File size: 31,929 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Image/Text processor class for GIT
"""
import re
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import PaddingStrategy, TruncationStrategy
from ...utils import TensorType, is_torch_available, logging, requires_backends
if is_torch_available():
from .image_processing_fuyu import FuyuBatchFeature
logger = logging.get_logger(__name__)
if is_torch_available():
import torch
TEXT_REPR_BBOX_OPEN = "<box>"
TEXT_REPR_BBOX_CLOSE = "</box>"
TEXT_REPR_POINT_OPEN = "<point>"
TEXT_REPR_POINT_CLOSE = "</point>"
TOKEN_BBOX_OPEN_STRING = "<0x00>" # <bbox>
TOKEN_BBOX_CLOSE_STRING = "<0x01>" # </bbox>
TOKEN_POINT_OPEN_STRING = "<0x02>" # <point>
TOKEN_POINT_CLOSE_STRING = "<0x03>" # </point>
BEGINNING_OF_ANSWER_STRING = "<0x04>" # <boa>
def full_unpacked_stream_to_tensor(
all_bi_tokens_to_place: List[int],
full_unpacked_stream: List["torch.Tensor"],
fill_value: int,
batch_size: int,
new_seq_len: int,
offset: int,
) -> "torch.Tensor":
"""Takes an unpacked stream of tokens (i.e. a list of tensors, one for each item in the batch) and does
the required padding to create a single tensor for the batch of shape batch_size x new_seq_len.
"""
assert len(all_bi_tokens_to_place) == batch_size
assert len(full_unpacked_stream) == batch_size
# Create padded tensors for the full batch.
new_padded_tensor = torch.full(
[batch_size, new_seq_len],
fill_value=fill_value,
dtype=full_unpacked_stream[0].dtype,
device=full_unpacked_stream[0].device,
)
# Place each batch entry into the batch tensor.
for bi in range(batch_size):
tokens_to_place = all_bi_tokens_to_place[bi]
new_padded_tensor[bi, :tokens_to_place] = full_unpacked_stream[bi][offset : tokens_to_place + offset]
return new_padded_tensor
def construct_full_unpacked_stream(
num_real_text_tokens: Union[List[List[int]], "torch.Tensor"],
input_stream: "torch.Tensor",
image_tokens: List[List["torch.Tensor"]],
batch_size: int,
num_sub_sequences: int,
) -> List["torch.Tensor"]:
"""Takes an input_stream tensor of shape B x S x ?. For each subsequence, adds any required
padding to account for images and then unpacks the subsequences to create a single sequence per item in the batch.
Returns a list of tensors, one for each item in the batch."""
all_bi_stream = []
for batch_index in range(batch_size):
all_si_stream = []
# First, construct full token stream (including image placeholder tokens) and loss mask for each subsequence
# and append to lists. We use lists rather than tensors because each subsequence is variable-sized.
# TODO Remove this logic in a subsequent release since subsequences are not supported.
image_adjustment = image_tokens[batch_index][0]
subsequence_stream = torch.cat([image_adjustment, input_stream[batch_index, 0]], dim=0)
num_real_tokens = image_adjustment.shape[0] + num_real_text_tokens[batch_index][0]
all_si_stream.append(subsequence_stream[:num_real_tokens])
all_bi_stream.append(torch.cat(all_si_stream, dim=0))
return all_bi_stream
def _replace_string_repr_with_token_tags(prompt: str) -> str:
prompt = prompt.replace(TEXT_REPR_POINT_OPEN, TOKEN_POINT_OPEN_STRING)
prompt = prompt.replace(TEXT_REPR_POINT_CLOSE, TOKEN_POINT_CLOSE_STRING)
prompt = prompt.replace(TEXT_REPR_BBOX_OPEN, TOKEN_BBOX_OPEN_STRING)
prompt = prompt.replace(TEXT_REPR_BBOX_CLOSE, TOKEN_BBOX_CLOSE_STRING)
return prompt
def _segment_prompt_into_text_token_conversions(prompt: str) -> List:
"""
Given a string prompt, converts the prompt into a list of TextTokenConversions.
"""
# Wherever, we notice the [TOKEN_OPEN_STRING, TOKEN_CLOSE_STRING], we split the prompt
prompt_text_list: List = []
regex_pattern = re.compile(
f"({TOKEN_BBOX_OPEN_STRING}|{TOKEN_BBOX_CLOSE_STRING}|{TOKEN_POINT_OPEN_STRING}|{TOKEN_POINT_CLOSE_STRING})"
)
# Split by the regex pattern
prompt_split = regex_pattern.split(prompt)
for i, elem in enumerate(prompt_split):
if len(elem) == 0 or elem in [
TOKEN_BBOX_OPEN_STRING,
TOKEN_BBOX_CLOSE_STRING,
TOKEN_POINT_OPEN_STRING,
TOKEN_POINT_CLOSE_STRING,
]:
continue
prompt_text_list.append(
(elem, i > 1 and prompt_split[i - 1] in [TOKEN_BBOX_OPEN_STRING, TOKEN_POINT_OPEN_STRING])
)
return prompt_text_list
def _transform_coordinates_and_tokenize(prompt: str, scale_factor: float, tokenizer) -> List[int]:
"""
This function transforms the prompt in the following fashion:
- <box> <point> and </box> </point> to their respective token mappings
- extract the coordinates from the tag
- transform the coordinates into the transformed image space
- return the prompt tokens with the transformed coordinates and new tags
Bounding boxes and points MUST be in the following format: <box>y1, x1, y2, x2</box> <point>x, y</point> The spaces
and punctuation added above are NOT optional.
"""
# Make a namedtuple that stores "text" and "is_bbox"
# We want to do the following: Tokenize the code normally -> when we see a point or box, tokenize using the tokenize_within_tag function
# When point or box close tag, continue tokenizing normally
# First, we replace the point and box tags with their respective tokens
prompt = _replace_string_repr_with_token_tags(prompt)
# Tokenize the prompt
# Convert prompt into a list split
prompt_text_list = _segment_prompt_into_text_token_conversions(prompt)
transformed_prompt_tokens: List[int] = []
for elem in prompt_text_list:
if elem[1]:
# This is a location, we need to tokenize it
within_tag_tokenized = _transform_within_tags(elem[0], scale_factor, tokenizer)
# Surround the text with the open and close tags
transformed_prompt_tokens.extend(within_tag_tokenized)
else:
transformed_prompt_tokens.extend(tokenizer(elem[0], add_special_tokens=False).input_ids)
return transformed_prompt_tokens
def _transform_within_tags(text: str, scale_factor: float, tokenizer) -> List[int]:
"""
Given a bounding box of the fashion <box>1, 2, 3, 4</box> | <point>1, 2</point> This function is responsible for
converting 1, 2, 3, 4 into tokens of 1 2 3 4 without any commas.
"""
# Convert the text into a list of strings.
num_int_strs = text.split(",")
if len(num_int_strs) == 2:
# If there are any open or close tags, remove them.
token_space_open_string = tokenizer.vocab[TOKEN_POINT_OPEN_STRING]
token_space_close_string = tokenizer.vocab[TOKEN_POINT_CLOSE_STRING]
else:
token_space_open_string = tokenizer.vocab[TOKEN_BBOX_OPEN_STRING]
token_space_close_string = tokenizer.vocab[TOKEN_BBOX_CLOSE_STRING]
# Remove all spaces from num_ints
num_ints = [float(num.strip()) for num in num_int_strs]
# scale to transformed image siz
if len(num_ints) == 2:
num_ints_translated = scale_point_to_transformed_image(x=num_ints[0], y=num_ints[1], scale_factor=scale_factor)
elif len(num_ints) == 4:
num_ints_translated = scale_bbox_to_transformed_image(
top=num_ints[0],
left=num_ints[1],
bottom=num_ints[2],
right=num_ints[3],
scale_factor=scale_factor,
)
else:
raise ValueError(f"Invalid number of ints: {len(num_ints)}")
# Tokenize the text, skipping the
tokens = [tokenizer.vocab[str(num)] for num in num_ints_translated]
return [token_space_open_string] + tokens + [token_space_close_string]
def _tokenize_prompts_with_image_and_batch(
tokenizer,
prompts: List[List[str]],
scale_factors: Optional[List[List["torch.Tensor"]]],
max_tokens_to_generate: int,
max_position_embeddings: int,
add_BOS: bool, # Same issue with types as above
add_beginning_of_answer_token: bool,
) -> Tuple["torch.Tensor", "torch.Tensor"]:
"""
Given a set of prompts and number of tokens to generate:
- tokenize prompts
- set the sequence length to be the max of length of prompts plus the number of tokens we would like to generate
- pad all the sequences to this length so we can convert them into a 3D tensor.
"""
# If not tool use, tranform the coordinates while tokenizing
if scale_factors is not None:
transformed_prompt_tokens = []
for prompt_seq, scale_factor_seq in zip(prompts, scale_factors):
transformed_prompt_tokens.append(
[
_transform_coordinates_and_tokenize(prompt, scale_factor.item(), tokenizer)
for prompt, scale_factor in zip(prompt_seq, scale_factor_seq)
]
)
else:
transformed_prompt_tokens = [[tokenizer.tokenize(prompt) for prompt in prompt_seq] for prompt_seq in prompts]
prompts_tokens = transformed_prompt_tokens
if add_BOS:
bos_token = tokenizer.vocab["<s>"]
else:
bos_token = tokenizer.vocab["|ENDOFTEXT|"]
prompts_tokens = [[[bos_token] + x for x in prompt_seq] for prompt_seq in prompts_tokens]
if add_beginning_of_answer_token:
boa = tokenizer.vocab[BEGINNING_OF_ANSWER_STRING]
# Only add bbox open token to the last subsequence since that is what will be completed
for token_seq in prompts_tokens:
token_seq[-1].append(boa)
# Now we have a list of list of tokens which each list has a different
# size. We want to extend this list to:
# - incorporate the tokens that need to be generated
# - make all the sequences equal length.
# Get the prompts length.
prompts_length = [[len(x) for x in prompts_tokens_seq] for prompts_tokens_seq in prompts_tokens]
# Get the max prompts length.
max_prompt_len: int = np.max(prompts_length)
# Number of tokens in the each sample of the batch.
samples_length = min(max_prompt_len + max_tokens_to_generate, max_position_embeddings)
if max_prompt_len + max_tokens_to_generate > max_position_embeddings:
logger.warning(
f"Max subsequence prompt length of {max_prompt_len} + max tokens to generate {max_tokens_to_generate}",
f"exceeds context length of {max_position_embeddings}. Will generate as many tokens as possible.",
)
# Now update the list of list to be of the same size: samples_length.
for prompt_tokens_seq, prompts_length_seq in zip(prompts_tokens, prompts_length):
for prompt_tokens, prompt_length in zip(prompt_tokens_seq, prompts_length_seq):
if len(prompt_tokens) > samples_length:
raise ValueError("Length of subsequence prompt exceeds sequence length.")
padding_size = samples_length - prompt_length
prompt_tokens.extend([tokenizer.vocab["|ENDOFTEXT|"]] * padding_size)
# Now we are in a structured format, we can convert to tensors.
prompts_tokens_tensor = torch.tensor(prompts_tokens, dtype=torch.int64)
prompts_length_tensor = torch.tensor(prompts_length, dtype=torch.int64)
return prompts_tokens_tensor, prompts_length_tensor
# Simplified assuming self.crop_top = self.padding_top = 0
def original_to_transformed_h_coords(original_coords, scale_h):
return np.round(original_coords * scale_h).astype(np.int32)
# Simplified assuming self.crop_left = self.padding_left = 0
def original_to_transformed_w_coords(original_coords, scale_w):
return np.round(original_coords * scale_w).astype(np.int32)
def scale_point_to_transformed_image(x: float, y: float, scale_factor: float) -> List[int]:
x_scaled = original_to_transformed_w_coords(np.array([x / 2]), scale_factor)[0]
y_scaled = original_to_transformed_h_coords(np.array([y / 2]), scale_factor)[0]
return [x_scaled, y_scaled]
def scale_bbox_to_transformed_image(
top: float, left: float, bottom: float, right: float, scale_factor: float
) -> List[int]:
top_scaled = original_to_transformed_w_coords(np.array([top / 2]), scale_factor)[0]
left_scaled = original_to_transformed_h_coords(np.array([left / 2]), scale_factor)[0]
bottom_scaled = original_to_transformed_w_coords(np.array([bottom / 2]), scale_factor)[0]
right_scaled = original_to_transformed_h_coords(np.array([right / 2]), scale_factor)[0]
return [top_scaled, left_scaled, bottom_scaled, right_scaled]
class FuyuProcessor(ProcessorMixin):
r"""
Constructs a Fuyu processor which wraps a Fuyu image processor and a Llama tokenizer into a single processor.
[`FuyuProcessor`] offers all the functionalities of [`FuyuImageProcessor`] and [`LlamaTokenizerFast`]. See the
[`~FuyuProcessor.__call__`] and [`~FuyuProcessor.decode`] for more information.
Args:
image_processor ([`FuyuImageProcessor`]):
The image processor is a required input.
tokenizer ([`LlamaTokenizerFast`]):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
valid_kwargs = []
image_processor_class = "FuyuImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(self, image_processor, tokenizer, **kwargs):
super().__init__(image_processor=image_processor, tokenizer=tokenizer)
self.image_processor = image_processor
self.tokenizer = tokenizer
self.max_tokens_to_generate = 10
self.max_position_embeddings = 16384 # TODO Can't derive this from model files: where to set it?
self.pad_token_id = 0
self.dummy_image_index = -1
def _left_pad_inputs_with_attention_mask(self, model_inputs: List[Dict], return_attention_mask: bool):
max_length_input_ids = max(entry["input_ids"].shape[1] for entry in model_inputs)
max_length_image_patch_indices = max(entry["image_patches_indices"].shape[1] for entry in model_inputs)
batched_inputs = {"input_ids": [], "image_patches": [], "image_patches_indices": [], "attention_mask": []}
for entry in model_inputs:
for key, tensor in entry.items():
if key == "input_ids":
num_padding_tokens = max_length_input_ids - tensor.shape[1]
padded_input_ids = torch.cat(
[
torch.full((tensor.shape[0], num_padding_tokens), self.pad_token_id, dtype=torch.long),
tensor,
],
dim=1,
)
batched_inputs[key].append(padded_input_ids)
attention_mask = torch.cat(
[torch.zeros(tensor.shape[0], num_padding_tokens, dtype=torch.long), torch.ones_like(tensor)],
dim=1,
)
batched_inputs["attention_mask"].append(attention_mask)
elif key == "image_patches":
# For image_patches, we don't pad but just append them to the list.
batched_inputs[key].append(tensor)
else: # for image_patches_indices
num_padding_indices = max_length_image_patch_indices - tensor.shape[1]
padded_indices = torch.cat(
[
torch.full(
(tensor.shape[0], num_padding_indices), self.dummy_image_index, dtype=torch.long
),
tensor,
],
dim=1,
)
batched_inputs[key].append(padded_indices)
batched_keys = ["input_ids", "image_patches_indices"]
if return_attention_mask:
batched_keys.append("attention_mask")
for key in batched_keys:
batched_inputs[key] = torch.cat(batched_inputs[key], dim=0)
return batched_inputs
def get_sample_encoding(
self,
prompts,
scale_factors,
image_unpadded_heights,
image_unpadded_widths,
image_placeholder_id,
image_newline_id,
tensor_batch_images,
):
image_present = torch.ones(1, 1, 1)
model_image_input = self.image_processor.preprocess_with_tokenizer_info(
image_input=tensor_batch_images,
image_present=image_present,
image_unpadded_h=image_unpadded_heights,
image_unpadded_w=image_unpadded_widths,
image_placeholder_id=image_placeholder_id,
image_newline_id=image_newline_id,
variable_sized=True,
)
# FIXME max_tokens_to_generate is embedded into this processor's call.
prompt_tokens, prompts_length = _tokenize_prompts_with_image_and_batch(
tokenizer=self.tokenizer,
prompts=prompts,
scale_factors=scale_factors,
max_tokens_to_generate=self.max_tokens_to_generate,
max_position_embeddings=self.max_position_embeddings,
add_BOS=True,
add_beginning_of_answer_token=True,
)
image_padded_unpacked_tokens = construct_full_unpacked_stream(
num_real_text_tokens=prompts_length,
input_stream=prompt_tokens,
image_tokens=model_image_input["image_input_ids"],
batch_size=1,
num_sub_sequences=self.subsequence_length,
)
# Construct inputs for image patch indices.
unpacked_image_patch_indices_per_batch = construct_full_unpacked_stream(
num_real_text_tokens=prompts_length,
input_stream=torch.full_like(prompt_tokens, -1),
image_tokens=model_image_input["image_patch_indices_per_batch"],
batch_size=1,
num_sub_sequences=self.subsequence_length,
)
max_prompt_length = max(x.shape[-1] for x in image_padded_unpacked_tokens)
max_seq_len_batch = min(max_prompt_length + self.max_tokens_to_generate, self.max_position_embeddings)
tokens_to_place = min(max_seq_len_batch, max(0, image_padded_unpacked_tokens[0].shape[0]))
# Use same packing logic for the image patch indices.
image_patch_input_indices = full_unpacked_stream_to_tensor(
all_bi_tokens_to_place=[tokens_to_place],
full_unpacked_stream=unpacked_image_patch_indices_per_batch,
fill_value=-1,
batch_size=1,
new_seq_len=max_seq_len_batch,
offset=0,
)
image_patches_tensor = torch.stack([img[0] for img in model_image_input["image_patches"]])
batch_encoding = {
"input_ids": image_padded_unpacked_tokens[0].unsqueeze(0),
"image_patches": image_patches_tensor,
"image_patches_indices": image_patch_input_indices,
}
return batch_encoding
def __call__(
self,
text=None,
images=None,
add_special_tokens: bool = True,
return_attention_mask: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_token_type_ids: bool = False,
return_length: bool = False,
verbose: bool = True,
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs,
) -> "FuyuBatchFeature":
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to
encode the text. To prepare the image(s), this method forwards the `images` and `kwargs` arguments to
FuyuImageProcessor's [`~FuyuImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
of the above two methods for more information.
Args:
text (`str`, `List[str]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `List[PIL.Image.Image]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
Returns:
[`FuyuBatchEncoding`]: A [`FuyuBatchEncoding`] with the following fields:
- **input_ids** -- Tensor of token ids to be fed to a model. Returned when `text` is not `None`.
- **image_patches** -- List of Tensor of image patches. Returned when `images` is not `None`.
- **image_patches_indices** -- Tensor of indices where patch embeddings have to be inserted by the model.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model when
`return_attention_mask=True`.
"""
requires_backends(self, ["torch"])
# --- Check input validity ---
if not return_attention_mask:
raise ValueError("`return_attention_mask=False` is not supported for this model.")
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be None.")
if text is not None and images is None:
logger.warning("You are processing a text with no associated image. Make sure it is intended.")
self.current_processor = self.tokenizer
text_encoding = self.tokenizer(
text=text,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_token_type_ids=return_token_type_ids,
return_length=return_length,
verbose=verbose,
return_tensors=return_tensors,
**kwargs,
)
return text_encoding
if text is None and images is not None:
logger.warning("You are processing an image with no associated text. Make sure it is intended.")
prompts = [[""]]
if text is not None and images is not None:
if isinstance(text, str):
prompts = [[text]]
elif isinstance(text, list):
prompts = [[text_seq] for text_seq in text]
# --- Preprocess images using self.image_processor ---
# FIXME - We hard code "pt" here because the rest of the processing assumes torch tensors
image_encoding = self.image_processor.preprocess(images, return_tensors="pt")
batch_images = image_encoding["images"]
image_unpadded_heights = image_encoding["image_unpadded_heights"]
image_unpadded_widths = image_encoding["image_unpadded_widths"]
scale_factors = image_encoding["image_scale_factors"]
self.subsequence_length = 1 # Each batch contains only one sequence.
self.batch_size = len(batch_images)
# --- Use self.tokenizer to get the ids of special tokens to insert into image ids ---
image_placeholder_id = self.tokenizer("|SPEAKER|", add_special_tokens=False)["input_ids"][1]
image_newline_id = self.tokenizer("|NEWLINE|", add_special_tokens=False)["input_ids"][1]
tensor_batch_images = torch.stack([img[0] for img in batch_images]).unsqueeze(1)
# --- Use self.image_processor again to obtain the full token ids and batch inputs ---
all_encodings = []
for prompt, scale_factor, image_unpadded_height, image_unpadded_width, tensor_batch_image in zip(
prompts, scale_factors, image_unpadded_heights, image_unpadded_widths, tensor_batch_images
):
sample_encoding = self.get_sample_encoding(
prompts=[prompt],
scale_factors=[scale_factor],
image_unpadded_heights=torch.tensor([image_unpadded_height]),
image_unpadded_widths=torch.tensor([image_unpadded_width]),
image_placeholder_id=image_placeholder_id,
image_newline_id=image_newline_id,
tensor_batch_images=tensor_batch_image.unsqueeze(0),
)
all_encodings.append(sample_encoding)
batch_encoding = self._left_pad_inputs_with_attention_mask(
model_inputs=all_encodings, return_attention_mask=return_attention_mask
)
return FuyuBatchFeature(data=batch_encoding)
def post_process_box_coordinates(self, outputs, target_sizes=None):
"""
Transforms raw coordinates detected by [`FuyuForCausalLM`] to the original images' coordinate space.
Coordinates will be returned in "box" format, with the following pattern:
`<box>top, left, bottom, right</box>`
Point coordinates are not supported yet.
Args:
outputs ([`GenerateOutput`]):
Raw outputs from `generate`.
target_sizes (`torch.Tensor`, *optional*):
Tensor of shape (batch_size, 2) where each entry is the (height, width) of the corresponding image in
the batch. If set, found coordinates in the output sequence are rescaled to the target sizes. If left
to None, coordinates will not be rescaled.
Returns:
`GenerateOutput`: Same output type returned by `generate`, with output token ids replaced with
boxed and possible rescaled coordinates.
"""
def scale_factor_to_fit(original_size, target_size=None):
height, width = original_size
if target_size is None:
max_height = self.image_processor.size["height"]
max_width = self.image_processor.size["width"]
else:
max_height, max_width = target_size
if width <= max_width and height <= max_height:
return 1.0
return min(max_height / height, max_width / width)
def find_delimiters_pair(tokens, start_token, end_token):
start_id = self.tokenizer.convert_tokens_to_ids(start_token)
end_id = self.tokenizer.convert_tokens_to_ids(end_token)
starting_positions = (tokens == start_id).nonzero(as_tuple=True)[0]
ending_positions = (tokens == end_id).nonzero(as_tuple=True)[0]
if torch.any(starting_positions) and torch.any(ending_positions):
return (starting_positions[0], ending_positions[0])
return (None, None)
def tokens_to_boxes(tokens, original_size):
while (pair := find_delimiters_pair(tokens, TOKEN_BBOX_OPEN_STRING, TOKEN_BBOX_CLOSE_STRING)) != (
None,
None,
):
start, end = pair
if end != start + 5:
continue
# Retrieve transformed coordinates from tokens
coords = self.tokenizer.convert_ids_to_tokens(tokens[start + 1 : end])
# Scale back to original image size and multiply by 2
scale = scale_factor_to_fit(original_size)
top, left, bottom, right = [2 * int(float(c) / scale) for c in coords]
# Replace the IDs so they get detokenized right
replacement = f" {TEXT_REPR_BBOX_OPEN}{top}, {left}, {bottom}, {right}{TEXT_REPR_BBOX_CLOSE}"
replacement = self.tokenizer.tokenize(replacement)[1:]
replacement = self.tokenizer.convert_tokens_to_ids(replacement)
replacement = torch.tensor(replacement).to(tokens)
tokens = torch.cat([tokens[:start], replacement, tokens[end + 1 :]], 0)
return tokens
def tokens_to_points(tokens, original_size):
while (pair := find_delimiters_pair(tokens, TOKEN_POINT_OPEN_STRING, TOKEN_POINT_CLOSE_STRING)) != (
None,
None,
):
start, end = pair
if end != start + 3:
continue
# Retrieve transformed coordinates from tokens
coords = self.tokenizer.convert_ids_to_tokens(tokens[start + 1 : end])
# Scale back to original image size and multiply by 2
scale = scale_factor_to_fit(original_size)
x, y = [2 * int(float(c) / scale) for c in coords]
# Replace the IDs so they get detokenized right
replacement = f" {TEXT_REPR_POINT_OPEN}{x}, {y}{TEXT_REPR_POINT_CLOSE}"
replacement = self.tokenizer.tokenize(replacement)[1:]
replacement = self.tokenizer.convert_tokens_to_ids(replacement)
replacement = torch.tensor(replacement).to(tokens)
tokens = torch.cat([tokens[:start], replacement, tokens[end + 1 :]], 0)
return tokens
if target_sizes is None:
target_sizes = ((self.image_processor.size["height"], self.image_processor.size["width"]),) * len(outputs)
elif target_sizes.shape[1] != 2:
raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch")
if len(outputs) != len(target_sizes):
raise ValueError("Make sure that you pass in as many target sizes as output sequences")
results = []
for seq, size in zip(outputs, target_sizes):
seq = tokens_to_boxes(seq, size)
seq = tokens_to_points(seq, size)
results.append(seq)
return results
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
|