File size: 67,760 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
# coding=utf-8
# Copyright 2022 NVIDIA and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch GroupViT model."""

import collections.abc
import math
from dataclasses import dataclass
from typing import Any, Optional, Tuple, Union

import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn

from ...activations import ACT2FN
from ...modeling_attn_mask_utils import _create_4d_causal_attention_mask, _prepare_4d_attention_mask
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
from ...modeling_utils import PreTrainedModel
from ...utils import (
    ModelOutput,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)
from .configuration_groupvit import GroupViTConfig, GroupViTTextConfig, GroupViTVisionConfig


logger = logging.get_logger(__name__)

_CHECKPOINT_FOR_DOC = "nvidia/groupvit-gcc-yfcc"


# contrastive loss function, adapted from
# https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
    return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))


# Copied from transformers.models.clip.modeling_clip.clip_loss with clip->groupvit
def groupvit_loss(similarity: torch.Tensor) -> torch.Tensor:
    caption_loss = contrastive_loss(similarity)
    image_loss = contrastive_loss(similarity.t())
    return (caption_loss + image_loss) / 2.0


def hard_softmax(logits: torch.Tensor, dim: int):
    y_soft = logits.softmax(dim)
    # Straight through.
    index = y_soft.max(dim, keepdim=True)[1]
    y_hard = torch.zeros_like(logits, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0)
    ret = y_hard - y_soft.detach() + y_soft

    return ret


def gumbel_softmax(logits: torch.Tensor, tau: float = 1, hard: bool = False, dim: int = -1) -> torch.Tensor:
    # more stable https://github.com/pytorch/pytorch/issues/41663
    gumbel_dist = torch.distributions.gumbel.Gumbel(
        torch.tensor(0.0, device=logits.device, dtype=logits.dtype),
        torch.tensor(1.0, device=logits.device, dtype=logits.dtype),
    )
    gumbels = gumbel_dist.sample(logits.shape)

    gumbels = (logits + gumbels) / tau  # ~Gumbel(logits,tau)
    y_soft = gumbels.softmax(dim)

    if hard:
        # Straight through.
        index = y_soft.max(dim, keepdim=True)[1]
        y_hard = torch.zeros_like(logits, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0)
        ret = y_hard - y_soft.detach() + y_soft
    else:
        # Reparametrization trick.
        ret = y_soft
    return ret


def resize_attention_map(attentions, height, width, align_corners=False):
    """
    Args:
        attentions (`torch.Tensor`): attention map of shape [batch_size, groups, feat_height*feat_width]
        height (`int`): height of the output attention map
        width (`int`): width of the output attention map
        align_corners (`bool`, *optional*): the `align_corner` argument for `nn.functional.interpolate`.

    Returns:
        `torch.Tensor`: resized attention map of shape [batch_size, groups, height, width]
    """

    scale = (height * width // attentions.shape[2]) ** 0.5
    if height > width:
        feat_width = int(np.round(width / scale))
        feat_height = attentions.shape[2] // feat_width
    else:
        feat_height = int(np.round(height / scale))
        feat_width = attentions.shape[2] // feat_height

    batch_size = attentions.shape[0]
    groups = attentions.shape[1]  # number of group token
    # [batch_size, groups, height*width, groups] -> [batch_size, groups, height, width]
    attentions = attentions.reshape(batch_size, groups, feat_height, feat_width)
    attentions = nn.functional.interpolate(
        attentions, size=(height, width), mode="bilinear", align_corners=align_corners
    )
    return attentions


def get_grouping_from_attentions(attentions, hw_shape):
    """
    Args:
        attentions (`tuple(torch.FloatTensor)`: tuple of attention maps returned by `GroupViTVisionTransformer`
        hw_shape (`tuple(int)`): height and width of the output attention map
    Returns:
        `torch.Tensor`: the attention map of shape [batch_size, groups, height, width]
    """

    attn_maps = []
    with torch.no_grad():
        prev_attn_masks = None
        for attn_masks in attentions:
            # [batch_size, num_groups, height x width] -> [batch_size, height x width, num_groups]
            attn_masks = attn_masks.permute(0, 2, 1).contiguous()
            if prev_attn_masks is None:
                prev_attn_masks = attn_masks
            else:
                prev_attn_masks = prev_attn_masks @ attn_masks
            # [batch_size, heightxwidth, num_groups] -> [batch_size, num_groups, heightxwidth] -> [batch_size, num_groups, height, width]
            cur_attn_map = resize_attention_map(prev_attn_masks.permute(0, 2, 1).contiguous(), *hw_shape)
            attn_maps.append(cur_attn_map)

    # [batch_size, num_groups, height, width]
    final_grouping = attn_maps[-1]

    return final_grouping


class GroupViTCrossAttentionLayer(nn.Module):
    def __init__(self, config: GroupViTVisionConfig):
        super().__init__()
        self.attn = GroupViTAttention(config)
        self.norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.mlp = GroupViTMLP(config)
        self.norm_post = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

    def forward(self, query, key):
        x = query
        x = x + self.attn(query, encoder_hidden_states=key)[0]
        x = x + self.mlp(self.norm2(x))
        x = self.norm_post(x)
        return x


class GroupViTAssignAttention(nn.Module):
    def __init__(self, config: GroupViTVisionConfig):
        super().__init__()
        self.scale = config.hidden_size**-0.5

        self.q_proj = nn.Linear(config.hidden_size, config.hidden_size)
        self.k_proj = nn.Linear(config.hidden_size, config.hidden_size)
        self.v_proj = nn.Linear(config.hidden_size, config.hidden_size)
        self.proj = nn.Linear(config.hidden_size, config.hidden_size)
        self.assign_eps = config.assign_eps

    def get_attn(self, attn, gumbel=True, hard=True):
        if gumbel and self.training:
            attn = gumbel_softmax(attn, dim=-2, hard=hard)
        else:
            if hard:
                attn = hard_softmax(attn, dim=-2)
            else:
                attn = nn.functional.softmax(attn, dim=-2)

        return attn

    def forward(self, query, key):
        value = key
        # [batch_size, query_length, channels]
        query = self.q_proj(query)

        # [batch_size, key_length, channels]
        key = self.k_proj(key)

        # [batch_size, key_length, channels]
        value = self.v_proj(value)

        # [batch_size, query_length, key_length]
        raw_attn = (query @ key.transpose(-2, -1)) * self.scale

        attn = self.get_attn(raw_attn)
        soft_attn = self.get_attn(raw_attn, gumbel=False, hard=False)

        attn = attn / (attn.sum(dim=-1, keepdim=True) + self.assign_eps)

        out = attn @ value

        out = self.proj(out)

        return out, soft_attn


class GroupViTTokenAssign(nn.Module):
    def __init__(self, config: GroupViTVisionConfig, num_group_token, num_output_group):
        super().__init__()
        self.num_output_group = num_output_group
        # norm on group_tokens
        self.norm_tokens = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        assign_mlp_ratio = (
            config.assign_mlp_ratio
            if isinstance(config.assign_mlp_ratio, collections.abc.Iterable)
            else (config.assign_mlp_ratio, config.assign_mlp_ratio)
        )
        tokens_dim, channels_dim = [int(x * config.hidden_size) for x in assign_mlp_ratio]
        self.mlp_inter = GroupViTMixerMLP(config, num_group_token, tokens_dim, num_output_group)
        self.norm_post_tokens = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        # norm on x
        self.norm_x = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.pre_assign_attn = GroupViTCrossAttentionLayer(config)

        self.assign = GroupViTAssignAttention(config)
        self.norm_new_x = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.mlp_channels = GroupViTMLP(config, config.hidden_size, channels_dim, config.hidden_size)

    def project_group_token(self, group_tokens):
        """
        Args:
            group_tokens (torch.Tensor): group tokens, [batch_size, num_group_tokens, channels]

        Returns:
            projected_group_tokens (torch.Tensor): [batch_size, num_output_groups, channels]
        """
        # [B, num_output_groups, C] <- [B, num_group_tokens, C]
        projected_group_tokens = self.mlp_inter(group_tokens)
        projected_group_tokens = self.norm_post_tokens(projected_group_tokens)
        return projected_group_tokens

    def forward(self, image_tokens, group_tokens):
        """
        Args:
            image_tokens (`torch.Tensor`): image tokens, of shape [batch_size, input_length, channels]
            group_tokens (`torch.Tensor`): group tokens, [batch_size, num_group_tokens, channels]
        """

        group_tokens = self.norm_tokens(group_tokens)
        image_tokens = self.norm_x(image_tokens)
        # [batch_size, num_output_groups, channels]
        projected_group_tokens = self.project_group_token(group_tokens)
        projected_group_tokens = self.pre_assign_attn(projected_group_tokens, image_tokens)
        new_image_tokens, attention = self.assign(projected_group_tokens, image_tokens)
        new_image_tokens += projected_group_tokens

        new_image_tokens = new_image_tokens + self.mlp_channels(self.norm_new_x(new_image_tokens))

        return new_image_tokens, attention


@dataclass
class GroupViTModelOutput(ModelOutput):
    """
    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
            Contrastive loss for image-text similarity.
        logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
            The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
            similarity scores.
        logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
            The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
            similarity scores.
        segmentation_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels, logits_height, logits_width)`):
            Classification scores for each pixel.

            <Tip warning={true}>

            The logits returned do not necessarily have the same size as the `pixel_values` passed as inputs. This is
            to avoid doing two interpolations and lose some quality when a user needs to resize the logits to the
            original image size as post-processing. You should always check your logits shape and resize as needed.

            </Tip>

        text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
            The text embeddings obtained by applying the projection layer to the pooled output of
            [`GroupViTTextModel`].
        image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
            The image embeddings obtained by applying the projection layer to the pooled output of
            [`GroupViTVisionModel`].
        text_model_output (`BaseModelOutputWithPooling`):
            The output of the [`GroupViTTextModel`].
        vision_model_output (`BaseModelOutputWithPooling`):
            The output of the [`GroupViTVisionModel`].
    """

    loss: Optional[torch.FloatTensor] = None
    logits_per_image: torch.FloatTensor = None
    logits_per_text: torch.FloatTensor = None
    segmentation_logits: torch.FloatTensor = None
    text_embeds: torch.FloatTensor = None
    image_embeds: torch.FloatTensor = None
    text_model_output: BaseModelOutputWithPooling = None
    vision_model_output: BaseModelOutputWithPooling = None

    def to_tuple(self) -> Tuple[Any]:
        return tuple(
            self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
            for k in self.keys()
        )


class GroupViTPatchEmbeddings(nn.Module):
    """
    Image to Patch Embedding.
    """

    def __init__(
        self,
        image_size: int = 224,
        patch_size: Union[int, Tuple[int, int]] = 16,
        num_channels: int = 3,
        embed_dim: int = 768,
    ):
        super().__init__()
        image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
        patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
        num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_patches = num_patches

        self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=patch_size)

    def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor:
        batch_size, num_channels, height, width = pixel_values.shape
        if not interpolate_pos_encoding:
            if height != self.image_size[0] or width != self.image_size[1]:
                raise ValueError(
                    f"Input image size ({height}*{width}) doesn't match model"
                    f" ({self.image_size[0]}*{self.image_size[1]})."
                )
        x = self.projection(pixel_values).flatten(2).transpose(1, 2)
        return x


class GroupViTVisionEmbeddings(nn.Module):
    def __init__(self, config: GroupViTVisionConfig):
        super().__init__()

        self.patch_embeddings = GroupViTPatchEmbeddings(
            image_size=config.image_size,
            patch_size=config.patch_size,
            num_channels=config.num_channels,
            embed_dim=config.hidden_size,
        )
        num_patches = self.patch_embeddings.num_patches
        self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches, config.hidden_size))
        self.dropout = nn.Dropout(config.dropout)
        self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.config = config

    def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
        """
        This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
        resolution images.

        Source:
        https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
        """

        npatch = embeddings.shape[1]
        if npatch == self.position_embeddings.shape[1] and height == width:
            return self.position_embeddings
        patch_pos_embed = self.position_embeddings
        num_original_pos_embed = patch_pos_embed.shape[1]
        dim = embeddings.shape[-1]
        feat_height = height // self.config.patch_size
        feat_width = width // self.config.patch_size
        # we add a small number to avoid floating point error in the interpolation
        # see discussion at https://github.com/facebookresearch/dino/issues/8
        feat_height, feat_width = feat_height + 0.1, feat_width + 0.1
        original_height = original_width = math.sqrt(num_original_pos_embed)
        reshaped_patch_pos_embed = patch_pos_embed.reshape(1, int(original_height), int(original_width), dim).permute(
            0, 3, 1, 2
        )
        scale_factor = (feat_height / original_height, feat_width / original_width)
        patch_pos_embed = nn.functional.interpolate(
            reshaped_patch_pos_embed,
            scale_factor=scale_factor,
            mode="bicubic",
            align_corners=False,
        )
        patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
        return patch_pos_embed

    def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor:
        batch_size, num_channels, height, width = pixel_values.shape
        embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)

        embeddings = self.layernorm(embeddings)

        batch_size, seq_len, _ = embeddings.size()

        # add positional encoding to each token
        if interpolate_pos_encoding:
            embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
        else:
            embeddings = embeddings + self.position_embeddings

        embeddings = self.dropout(embeddings)

        return embeddings


# Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->GroupViT
class GroupViTTextEmbeddings(nn.Module):
    def __init__(self, config: GroupViTTextConfig):
        super().__init__()
        embed_dim = config.hidden_size

        self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
        self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)

        # position_ids (1, len position emb) is contiguous in memory and exported when serialized
        self.register_buffer(
            "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
        )

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
    ) -> torch.Tensor:
        seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]

        if position_ids is None:
            position_ids = self.position_ids[:, :seq_length]

        if inputs_embeds is None:
            inputs_embeds = self.token_embedding(input_ids)

        position_embeddings = self.position_embedding(position_ids)
        embeddings = inputs_embeds + position_embeddings

        return embeddings


class GroupViTStage(nn.Module):
    """This corresponds to the `GroupingLayer` class in the GroupViT implementation."""

    def __init__(
        self,
        config: GroupViTVisionConfig,
        depth: int,
        num_prev_group_token: int,
        num_group_token: int,
        num_output_group: int,
    ):
        super().__init__()
        self.depth = depth
        self.num_group_token = num_group_token
        if num_group_token > 0:
            self.group_token = nn.Parameter(torch.zeros(1, num_group_token, config.hidden_size))
        else:
            self.group_token = None
        self.layers = nn.ModuleList([GroupViTEncoderLayer(config) for _ in range(depth)])

        if num_group_token > 0:
            self.downsample = GroupViTTokenAssign(
                config=config,
                num_group_token=num_group_token,
                num_output_group=num_output_group,
            )
        else:
            self.downsample = None

        if num_prev_group_token > 0 and num_group_token > 0:
            self.group_projector = nn.Sequential(
                nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps),
                GroupViTMixerMLP(config, num_prev_group_token, config.hidden_size // 2, num_group_token),
            )
        else:
            self.group_projector = None

    @property
    def with_group_token(self):
        return self.group_token is not None

    def split_x(self, x):
        if self.with_group_token:
            return x[:, : -self.num_group_token], x[:, -self.num_group_token :]
        else:
            return x, None

    def concat_x(self, x: torch.Tensor, group_token: Optional[torch.Tensor] = None) -> torch.Tensor:
        if group_token is None:
            return x
        return torch.cat([x, group_token], dim=1)

    def forward(
        self,
        hidden_states: torch.Tensor,
        prev_group_token: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.FloatTensor]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
                `(config.encoder_attention_heads,)`.
            output_attentions (`bool`, *optional*):
                Whether or not to return the grouping tensors of Grouping block.
        """
        if self.with_group_token:
            group_token = self.group_token.expand(hidden_states.size(0), -1, -1)
            if self.group_projector is not None:
                group_token = group_token + self.group_projector(prev_group_token)
        else:
            group_token = None

        x = hidden_states

        cat_x = self.concat_x(x, group_token)
        for layer in self.layers:
            layer_out = layer(cat_x, attention_mask=None, causal_attention_mask=None)
            cat_x = layer_out[0]

        x, group_token = self.split_x(cat_x)

        attention = None
        if self.downsample is not None:
            x, attention = self.downsample(x, group_token)

        outputs = (x, group_token)
        if output_attentions:
            outputs = outputs + (attention,)

        return outputs


class GroupViTMLP(nn.Module):
    def __init__(
        self,
        config: GroupViTVisionConfig,
        hidden_size: Optional[int] = None,
        intermediate_size: Optional[int] = None,
        output_size: Optional[int] = None,
    ):
        super().__init__()
        self.config = config
        self.activation_fn = ACT2FN[config.hidden_act]
        hidden_size = hidden_size if hidden_size is not None else config.hidden_size
        intermediate_size = intermediate_size if intermediate_size is not None else config.intermediate_size
        output_size = output_size if output_size is not None else hidden_size
        self.fc1 = nn.Linear(hidden_size, intermediate_size)
        self.fc2 = nn.Linear(intermediate_size, output_size)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.fc1(hidden_states)
        hidden_states = self.activation_fn(hidden_states)
        hidden_states = self.fc2(hidden_states)
        return hidden_states


class GroupViTMixerMLP(GroupViTMLP):
    def forward(self, x):
        x = super().forward(x.transpose(1, 2))
        return x.transpose(1, 2)


class GroupViTAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(self, config):
        super().__init__()
        self.config = config
        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_heads
        if self.head_dim * self.num_heads != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
                f" {self.num_heads})."
            )
        self.scale = self.head_dim**-0.5
        self.dropout = config.attention_dropout

        self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
        self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)

    def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
        return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        causal_attention_mask: Optional[torch.Tensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """Input shape: Batch x Time x Channel"""

        bsz, tgt_len, embed_dim = hidden_states.size()
        is_cross_attention = encoder_hidden_states is not None

        # get query proj
        query_states = self.q_proj(hidden_states) * self.scale
        if is_cross_attention:
            key_states = self._shape(self.k_proj(encoder_hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(encoder_hidden_states), -1, bsz)
        else:
            key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
            value_states = self._shape(self.v_proj(hidden_states), -1, bsz)

        proj_shape = (bsz * self.num_heads, -1, self.head_dim)
        query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
        key_states = key_states.view(*proj_shape)
        value_states = value_states.view(*proj_shape)

        src_len = key_states.size(1)
        attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))

        if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
            raise ValueError(
                f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
                f" {attn_weights.size()}"
            )

        # apply the causal_attention_mask first
        if causal_attention_mask is not None:
            if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
                    f" {causal_attention_mask.size()}"
                )
            attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        if attention_mask is not None:
            if attention_mask.size() != (bsz, 1, tgt_len, src_len):
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
                )
            attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
            attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)

        attn_weights = nn.functional.softmax(attn_weights, dim=-1)

        if output_attentions:
            # this operation is a bit akward, but it's required to
            # make sure that attn_weights keeps its gradient.
            # In order to do so, attn_weights have to reshaped
            # twice and have to be reused in the following
            attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
            attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
        else:
            attn_weights_reshaped = None

        attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)

        attn_output = torch.bmm(attn_probs, value_states)

        if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
            raise ValueError(
                f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
                f" {attn_output.size()}"
            )

        attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
        attn_output = attn_output.transpose(1, 2)
        attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)

        attn_output = self.out_proj(attn_output)

        return attn_output, attn_weights_reshaped


# Copied from transformers.models.altclip.modeling_altclip.AltCLIPEncoderLayer with AltCLIP->GroupViT
class GroupViTEncoderLayer(nn.Module):
    def __init__(self, config: GroupViTConfig):
        super().__init__()
        self.embed_dim = config.hidden_size
        self.self_attn = GroupViTAttention(config)
        self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
        self.mlp = GroupViTMLP(config)
        self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        causal_attention_mask: torch.Tensor,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[torch.FloatTensor]:
        """
        Args:
            hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`torch.FloatTensor`): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
                `(config.encoder_attention_heads,)`.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
        """
        residual = hidden_states

        hidden_states = self.layer_norm1(hidden_states)
        hidden_states, attn_weights = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            causal_attention_mask=causal_attention_mask,
            output_attentions=output_attentions,
        )
        hidden_states = residual + hidden_states

        residual = hidden_states
        hidden_states = self.layer_norm2(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attn_weights,)

        return outputs


class GroupViTPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = GroupViTConfig
    base_model_prefix = "groupvit"
    supports_gradient_checkpointing = True

    def _init_weights(self, module):
        """Initialize the weights"""

        init_range = self.config.initializer_range
        if isinstance(module, (nn.Linear, nn.Conv2d)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=init_range)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)

        factor = self.config.initializer_factor
        if isinstance(module, GroupViTTextEmbeddings):
            module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
            module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
        elif isinstance(module, GroupViTAttention):
            factor = self.config.initializer_factor
            in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
            out_proj_std = (module.embed_dim**-0.5) * factor
            nn.init.normal_(module.q_proj.weight, std=in_proj_std)
            nn.init.normal_(module.k_proj.weight, std=in_proj_std)
            nn.init.normal_(module.v_proj.weight, std=in_proj_std)
            nn.init.normal_(module.out_proj.weight, std=out_proj_std)
        elif isinstance(module, GroupViTMLP):
            factor = self.config.initializer_factor
            in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
            fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
            nn.init.normal_(module.fc1.weight, std=fc_std)
            nn.init.normal_(module.fc2.weight, std=in_proj_std)


GROUPVIT_START_DOCSTRING = r"""
    This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
    as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
    behavior.

    Parameters:
        config ([`GroupViTConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

GROUPVIT_TEXT_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`CLIPTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.max_position_embeddings - 1]`.

            [What are position IDs?](../glossary#position-ids)
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""

GROUPVIT_VISION_INPUTS_DOCSTRING = r"""
    Args:
        pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
            [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""

GROUPVIT_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`CLIPTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.max_position_embeddings - 1]`.

            [What are position IDs?](../glossary#position-ids)
        pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
            Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
            [`CLIPImageProcessor.__call__`] for details.
        return_loss (`bool`, *optional*):
            Whether or not to return the contrastive loss.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


class GroupViTVisionEncoder(nn.Module):
    def __init__(self, config: GroupViTVisionConfig) -> None:
        super().__init__()
        self.config = config
        self.stages = nn.ModuleList(
            [
                GroupViTStage(
                    config=config,
                    depth=config.depths[i],
                    num_group_token=config.num_group_tokens[i],
                    num_output_group=config.num_output_groups[i],
                    num_prev_group_token=config.num_output_groups[i - 1] if i > 0 else 0,
                )
                for i in range(len(config.depths))
            ]
        )
        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states: torch.Tensor,
        output_hidden_states: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[tuple, BaseModelOutput]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        all_hidden_states = () if output_hidden_states else None
        all_groupings = () if output_attentions else None

        group_tokens = None

        for i, stage in enumerate(self.stages):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_outputs = stage(hidden_states, group_tokens, output_attentions)

            hidden_states = layer_outputs[0]
            group_tokens = layer_outputs[1]

            if output_attentions and layer_outputs[2] is not None:
                all_groupings = all_groupings + (layer_outputs[2],)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states, all_groupings] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_groupings
        )


class GroupViTTextEncoder(nn.Module):
    """
    Transformer encoder consisting of `config.num_hidden_layers` self-attention layers. Each layer is a
    [`GroupViTEncoderLayer`].

    Args:
        config: GroupViTTextConfig
    """

    def __init__(self, config: GroupViTTextConfig):
        super().__init__()
        self.config = config
        self.layers = nn.ModuleList([GroupViTEncoderLayer(config) for _ in range(config.num_hidden_layers)])
        self.gradient_checkpointing = False

    def forward(
        self,
        inputs_embeds,
        attention_mask: Optional[torch.Tensor] = None,
        causal_attention_mask: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutput]:
        r"""
        Args:
            inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
                Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
                This is useful if you want more control over how to convert `input_ids` indices into associated vectors
                than the model's internal embedding lookup matrix.
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Causal mask for the text model. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        encoder_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None

        hidden_states = inputs_embeds
        for idx, encoder_layer in enumerate(self.layers):
            if output_hidden_states:
                encoder_states = encoder_states + (hidden_states,)
            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    encoder_layer.__call__,
                    hidden_states,
                    attention_mask,
                    causal_attention_mask,
                    output_attentions,
                )
            else:
                layer_outputs = encoder_layer(
                    hidden_states,
                    attention_mask,
                    causal_attention_mask,
                    output_attentions=output_attentions,
                )

            hidden_states = layer_outputs[0]

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        if output_hidden_states:
            encoder_states = encoder_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
        )


class GroupViTTextTransformer(nn.Module):
    def __init__(self, config: GroupViTTextConfig):
        super().__init__()
        self.config = config
        embed_dim = config.hidden_size
        self.embeddings = GroupViTTextEmbeddings(config)
        self.encoder = GroupViTTextEncoder(config)
        self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)

        # For `pooled_output` computation
        self.eos_token_id = config.eos_token_id

    @add_start_docstrings_to_model_forward(GROUPVIT_TEXT_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=GroupViTTextConfig)
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPooling]:
        r"""
        Returns:

        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is None:
            raise ValueError("You have to specify input_ids")

        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_shape[-1])

        hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)

        # CLIP's text model uses causal mask, prepare it here.
        # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
        causal_attention_mask = _create_4d_causal_attention_mask(
            input_shape, hidden_states.dtype, device=hidden_states.device
        )

        # expand attention_mask
        if attention_mask is not None:
            # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
            attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)

        encoder_outputs = self.encoder(
            inputs_embeds=hidden_states,
            attention_mask=attention_mask,
            causal_attention_mask=causal_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        last_hidden_state = encoder_outputs[0]
        last_hidden_state = self.final_layer_norm(last_hidden_state)

        if self.eos_token_id == 2:
            # The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here.
            # A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added
            # ------------------------------------------------------------
            # text_embeds.shape = [batch_size, sequence_length, transformer.width]
            # take features from the eot embedding (eot_token is the highest number in each sequence)
            # casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
            pooled_output = last_hidden_state[
                torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
                input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1),
            ]
        else:
            # The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible)
            pooled_output = last_hidden_state[
                torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
                # We need to get the first position of `eos_token_id` value (`pad_token_ids` might equal to `eos_token_id`)
                # Note: we assume each sequence (along batch dim.) contains an  `eos_token_id` (e.g. prepared by the tokenizer)
                (input_ids.to(dtype=torch.int, device=last_hidden_state.device) == self.eos_token_id)
                .int()
                .argmax(dim=-1),
            ]

        if not return_dict:
            return (last_hidden_state, pooled_output) + encoder_outputs[1:]

        return BaseModelOutputWithPooling(
            last_hidden_state=last_hidden_state,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )


class GroupViTTextModel(GroupViTPreTrainedModel):
    config_class = GroupViTTextConfig

    def __init__(self, config: GroupViTTextConfig):
        super().__init__(config)
        self.text_model = GroupViTTextTransformer(config)
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self) -> nn.Module:
        return self.text_model.embeddings.token_embedding

    def set_input_embeddings(self, value):
        self.text_model.embeddings.token_embedding = value

    @add_start_docstrings_to_model_forward(GROUPVIT_TEXT_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=GroupViTTextConfig)
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPooling]:
        r"""
        Returns:

        Examples:

        ```python
        >>> from transformers import CLIPTokenizer, GroupViTTextModel

        >>> tokenizer = CLIPTokenizer.from_pretrained("nvidia/groupvit-gcc-yfcc")
        >>> model = GroupViTTextModel.from_pretrained("nvidia/groupvit-gcc-yfcc")

        >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")

        >>> outputs = model(**inputs)
        >>> last_hidden_state = outputs.last_hidden_state
        >>> pooled_output = outputs.pooler_output  # pooled (EOS token) states
        ```"""
        return self.text_model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )


class GroupViTVisionTransformer(nn.Module):
    def __init__(self, config: GroupViTVisionConfig):
        super().__init__()
        self.config = config
        embed_dim = config.hidden_size

        self.embeddings = GroupViTVisionEmbeddings(config)
        self.encoder = GroupViTVisionEncoder(config)
        self.layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)

    @add_start_docstrings_to_model_forward(GROUPVIT_VISION_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=GroupViTVisionConfig)
    def forward(
        self,
        pixel_values: Optional[torch.FloatTensor] = None,
        output_hidden_states: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPooling]:
        r"""
        Returns:

        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if pixel_values is None:
            raise ValueError("You have to specify pixel_values")

        hidden_states = self.embeddings(pixel_values)

        encoder_outputs = self.encoder(
            hidden_states=hidden_states,
            output_hidden_states=output_hidden_states,
            output_attentions=output_attentions,
            return_dict=return_dict,
        )

        last_hidden_state = encoder_outputs[0]

        # normalize the last hidden state
        last_hidden_state = self.layernorm(last_hidden_state)
        pooled_output = last_hidden_state.mean(dim=1)

        if not return_dict:
            return (last_hidden_state, pooled_output) + encoder_outputs[1:]

        return BaseModelOutputWithPooling(
            last_hidden_state=last_hidden_state,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )


class GroupViTVisionModel(GroupViTPreTrainedModel):
    config_class = GroupViTVisionConfig
    main_input_name = "pixel_values"

    def __init__(self, config: GroupViTVisionConfig):
        super().__init__(config)
        self.vision_model = GroupViTVisionTransformer(config)
        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self) -> GroupViTPatchEmbeddings:
        return self.vision_model.embeddings.patch_embeddings

    @add_start_docstrings_to_model_forward(GROUPVIT_VISION_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=GroupViTVisionConfig)
    def forward(
        self,
        pixel_values: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPooling]:
        r"""
        Returns:

        Examples:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, GroupViTVisionModel

        >>> processor = AutoProcessor.from_pretrained("nvidia/groupvit-gcc-yfcc")
        >>> model = GroupViTVisionModel.from_pretrained("nvidia/groupvit-gcc-yfcc")

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = processor(images=image, return_tensors="pt")

        >>> outputs = model(**inputs)
        >>> last_hidden_state = outputs.last_hidden_state
        >>> pooled_output = outputs.pooler_output  # pooled CLS states
        ```"""
        return self.vision_model(
            pixel_values=pixel_values,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )


@add_start_docstrings(GROUPVIT_START_DOCSTRING)
class GroupViTModel(GroupViTPreTrainedModel):
    config_class = GroupViTConfig

    def __init__(self, config: GroupViTConfig):
        super().__init__(config)

        if not isinstance(config.text_config, GroupViTTextConfig):
            raise TypeError(
                "config.text_config is expected to be of type GroupViTTextConfig but is of type"
                f" {type(config.text_config)}."
            )

        if not isinstance(config.vision_config, GroupViTVisionConfig):
            raise TypeError(
                "config.vision_config is expected to be of type GroupViTVisionConfig but is of type"
                f" {type(config.vision_config)}."
            )

        text_config = config.text_config
        vision_config = config.vision_config

        self.projection_dim = config.projection_dim
        self.projection_intermediate_dim = config.projection_intermediate_dim
        self.text_embed_dim = text_config.hidden_size
        self.vision_embed_dim = vision_config.hidden_size

        self.text_model = GroupViTTextTransformer(text_config)
        self.vision_model = GroupViTVisionTransformer(vision_config)

        self.visual_projection = nn.Sequential(
            nn.Linear(self.vision_embed_dim, self.projection_intermediate_dim, bias=True),
            nn.BatchNorm1d(self.projection_intermediate_dim),
            nn.ReLU(inplace=True),
            nn.Linear(self.projection_intermediate_dim, self.projection_dim, bias=True),
        )
        self.text_projection = nn.Sequential(
            nn.Linear(self.text_embed_dim, self.projection_intermediate_dim, bias=True),
            nn.BatchNorm1d(self.projection_intermediate_dim),
            nn.ReLU(inplace=True),
            nn.Linear(self.projection_intermediate_dim, self.projection_dim, bias=True),
        )
        self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))

        # Initialize weights and apply final processing
        self.post_init()

    @add_start_docstrings_to_model_forward(GROUPVIT_TEXT_INPUTS_DOCSTRING)
    def get_text_features(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> torch.FloatTensor:
        r"""
        Returns:
            text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
            applying the projection layer to the pooled output of [`GroupViTTextModel`].

        Examples:

        ```python
        >>> from transformers import CLIPTokenizer, GroupViTModel

        >>> model = GroupViTModel.from_pretrained("nvidia/groupvit-gcc-yfcc")
        >>> tokenizer = CLIPTokenizer.from_pretrained("nvidia/groupvit-gcc-yfcc")

        >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
        >>> text_features = model.get_text_features(**inputs)
        ```"""
        # Use GROUPVIT model's config for some fields (if specified) instead of those of vision & text components.
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        text_outputs = self.text_model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        pooled_output = text_outputs[1]
        text_features = self.text_projection(pooled_output)

        return text_features

    @add_start_docstrings_to_model_forward(GROUPVIT_VISION_INPUTS_DOCSTRING)
    def get_image_features(
        self,
        pixel_values: Optional[torch.FloatTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> torch.FloatTensor:
        r"""
        Returns:
            image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
            applying the projection layer to the pooled output of [`GroupViTVisionModel`].

        Examples:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, GroupViTModel

        >>> model = GroupViTModel.from_pretrained("nvidia/groupvit-gcc-yfcc")
        >>> processor = AutoProcessor.from_pretrained("nvidia/groupvit-gcc-yfcc")

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = processor(images=image, return_tensors="pt")

        >>> image_features = model.get_image_features(**inputs)
        ```"""
        # Use GROUPVIT model's config for some fields (if specified) instead of those of vision & text components.
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        vision_outputs = self.vision_model(
            pixel_values=pixel_values,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        pooled_output = vision_outputs[1]  # pooled_output
        image_features = self.visual_projection(pooled_output)

        return image_features

    @add_start_docstrings_to_model_forward(GROUPVIT_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=GroupViTModelOutput, config_class=GroupViTConfig)
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        pixel_values: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        return_loss: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        output_segmentation: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, GroupViTModelOutput]:
        r"""
        Returns:

        Examples:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, GroupViTModel

        >>> model = GroupViTModel.from_pretrained("nvidia/groupvit-gcc-yfcc")
        >>> processor = AutoProcessor.from_pretrained("nvidia/groupvit-gcc-yfcc")

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = processor(
        ...     text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
        ... )

        >>> outputs = model(**inputs)
        >>> logits_per_image = outputs.logits_per_image  # this is the image-text similarity score
        >>> probs = logits_per_image.softmax(dim=1)  # we can take the softmax to get the label probabilities
        ```"""
        # Use GROUPVIT model's config for some fields (if specified) instead of those of vision & text components.
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_segmentation = (
            output_segmentation if output_segmentation is not None else self.config.output_segmentation
        )
        if output_segmentation:
            output_attentions = True
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        vision_outputs = self.vision_model(
            pixel_values=pixel_values,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        text_outputs = self.text_model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        image_embeds = vision_outputs[1]
        image_embeds = self.visual_projection(image_embeds)

        text_embeds = text_outputs[1]
        text_embeds = self.text_projection(text_embeds)

        # normalized features
        image_embeds = image_embeds / image_embeds.norm(dim=-1, keepdim=True)
        text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True)

        # cosine similarity as logits
        logit_scale = self.logit_scale.exp()
        logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
        logits_per_image = logits_per_text.t()

        seg_logits = None
        if output_segmentation:
            # grouped features
            # [batch_size_image, num_group, hidden_size]
            image_group_embeds = vision_outputs[0]
            # [batch_size_image*num_group, hidden_size]
            image_group_embeds = self.visual_projection(image_group_embeds.reshape(-1, image_group_embeds.shape[-1]))
            if output_hidden_states:
                attentions = vision_outputs[3]
            else:
                attentions = vision_outputs[2]
            # [batch_size_image, num_group, height, width]
            grouping = get_grouping_from_attentions(attentions, pixel_values.shape[2:])

            # normalized features
            image_group_embeds = image_group_embeds / image_group_embeds.norm(dim=-1, keepdim=True)
            # [batch_size_image x num_group, batch_size_text]
            logits_per_image_group = torch.matmul(image_group_embeds, text_embeds.t()) * logit_scale
            # [batch_size_image, batch_size_text, num_group]
            logits_per_image_group = logits_per_image_group.reshape(
                image_embeds.shape[0], -1, text_embeds.shape[0]
            ).permute(0, 2, 1)

            # [batch_size_image, batch_size_text, height x width]
            flatten_grouping = grouping.reshape(grouping.shape[0], grouping.shape[1], -1)

            # [batch_size_image, batch_size_text, height, width]
            seg_logits = torch.matmul(logits_per_image_group, flatten_grouping) * logit_scale
            seg_logits = seg_logits.reshape(
                seg_logits.shape[0], seg_logits.shape[1], grouping.shape[2], grouping.shape[3]
            )

        loss = None
        if return_loss:
            loss = groupvit_loss(logits_per_text)

        if not return_dict:
            if seg_logits is not None:
                output = (
                    logits_per_image,
                    logits_per_text,
                    seg_logits,
                    text_embeds,
                    image_embeds,
                    text_outputs,
                    vision_outputs,
                )
            else:
                output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
            return ((loss,) + output) if loss is not None else output

        return GroupViTModelOutput(
            loss=loss,
            logits_per_image=logits_per_image,
            logits_per_text=logits_per_text,
            segmentation_logits=seg_logits,
            text_embeds=text_embeds,
            image_embeds=image_embeds,
            text_model_output=text_outputs,
            vision_model_output=vision_outputs,
        )