File size: 10,450 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# coding=utf-8
# Copyright 2023 Adept AI and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Fuyu model configuration"""

import warnings

from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING


logger = logging.get_logger(__name__)


class FuyuConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`FuyuForCausalLM`]. It is used to instantiate an
    Fuyu model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a similar configuration to that of the
    [adept/fuyu-8b](https://huggingface.co/adept/fuyu-8b).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 262144):
            Vocabulary size of the Fuyu model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`FuyuForCausalLM`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 16384):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 36):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 64):
            Number of attention heads for each attention layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"relu2"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 16384):
            The maximum sequence length that this model might ever be used with.
        image_size (`int`, *optional*, defaults to 300):
            The input image size.
        patch_size (`int`, *optional*, defaults to 30):
            The input vision transformer encoding patch size.
        num_channels (`int`, *optional*, defaults to 3):
            The input image number of channels.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`. Whether to tie weight embeddings
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie input and output embeddings.
        rope_theta (`float`, *optional*, defaults to 25000.0):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
            strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
            `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
            `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
            these scaling strategies behave:
            https://www.reddit.com/r/LocalFuyu/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
            experimental feature, subject to breaking API changes in future versions.
        qk_layernorm (`bool`, *optional*, defaults to `True`):
            Whether or not to normalize the Queries and Keys after projecting the hidden states
        hidden_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio after applying the MLP to the hidden states.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio after computing the attention scores.
        partial_rotary_factor (`float`, *optional*, defaults to 0.5):
            Percentage of the query and keys which will have rotary embedding.

        pad_token_id (`int`, *optional*):
            The id of the *padding* token.
        bos_token_id (`int`, *optional*, defaults to 1):
            The id of the *beginning-of-sequence* token.
        eos_token_id (`Union[int, List[int]]`, *optional*, defaults to 2):
            The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
        text_config (`dict`, *optional*):
            Dictionary of configuration options used to initialize the `language``[`Aut`].

    ```python
    >>> from transformers import FuyuConfig

    >>> # Initializing a Fuyu fuyu-7b style configuration
    >>> configuration = FuyuConfig()
    ```"""

    model_type = "fuyu"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        vocab_size=262144,
        hidden_size=4096,
        intermediate_size=16384,
        num_hidden_layers=36,
        num_attention_heads=64,
        hidden_act="relu2",
        max_position_embeddings=16384,
        image_size=300,
        patch_size=30,
        num_channels=3,
        initializer_range=0.02,
        layer_norm_eps=1e-5,
        use_cache=True,
        tie_word_embeddings=False,
        rope_theta=25000.0,
        rope_scaling=None,
        qk_layernorm=True,
        hidden_dropout=0.0,
        attention_dropout=0.0,
        partial_rotary_factor=0.5,
        pad_token_id=None,
        bos_token_id=1,
        eos_token_id=2,
        text_config=None,
        **kwargs,
    ):
        if text_config is None:
            text_config = {
                "vocab_size": vocab_size,
                "max_position_embeddings": max_position_embeddings,
                "hidden_size": hidden_size,
                "intermediate_size": intermediate_size,
                "num_hidden_layers": num_hidden_layers,
                "num_attention_heads": num_attention_heads,
                "hidden_act": hidden_act,
                "initializer_range": initializer_range,
                "layer_norm_eps": layer_norm_eps,
                "use_cache": use_cache,
                "rope_theta": rope_theta,
                "rope_scaling": rope_scaling,
                "qk_layernorm": qk_layernorm,
                "hidden_dropout": hidden_dropout,
                "attention_dropout": attention_dropout,
                "partial_rotary_factor": partial_rotary_factor,
                "pad_token_id": pad_token_id,
                "bos_token_id": bos_token_id,
                "eos_token_id": eos_token_id,
                "tie_word_embeddings": tie_word_embeddings,
            }
            logger.info("text_config is None. initializing the text model with default values.")
        text_model_type = text_config["model_type"] if "model_type" in text_config else "persimmon"
        self.text_config = CONFIG_MAPPING[text_model_type](**text_config)

        self._vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.rope_scaling = rope_scaling
        self.qk_layernorm = qk_layernorm
        self.hidden_dropout = hidden_dropout
        self.attention_dropout = attention_dropout
        self.partial_rotary_factor = partial_rotary_factor
        self._rope_scaling_validation()

        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )

    def _rope_scaling_validation(self):
        """
        Validate the `rope_scaling` configuration.
        """
        if self.rope_scaling is None:
            return

        if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
            raise ValueError(
                "`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}"
            )
        rope_scaling_type = self.rope_scaling.get("type", None)
        rope_scaling_factor = self.rope_scaling.get("factor", None)
        if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
            raise ValueError(
                f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
            )
        if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
            raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")

    @property
    def vocab_size(self):
        warnings.warn(
            "The `vocab_size` attribute is deprecated and will be removed in v4.44, Please use `text_config.vocab_size` instead.",
            FutureWarning,
        )
        return self._vocab_size

    @vocab_size.setter
    def vocab_size(self, value):
        self._vocab_size = value

    def to_dict(self):
        output = super().to_dict()
        output.pop("_vocab_size", None)
        return output