File size: 9,291 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Hiera model configuration"""

from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices


logger = logging.get_logger(__name__)


class HieraConfig(BackboneConfigMixin, PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`HieraModel`]. It is used to instantiate a Hiera
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the Hiera
    [facebook/hiera-base-224](https://huggingface.co/facebook/hiera-base-224) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        embed_dim (`int`, *optional*, defaults to 96):
            Dimensionality of patch embedding.
        image_size (`list(int)`, *optional*, defaults to `[224, 224]`):
            The size (resolution) of input in the format (height, width) for images
            and (frames, height, width) for videos.
        patch_size (`list(int)`, *optional*, defaults to `[7, 7]`):
            The size (resolution) of each patch.
        patch_stride (`list(int)`, *optional*, defaults to `[4, 4]`):
            The stride of the patch.
        patch_padding (`list(int)`, *optional*, defaults to `[3, 3]`):
            The padding of the patch.
        mlp_ratio (`float`, *optional*, defaults to 4.0):
            The ratio of mlp hidden dim to embedding dim.
        depths (`list(int)`, *optional*, defaults to `[2, 3, 16, 3]`):
            Depth of each layer in the Transformer encoder.
        num_heads (`list(int)`, *optional*, defaults to `[1, 2, 4, 8]`):
            Number of attention heads in each layer of the Transformer encoder.
        embed_dim_multiplier (`float`, *optional*, defaults to 2.0):
            The multiplier to the dimensionality of patch embedding in each layer of the Transformer encoder.
        num_query_pool (`int`, *optional*, defaults to 3):
            The number of query pool stages.
        query_stride (`list(int)`, *optional*, defaults to `[2, 2]`):
            The stride of the query pool.
        masked_unit_size (`list(int)`, *optional*, defaults to `[8, 8]`):
            The size of the masked unit.
        masked_unit_attention (`list(bool)`, *optional*, defaults to `[True, True, False, False]`):
            Whether to use masked unit attention in each layer of the Transformer encoder.
        drop_path_rate (`float`, *optional*, defaults to 0.0):
            The drop path rate.
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        hidden_act (`str`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`,
            `"selu"` and `"gelu_new"` are supported.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices and
            the zero_initializer for initializing all bias vectors.
        layer_norm_init (`float`, *optional*, defaults to 1.0):
            The initial weight value for layer normalization layers.
        layer_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the layer normalization layers.
        decoder_hidden_size (`int`, *optional*):
            Dimensionality of decoder embeddings for MAE pretraining.
        decoder_depth (`int`, *optional*):
            Depth of the decoder for MAE pretraining.
        decoder_num_heads (`int`, *optional*):
            Number of attention heads in each layer of the decoder for MAE pretraining.
        normalize_pixel_loss (`bool`, *optional*, defaults to `True`):
            Whether to normalize the pixel loss by the number of pixels.
        mask_ratio (`float`, *optional*, defaults to 0.6):
            The ratio of masked tokens in the input.
        out_features (`List[str]`, *optional*):
            If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
            (depending on how many stages the model has). If unset and `out_indices` is set, will default to the
            corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
            same order as defined in the `stage_names` attribute.
        out_indices (`List[int]`, *optional*):
            If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
            many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
            If unset and `out_features` is unset, will default to the last stage. Must be in the
            same order as defined in the `stage_names` attribute.


    Example:

    ```python
    >>> from transformers import HieraConfig, HieraModel

    >>> # Initializing a Hiera hiera-base-patch16-224 style configuration
    >>> configuration = HieraConfig()

    >>> # Initializing a model (with random weights) from the hiera-base-patch16-224 style configuration
    >>> model = HieraModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "hiera"

    attribute_map = {"num_hidden_layers": "num_layers"}

    def __init__(
        self,
        embed_dim=96,
        image_size=[224, 224],
        patch_size=[7, 7],
        patch_stride=[4, 4],
        patch_padding=[3, 3],
        mlp_ratio=4.0,
        depths=[2, 3, 16, 3],
        num_heads=[1, 2, 4, 8],
        embed_dim_multiplier=2.0,
        num_query_pool=3,
        query_stride=[2, 2],
        masked_unit_size=[8, 8],
        masked_unit_attention=[True, True, False, False],
        drop_path_rate=0.0,
        num_channels=3,
        hidden_act="gelu",
        initializer_range=0.02,
        layer_norm_init=1.0,
        layer_norm_eps=1e-6,
        decoder_hidden_size=None,
        decoder_depth=None,
        decoder_num_heads=None,
        normalize_pixel_loss=True,
        mask_ratio=0.6,
        out_features=None,
        out_indices=None,
        **kwargs,
    ):
        super().__init__(**kwargs)
        if masked_unit_size[0] % query_stride[0] ** (len(depths) - 1) != 0:
            raise ValueError(
                f"masked_unit_size[0] ({masked_unit_size[0]}) must be divisible by query_stride[0] ({query_stride[0]}) "
                f"raised to the power of the number of layers ({len(depths) - 1})"
            )

        if num_query_pool >= len(depths):
            raise ValueError(
                f"num_query_pool ({num_query_pool}) must be less than the number of layers ({len(depths)})"
            )

        self.embed_dim = embed_dim
        self.image_size = image_size
        self.patch_size = patch_size
        self.patch_stride = patch_stride
        self.patch_padding = patch_padding
        self.mlp_ratio = mlp_ratio
        self.depths = depths
        self.num_heads = num_heads
        self.num_layers = len(depths)
        self.embed_dim_multiplier = embed_dim_multiplier
        self.num_query_pool = num_query_pool
        self.query_stride = query_stride
        self.masked_unit_size = masked_unit_size
        self.masked_unit_attention = masked_unit_attention
        self.drop_path_rate = drop_path_rate
        self.num_channels = num_channels
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.layer_norm_init = layer_norm_init
        self.layer_norm_eps = layer_norm_eps
        self.decoder_hidden_size = decoder_hidden_size
        self.decoder_depth = decoder_depth
        self.decoder_num_heads = decoder_num_heads
        self.normalize_pixel_loss = normalize_pixel_loss
        self.mask_ratio = mask_ratio
        # we set the hidden_size attribute in order to make Hiera work with VisionEncoderDecoderModel
        # this indicates the channel dimension after the last stage of the model
        self.hidden_size = int(embed_dim * embed_dim_multiplier ** (len(depths) - 1))
        self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)]
        self._out_features, self._out_indices = get_aligned_output_features_output_indices(
            out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
        )