ptm_head, model.ptm_head)
transfer_and_check_weights(esm.lm_head, model.lm_head)
transfer_and_check_weights(esm.lddt_head, model.lddt_head)
elif classification_head:
model.classifier.dense.weight = esm.esm.classification_heads["mnli"].dense.weight
model.classifier.dense.bias = esm.classification_heads["mnli"].dense.bias
model.classifier.out_proj.weight = esm.classification_heads["mnli"].out_proj.weight
model.classifier.out_proj.bias = esm.classification_heads["mnli"].out_proj.bias
else:
# LM Head
model.lm_head.dense.weight = esm.lm_head.dense.weight
model.lm_head.dense.bias = esm.lm_head.dense.bias
model.lm_head.layer_norm.weight = esm.lm_head.layer_norm.weight
model.lm_head.layer_norm.bias = esm.lm_head.layer_norm.bias
model.lm_head.decoder.weight = esm.lm_head.weight
model.lm_head.bias = esm.lm_head.bias
# Contact prediction head
transfer_and_check_weights(esm.contact_head, model.esm.contact_head)
# Prepare data (first 2 sequences from ESMStructuralSplitDataset superfamily / 4)
if is_folding_model:
# Folding models aren't trained on masked inputs and don't like mask tokens.
sample_data = SAMPLE_DATA[:2]
else:
sample_data = SAMPLE_DATA
if is_folding_model:
hf_tokenizer = get_esmfold_tokenizer()
hf_tokens = hf_tokenizer(
[row[1] for row in sample_data], return_tensors="pt", padding=True, add_special_tokens=False
)
esmfold_aas, esmfold_mask, _, _, _ = esmfold_encode_sequences([row[1] for row in sample_data])
success = torch.all(hf_tokens["input_ids"] == esmfold_aas) and torch.all(
hf_tokens["attention_mask"] == esmfold_mask
)
else:
# Let's check that we get the same results.
batch_converter = alphabet.get_batch_converter()
batch_labels, batch_strs, batch_tokens = batch_converter(sample_data)
# Prepare tokenizer and make sure it matches
with TemporaryDirectory() as tempdir:
vocab = "\n".join(alphabet.all_toks)
vocab_file = Path(tempdir) / "vocab.txt"
vocab_file.write_text(vocab)
hf_tokenizer = EsmTokenizer(vocab_file=str(vocab_file))
hf_tokens = hf_tokenizer([row[1] for row in sample_data], return_tensors="pt", padding=True)
success = torch.all(hf_tokens["input_ids"] == batch_tokens)
print("Do both models tokenizers output the same tokens?", "🔥" if success else "💩")
if not success:
raise Exception("Tokenization does not match!")
with torch.no_grad():
if is_folding_model:
# Let's test the model in parts
# ESMFold always converts the ESM stem to float16, which requires float16 ops
# that don't exist on CPU. Therefore, to test it we need to run it on GPU. However,
# ESMFold is what we in the community call a "big boy" and so we desperately avoid putting both the
# original and the converted model on the GPU at the same time.
their_output = esm.cuda().infer([row[1] for row in sample_data])
our_output = model.cuda()(
input_ids=hf_tokens["input_ids"].cuda(), attention_mask=hf_tokens["attention_mask"].cuda()
)
else:
our_output = model(**hf_tokens, output_hidden_states=True)
our_output = our_output["logits"]
if classification_head:
their_output = esm.model.classification_heads["mnli"](esm.extract_features(batch_tokens))
else:
their_output = esm(hf_tokens["input_ids"], repr_layers=list(range(999)))
their_output = their_output["logits"]
if is_folding_model:
max_absolute_diff = torch.max(torch.abs(our_output["positions"] - their_output["positions"])).item()
success = torch.allclose(our_output["positions"], their_output["positions"], atol=1e-5)
else:
max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item()
success = torch.allclose(our_output, their_output, atol=1e-5)
print(f"max_absolute_diff = {max_absolute_diff}") # ~ 1e-5
print("Do both models output the same tensors?", "🔥" if success else "💩")
if not success:
raise Exception("Something went wRoNg")
if not is_folding_model:
# Let's check contact prediction too
our_output = model.predict_contacts(hf_tokens["input_ids"], hf_tokens["attention_mask"])
their_output = esm.predict_contacts(hf_tokens["input_ids"])
max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item()
success = torch.allclose(our_output, their_output, atol=1e-5)
print("Contact prediction testing:")
print(f"max_absolute_diff = {max_absolute_diff}") # ~ 1e-5
print("Do both models output the same tensors?", "🔥" if success else "💩")
if not success:
raise Exception("Something went wRoNg")
pathlib.Path(pytorch_dump_folder_path).mkdir(parents=True, exist_ok=True)
print(f"Saving model to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
del esm # Free up some memory before continuing
print(f"Saving tokenizer to {pytorch_dump_folder_path}")
hf_tokenizer.save_pretrained(pytorch_dump_folder_path)
if push_to_repo:
model.push_to_hub(repo_id=push_to_repo, token_token=auth_token)
hf_tokenizer.push_to_hub(repo_id=push_to_repo, token_token=auth_token)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--pytorch_dump_folder_path", type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--classification_head", action="store_true", help="Whether to convert a final classification head."
)
parser.add_argument("--model", default=None, type=str, required=True, help="Name of model to convert.")
parser.add_argument("--push_to_repo", type=str, help="Repo to upload to (including username!).")
parser.add_argument("--auth_token", type=str, help="HuggingFace auth token.")
args = parser.parse_args()
convert_esm_checkpoint_to_pytorch(
args.model, args.pytorch_dump_folder_path, args.classification_head, args.push_to_repo, args.auth_token
)
|