File size: 18,469 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert ESM checkpoint."""

import argparse
import pathlib
from pathlib import Path
from tempfile import TemporaryDirectory

import esm as esm_module
import torch
from esm.esmfold.v1.misc import batch_encode_sequences as esmfold_encode_sequences
from esm.esmfold.v1.pretrained import esmfold_v1

from transformers.models.esm.configuration_esm import EsmConfig, EsmFoldConfig
from transformers.models.esm.modeling_esm import (
    EsmForMaskedLM,
    EsmForSequenceClassification,
    EsmIntermediate,
    EsmLayer,
    EsmOutput,
    EsmSelfAttention,
    EsmSelfOutput,
)
from transformers.models.esm.modeling_esmfold import EsmForProteinFolding
from transformers.models.esm.tokenization_esm import EsmTokenizer
from transformers.utils import logging


logging.set_verbosity_info()
logger = logging.get_logger(__name__)

SAMPLE_DATA = [
    (
        "protein1",
        "MNGTEGPNFYVPFSNATGVVRSPFEYPQYYLAEPWQFSMLAAYMFLLIVLGFPINFLTLYVTVQHKKLRTPLNYILLNLAVADLFMVLGGFTSTLYTSLHGYFVFGPTGCNLEGFFATLGGEIALWSLVVLAIERYVVVCKPMSNFRFGENHAIMGVAFTWVMALACAAPPLAGWSRYIPEGLQCSCGIDYYTLKPEVNNESFVIYMFVVHFTIPMIIIFFCYGQLVFTVKEAAAQQQESATTQKAEKEVTRMVIIMVIAFLICWVPYASVAFYIFTHQGSNFGPIFMTIPAFFAKSAAIYNPVIYIMMNKQFRNCMLTTICCGKNPLGDDEASATVSKTETSQVAPA",
    ),
    ("protein2", "MKTVRQERLKSIVRILERSKEPVSGAQLAEELSVSRQVIVQDIAYLRSLGYNIVATPRGYVLA"),
    ("protein3", "MKTVRQERLKSI<mask>RILERSKEPVSGAQLAEELS<mask>SRQVIVQDIAYLRSLGYN<mask>VATPRGYVLAGG"),
    ("protein4", "MKTVRQERLKSI<mask>RILERSKEPVSGAQLAEELS<mask>SRQVIVQDIAYLRSLGYN<mask>VATPRGYVLA"),
]

MODEL_MAPPING = {
    "esm1b_t33_650M_UR50S": esm_module.pretrained.esm1b_t33_650M_UR50S,
    "esm1v_t33_650M_UR90S_1": esm_module.pretrained.esm1v_t33_650M_UR90S_1,
    "esm1v_t33_650M_UR90S_2": esm_module.pretrained.esm1v_t33_650M_UR90S_2,
    "esm1v_t33_650M_UR90S_3": esm_module.pretrained.esm1v_t33_650M_UR90S_3,
    "esm1v_t33_650M_UR90S_4": esm_module.pretrained.esm1v_t33_650M_UR90S_4,
    "esm1v_t33_650M_UR90S_5": esm_module.pretrained.esm1v_t33_650M_UR90S_5,
    "esm2_t48_15B_UR50D": esm_module.pretrained.esm2_t48_15B_UR50D,
    "esm2_t36_3B_UR50D": esm_module.pretrained.esm2_t36_3B_UR50D,
    "esm2_t33_650M_UR50D": esm_module.pretrained.esm2_t33_650M_UR50D,
    "esm2_t30_150M_UR50D": esm_module.pretrained.esm2_t30_150M_UR50D,
    "esm2_t12_35M_UR50D": esm_module.pretrained.esm2_t12_35M_UR50D,
    "esm2_t6_8M_UR50D": esm_module.pretrained.esm2_t6_8M_UR50D,
    "esmfold_v1": esmfold_v1,
}

restypes = list("ARNDCQEGHILKMFPSTWYV")

restypes_with_x = restypes + ["X"]
restypes_with_extras = restypes_with_x + ["<pad>", "<mask>", "<cls>", "<sep>", "<eos>"]


def get_esmfold_tokenizer():
    with TemporaryDirectory() as tempdir:
        vocab = "\n".join(restypes_with_extras)
        vocab_file = Path(tempdir) / "vocab.txt"
        vocab_file.write_text(vocab)
        hf_tokenizer = EsmTokenizer(vocab_file=str(vocab_file))
    hf_tokenizer.pad_token_id = 0  # Overlaps with 'A' but that seems to be what they want
    return hf_tokenizer


def transfer_and_check_weights(original_module, our_module):
    status = our_module.load_state_dict(original_module.state_dict())
    if status.missing_keys:
        raise ValueError(f"Missing keys: {status.missing_keys}")
    if status.unexpected_keys:
        raise ValueError(f"Unexpected keys: {status.unexpected_keys}")


def convert_esm_checkpoint_to_pytorch(
    model: str, pytorch_dump_folder_path: str, classification_head: bool, push_to_repo: str, auth_token: str
):
    """
    Copy/paste/tweak esm's weights to our BERT structure.
    """
    if model.startswith("esmfold"):
        esm = MODEL_MAPPING[model]()
    else:
        esm, alphabet = MODEL_MAPPING[model]()
    esm.eval()  # disable dropout

    if model.startswith("esmfold"):
        embed_dim = esm.esm.embed_dim
        num_layers = esm.esm.num_layers
        num_attention_heads = esm.esm.attention_heads
        intermediate_size = 4 * embed_dim
        token_dropout = esm.esm.token_dropout
        emb_layer_norm_before = False  # This code path does not exist in ESM-2
        position_embedding_type = "rotary"
        is_folding_model = True
        esmfold_config = EsmFoldConfig()
        for key, val in esm.cfg.items():
            if hasattr(esmfold_config, key) and key != "trunk":
                setattr(esmfold_config, key, val)
        for key, val in esm.cfg.trunk.items():
            if hasattr(esmfold_config.trunk, key) and key != "structure_module":
                setattr(esmfold_config.trunk, key, val)
        for key, val in esm.cfg.trunk.structure_module.items():
            if hasattr(esmfold_config.trunk.structure_module, key):
                setattr(esmfold_config.trunk.structure_module, key, val)
    elif hasattr(esm, "args"):
        # Indicates an ESM-1b or ESM-1v model
        embed_dim = esm.args.embed_dim
        num_layers = esm.args.layers
        num_attention_heads = esm.args.attention_heads
        intermediate_size = esm.args.ffn_embed_dim
        token_dropout = esm.args.token_dropout
        emb_layer_norm_before = True if esm.emb_layer_norm_before else False
        position_embedding_type = "absolute"
        is_folding_model = False
        esmfold_config = None
    else:
        # Indicates an ESM-2 model
        embed_dim = esm.embed_dim
        num_layers = esm.num_layers
        num_attention_heads = esm.attention_heads
        intermediate_size = 4 * embed_dim  # This is hardcoded in ESM-2
        token_dropout = esm.token_dropout
        emb_layer_norm_before = False  # This code path does not exist in ESM-2
        position_embedding_type = "rotary"
        is_folding_model = False
        esmfold_config = None

    if is_folding_model:
        alphabet = esm.esm.alphabet
    vocab_list = tuple(alphabet.all_toks)
    mask_token_id = alphabet.mask_idx
    pad_token_id = alphabet.padding_idx

    if is_folding_model:
        original_esm_model = esm.esm
    else:
        original_esm_model = esm

    config = EsmConfig(
        vocab_size=original_esm_model.embed_tokens.num_embeddings,
        mask_token_id=mask_token_id,
        hidden_size=embed_dim,
        num_hidden_layers=num_layers,
        num_attention_heads=num_attention_heads,
        intermediate_size=intermediate_size,
        max_position_embeddings=1026,
        layer_norm_eps=1e-5,  # PyTorch default used in fairseq
        attention_probs_dropout_prob=0.0,
        hidden_dropout_prob=0.0,
        pad_token_id=pad_token_id,
        emb_layer_norm_before=emb_layer_norm_before,
        token_dropout=token_dropout,
        position_embedding_type=position_embedding_type,
        is_folding_model=is_folding_model,
        esmfold_config=esmfold_config,
        vocab_list=vocab_list,
    )
    if classification_head:
        config.num_labels = esm.classification_heads["mnli"].out_proj.weight.shape[0]
    print("Our ESM config:", config)

    if model.startswith("esmfold"):
        model_class = EsmForProteinFolding
    elif classification_head:
        model_class = EsmForSequenceClassification
    else:
        model_class = EsmForMaskedLM
    model = model_class(config)
    model.eval()

    # Now let's copy all the weights.
    # Embeddings
    model.esm.embeddings.word_embeddings.weight = original_esm_model.embed_tokens.weight
    if position_embedding_type == "absolute":
        model.esm.embeddings.position_embeddings.weight = original_esm_model.embed_positions.weight

    if config.emb_layer_norm_before:
        model.esm.embeddings.layer_norm.weight = original_esm_model.emb_layer_norm_before.weight
        model.esm.embeddings.layer_norm.bias = original_esm_model.emb_layer_norm_before.bias

    model.esm.encoder.emb_layer_norm_after.weight = original_esm_model.emb_layer_norm_after.weight
    model.esm.encoder.emb_layer_norm_after.bias = original_esm_model.emb_layer_norm_after.bias

    for i in range(config.num_hidden_layers):
        # Encoder: start of layer
        layer: EsmLayer = model.esm.encoder.layer[i]
        # esm_layer: TransformerSentenceEncoderLayer = original_esm_model.layers[i]
        esm_layer = original_esm_model.layers[i]

        # self attention
        self_attn: EsmSelfAttention = layer.attention.self
        assert (
            esm_layer.self_attn.k_proj.weight.data.shape
            == esm_layer.self_attn.q_proj.weight.data.shape
            == esm_layer.self_attn.v_proj.weight.data.shape
            == torch.Size((config.hidden_size, config.hidden_size))
        )

        self_attn.query.weight.data = esm_layer.self_attn.q_proj.weight
        self_attn.query.bias.data = esm_layer.self_attn.q_proj.bias
        self_attn.key.weight.data = esm_layer.self_attn.k_proj.weight
        self_attn.key.bias.data = esm_layer.self_attn.k_proj.bias
        self_attn.value.weight.data = esm_layer.self_attn.v_proj.weight
        self_attn.value.bias.data = esm_layer.self_attn.v_proj.bias

        if getattr(esm_layer.self_attn, "rot_emb", None) is not None:
            # Matt: Although inv_freq is not a trainable weight, it is computed at model init and cached.
            # During the training of ESM-2 the model was converted to float16 precision, which also converts
            # the inv_freq tensor, and the loss of precision remains even if the model is loaded later as float32.
            # If we recompute inv_freq without this loss of precision then we will get subtly different rotary
            # embeddings, which are enough to cause significant discrepancies in model outputs. To avoid this,
            # we make sure the new model copies the data from the old inv_freq.
            self_attn.rotary_embeddings.inv_freq.data = esm_layer.self_attn.rot_emb.inv_freq

        # LayerNorm changes for pre-activation
        layer.attention.LayerNorm.weight = esm_layer.self_attn_layer_norm.weight
        layer.attention.LayerNorm.bias = esm_layer.self_attn_layer_norm.bias
        layer.LayerNorm.weight = esm_layer.final_layer_norm.weight
        layer.LayerNorm.bias = esm_layer.final_layer_norm.bias

        # self-attention output
        self_output: EsmSelfOutput = layer.attention.output
        assert self_output.dense.weight.shape == esm_layer.self_attn.out_proj.weight.shape
        self_output.dense.weight = esm_layer.self_attn.out_proj.weight
        self_output.dense.bias = esm_layer.self_attn.out_proj.bias

        # intermediate
        intermediate: EsmIntermediate = layer.intermediate
        assert intermediate.dense.weight.shape == esm_layer.fc1.weight.shape
        intermediate.dense.weight = esm_layer.fc1.weight
        intermediate.dense.bias = esm_layer.fc1.bias

        # output
        bert_output: EsmOutput = layer.output
        assert bert_output.dense.weight.shape == esm_layer.fc2.weight.shape
        bert_output.dense.weight = esm_layer.fc2.weight
        bert_output.dense.bias = esm_layer.fc2.bias
        # end of layer

    if is_folding_model:
        model.esm_s_combine.data = esm.esm_s_combine.data
        model.af2_to_esm.data = esm.af2_to_esm.data
        transfer_and_check_weights(esm.embedding, model.embedding)
        transfer_and_check_weights(esm.esm_s_mlp, model.esm_s_mlp)
        transfer_and_check_weights(esm.trunk, model.trunk)
        transfer_and_check_weights(esm.distogram_head, model.distogram_head)
        transfer_and_check_weights(esm.ptm_head, model.ptm_head)
        transfer_and_check_weights(esm.lm_head, model.lm_head)
        transfer_and_check_weights(esm.lddt_head, model.lddt_head)

    elif classification_head:
        model.classifier.dense.weight = esm.esm.classification_heads["mnli"].dense.weight
        model.classifier.dense.bias = esm.classification_heads["mnli"].dense.bias
        model.classifier.out_proj.weight = esm.classification_heads["mnli"].out_proj.weight
        model.classifier.out_proj.bias = esm.classification_heads["mnli"].out_proj.bias
    else:
        # LM Head
        model.lm_head.dense.weight = esm.lm_head.dense.weight
        model.lm_head.dense.bias = esm.lm_head.dense.bias
        model.lm_head.layer_norm.weight = esm.lm_head.layer_norm.weight
        model.lm_head.layer_norm.bias = esm.lm_head.layer_norm.bias
        model.lm_head.decoder.weight = esm.lm_head.weight
        model.lm_head.bias = esm.lm_head.bias

    # Contact prediction head
    transfer_and_check_weights(esm.contact_head, model.esm.contact_head)

    # Prepare data (first 2 sequences from ESMStructuralSplitDataset superfamily / 4)
    if is_folding_model:
        # Folding models aren't trained on masked inputs and don't like mask tokens.
        sample_data = SAMPLE_DATA[:2]
    else:
        sample_data = SAMPLE_DATA

    if is_folding_model:
        hf_tokenizer = get_esmfold_tokenizer()
        hf_tokens = hf_tokenizer(
            [row[1] for row in sample_data], return_tensors="pt", padding=True, add_special_tokens=False
        )
        esmfold_aas, esmfold_mask, _, _, _ = esmfold_encode_sequences([row[1] for row in sample_data])
        success = torch.all(hf_tokens["input_ids"] == esmfold_aas) and torch.all(
            hf_tokens["attention_mask"] == esmfold_mask
        )
    else:
        # Let's check that we get the same results.
        batch_converter = alphabet.get_batch_converter()
        batch_labels, batch_strs, batch_tokens = batch_converter(sample_data)
        # Prepare tokenizer and make sure it matches
        with TemporaryDirectory() as tempdir:
            vocab = "\n".join(alphabet.all_toks)
            vocab_file = Path(tempdir) / "vocab.txt"
            vocab_file.write_text(vocab)
            hf_tokenizer = EsmTokenizer(vocab_file=str(vocab_file))

        hf_tokens = hf_tokenizer([row[1] for row in sample_data], return_tensors="pt", padding=True)
        success = torch.all(hf_tokens["input_ids"] == batch_tokens)

    print("Do both models tokenizers output the same tokens?", "🔥" if success else "💩")
    if not success:
        raise Exception("Tokenization does not match!")

    with torch.no_grad():
        if is_folding_model:
            # Let's test the model in parts
            # ESMFold always converts the ESM stem to float16, which requires float16 ops
            # that don't exist on CPU. Therefore, to test it we need to run it on GPU. However,
            # ESMFold is what we in the community call a "big boy" and so we desperately avoid putting both the
            # original and the converted model on the GPU at the same time.
            their_output = esm.cuda().infer([row[1] for row in sample_data])
            our_output = model.cuda()(
                input_ids=hf_tokens["input_ids"].cuda(), attention_mask=hf_tokens["attention_mask"].cuda()
            )
        else:
            our_output = model(**hf_tokens, output_hidden_states=True)
            our_output = our_output["logits"]
            if classification_head:
                their_output = esm.model.classification_heads["mnli"](esm.extract_features(batch_tokens))
            else:
                their_output = esm(hf_tokens["input_ids"], repr_layers=list(range(999)))
                their_output = their_output["logits"]

        if is_folding_model:
            max_absolute_diff = torch.max(torch.abs(our_output["positions"] - their_output["positions"])).item()
            success = torch.allclose(our_output["positions"], their_output["positions"], atol=1e-5)
        else:
            max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item()
            success = torch.allclose(our_output, their_output, atol=1e-5)

        print(f"max_absolute_diff = {max_absolute_diff}")  # ~ 1e-5
        print("Do both models output the same tensors?", "🔥" if success else "💩")

        if not success:
            raise Exception("Something went wRoNg")

        if not is_folding_model:
            # Let's check contact prediction too
            our_output = model.predict_contacts(hf_tokens["input_ids"], hf_tokens["attention_mask"])
            their_output = esm.predict_contacts(hf_tokens["input_ids"])
            max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item()
            success = torch.allclose(our_output, their_output, atol=1e-5)

            print("Contact prediction testing:")
            print(f"max_absolute_diff = {max_absolute_diff}")  # ~ 1e-5
            print("Do both models output the same tensors?", "🔥" if success else "💩")

            if not success:
                raise Exception("Something went wRoNg")

        pathlib.Path(pytorch_dump_folder_path).mkdir(parents=True, exist_ok=True)
        print(f"Saving model to {pytorch_dump_folder_path}")
        model.save_pretrained(pytorch_dump_folder_path)

        del esm  # Free up some memory before continuing

    print(f"Saving tokenizer to {pytorch_dump_folder_path}")
    hf_tokenizer.save_pretrained(pytorch_dump_folder_path)

    if push_to_repo:
        model.push_to_hub(repo_id=push_to_repo, token_token=auth_token)
        hf_tokenizer.push_to_hub(repo_id=push_to_repo, token_token=auth_token)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    # Required parameters
    parser.add_argument(
        "--pytorch_dump_folder_path", type=str, required=True, help="Path to the output PyTorch model."
    )
    parser.add_argument(
        "--classification_head", action="store_true", help="Whether to convert a final classification head."
    )
    parser.add_argument("--model", default=None, type=str, required=True, help="Name of model to convert.")
    parser.add_argument("--push_to_repo", type=str, help="Repo to upload to (including username!).")
    parser.add_argument("--auth_token", type=str, help="HuggingFace auth token.")
    args = parser.parse_args()
    convert_esm_checkpoint_to_pytorch(
        args.model, args.pytorch_dump_folder_path, args.classification_head, args.push_to_repo, args.auth_token
    )