File size: 5,971 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# coding=utf-8
# Copyright 2022 KAIST and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""GLPN model configuration"""

from ...configuration_utils import PretrainedConfig
from ...utils import logging


logger = logging.get_logger(__name__)


class GLPNConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`GLPNModel`]. It is used to instantiate an GLPN
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the GLPN
    [vinvino02/glpn-kitti](https://huggingface.co/vinvino02/glpn-kitti) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        num_encoder_blocks (`int`, *optional*, defaults to 4):
            The number of encoder blocks (i.e. stages in the Mix Transformer encoder).
        depths (`List[int]`, *optional*, defaults to `[2, 2, 2, 2]`):
            The number of layers in each encoder block.
        sr_ratios (`List[int]`, *optional*, defaults to `[8, 4, 2, 1]`):
            Sequence reduction ratios in each encoder block.
        hidden_sizes (`List[int]`, *optional*, defaults to `[32, 64, 160, 256]`):
            Dimension of each of the encoder blocks.
        patch_sizes (`List[int]`, *optional*, defaults to `[7, 3, 3, 3]`):
            Patch size before each encoder block.
        strides (`List[int]`, *optional*, defaults to `[4, 2, 2, 2]`):
            Stride before each encoder block.
        num_attention_heads (`List[int]`, *optional*, defaults to `[1, 2, 5, 8]`):
            Number of attention heads for each attention layer in each block of the Transformer encoder.
        mlp_ratios (`List[int]`, *optional*, defaults to `[4, 4, 4, 4]`):
            Ratio of the size of the hidden layer compared to the size of the input layer of the Mix FFNs in the
            encoder blocks.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        drop_path_rate (`float`, *optional*, defaults to 0.1):
            The dropout probability for stochastic depth, used in the blocks of the Transformer encoder.
        layer_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the layer normalization layers.
        decoder_hidden_size (`int`, *optional*, defaults to 64):
            The dimension of the decoder.
        max_depth (`int`, *optional*, defaults to 10):
            The maximum depth of the decoder.
        head_in_index (`int`, *optional*, defaults to -1):
            The index of the features to use in the head.

    Example:

    ```python
    >>> from transformers import GLPNModel, GLPNConfig

    >>> # Initializing a GLPN vinvino02/glpn-kitti style configuration
    >>> configuration = GLPNConfig()

    >>> # Initializing a model from the vinvino02/glpn-kitti style configuration
    >>> model = GLPNModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "glpn"

    def __init__(
        self,
        num_channels=3,
        num_encoder_blocks=4,
        depths=[2, 2, 2, 2],
        sr_ratios=[8, 4, 2, 1],
        hidden_sizes=[32, 64, 160, 256],
        patch_sizes=[7, 3, 3, 3],
        strides=[4, 2, 2, 2],
        num_attention_heads=[1, 2, 5, 8],
        mlp_ratios=[4, 4, 4, 4],
        hidden_act="gelu",
        hidden_dropout_prob=0.0,
        attention_probs_dropout_prob=0.0,
        initializer_range=0.02,
        drop_path_rate=0.1,
        layer_norm_eps=1e-6,
        decoder_hidden_size=64,
        max_depth=10,
        head_in_index=-1,
        **kwargs,
    ):
        super().__init__(**kwargs)

        self.num_channels = num_channels
        self.num_encoder_blocks = num_encoder_blocks
        self.depths = depths
        self.sr_ratios = sr_ratios
        self.hidden_sizes = hidden_sizes
        self.patch_sizes = patch_sizes
        self.strides = strides
        self.mlp_ratios = mlp_ratios
        self.num_attention_heads = num_attention_heads
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.initializer_range = initializer_range
        self.drop_path_rate = drop_path_rate
        self.layer_norm_eps = layer_norm_eps
        self.decoder_hidden_size = decoder_hidden_size
        self.max_depth = max_depth
        self.head_in_index = head_in_index