File size: 9,433 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# This code was adapted from https://github.com/lucidrains/flamingo-pytorch licensed under the MIT License.
#
# MIT License
#
# Copyright (c) 2020 The Google AI Language Team Authors, The HuggingFace Inc. team and github/lonePatient
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
"""
Generic interface to various configurations of the Perceiver Resampler, that simply takes in a series of (potentially
time-indexed) contextual embeddings, and "resamples" (compresses) them down to a pre-specified number of latents! Note
that the Perceiver in general resamples based solely off the *long-range* context; there's a nice opportunity here to
prime the Perceiver Resampler with say a single layer's worth of language embeddings (the target domain), and use that
to softly "retrieve & compress" what we need --> this would be a novel contribution we should explore.
References:
- DeepMind's Flamingo: https://www.deepmind.com/blog/tackling-multiple-tasks-with-a-single-visual-language-model
- Code borrowed w/ love from: https://github.com/lucidrains/flamingo-pytorch
"""
from typing import Optional, Tuple
import torch
import torch.nn as nn
from .configuration_idefics import IdeficsConfig
class IdeficsPerceiverResampler(nn.Module):
def __init__(
self, config: IdeficsConfig, embed_dim: int, depth: int, n_heads: int, head_dim: int, n_latents: int
) -> None:
"""
Instantiates a Perceiver Resampler that operates over a sequence of embeddings (say from a ResNet or ViT or
MAE) of a given dimension, performs `depth` blocks of cross-attention with a fixed `n_latents` inputs, then
returns a Tensor of shape [bsz, n_latents, embed_dim]. :param embed_dim: Dimensionality of embeddings being fed
to the Perceiver Resampler (also dimensionality of latent embeddings *returned* by the Perceiver Resampler.
Could be e.g., VIT embed_dim, ResNet pool dim, and so on.
Args:
config (`IdeficsConfig`): config object
embed_dim (`int`): The size of each embedding vector
depth (`int`): Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3).
n_heads (`int`): Number of heads in each Transformer block (for multi-headed self-attention).
head_dim (`int`): Dimensionality of each head projection in the Transformer block.
n_latents (`int`):
Number of latent embeddings to resample ("compress") the input sequence to (usually < 128).
"""
super().__init__()
self.embed_dim, self.n_heads, self.head_dim, self.n_latents = embed_dim, n_heads, head_dim, n_latents
self.qk_layer_norms = config.perceiver_config.qk_layer_norms_perceiver
# Create Latents for Perceiver
self.latents = nn.Parameter(torch.randn(self.n_latents, self.embed_dim), requires_grad=True)
self.intermediate_dim = (
self.embed_dim * 4
if not hasattr(config.vision_config, "embed_dim")
else config.vision_config.embed_dim * 4
)
# Create Transformer Blocks
self.blocks = nn.ModuleList(
[
nn.ModuleList(
[
IdeficsPerceiverAttention(self.embed_dim, self.n_heads, self.head_dim, self.qk_layer_norms),
IdeficsMLP(self.intermediate_dim, config),
]
)
for _ in range(depth)
]
)
self.layer_norm = nn.LayerNorm(self.embed_dim)
def forward(self, context: torch.Tensor) -> torch.Tensor:
"""Resample arbitrary length context & *compress* down to self.n_latents latent embeddings"""
# einsum.repeat(self.latents, "seq embed -> bsz seq embed", bsz=context.shape[0])
latents = self.latents.repeat(context.shape[0], 1, 1)
# Feed through Perceiver Attention blocks...
for attn, ff in self.blocks:
latents = attn(context, latents) + latents
latents = ff(latents) + latents
return self.layer_norm(latents)
class IdeficsPerceiverAttention(nn.Module):
def __init__(self, embed_dim: int, n_heads: int, head_dim: int, qk_layer_norms: bool) -> None:
"""Perceiver Cross-Attention Module --> let long-form inputs be `context`, resampled embeddings be `latents`"""
super().__init__()
self.embed_dim, self.n_heads, self.head_dim = embed_dim, n_heads, head_dim
self.qk_layer_norms = qk_layer_norms
# Normalization & Scaling
self.context_layer_norm = nn.LayerNorm(self.embed_dim)
self.latents_layer_norm = nn.LayerNorm(self.embed_dim)
if self.qk_layer_norms:
self.q_layer_norm = nn.LayerNorm(self.head_dim)
self.k_layer_norm = nn.LayerNorm(self.head_dim)
self.qk_scale = self.head_dim**-0.5
# Q, K, V Projection (no bias -- detail from Perceiver/Flamingo Papers).
self.q_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False)
self.output_proj = nn.Linear(self.n_heads * self.head_dim, embed_dim, bias=False)
def forward(self, context: torch.Tensor, latents: torch.Tensor) -> torch.Tensor:
"""
Runs Perceiver Self-Attention, with special (context, latents) appended along the `seq` dimension!
Args:
context (`torch.Tensor`):
Tensor of shape `[bsz, seq, embed_dim]` representing long-form context to resample.
latents (`torch.Tensor`):
Tensor of shape `[bsz, n_latents, embed_dim]` representing fixed length latents to compress to.
Returns:
`torch.Tensor`: Tensor of shape `[bsz, n_latents, embed_dim]` representing attention over latents w/ cross
from context.
"""
context = self.context_layer_norm(context)
latents = self.latents_layer_norm(latents)
batch_size, seq_length, embed_dim = context.shape[:3]
# Query, Key, Value Projections --> Note that in Flamingo, latents are *concatenated* with context prior to attn!
# Note: This results in queries w/ `seq = n_latents`, and keys, values with `seq = len(context) + n_latents`
q = self.q_proj(latents)
k = self.k_proj(torch.cat([context, latents], dim=-2))
v = self.v_proj(torch.cat([context, latents], dim=-2))
# Multiheaded Self-Attention w/ stable softmax (subtract per-row max -- `amax` -- before softmax call)
# =>> `attn` should be a 2D matrix of shape [n_latents x (context + n_latents)]
# einsum.rearrange(x, "bsz seq (heads embed) -> bsz heads seq embed", heads=self.n_heads)
q, k, v = [x.reshape(batch_size, x.shape[1], self.n_heads, self.head_dim).transpose(1, 2) for x in (q, k, v)]
if self.qk_layer_norms:
q = self.q_layer_norm(q)
k = self.k_layer_norm(k)
scores = torch.einsum("... i d, ... j d -> ... i j", q * self.qk_scale, k)
stabilized_scores = scores - (scores.amax(dim=-1, keepdim=True).detach())
attn = stabilized_scores.softmax(dim=-1)
# Attend & project back to output...
resampled = torch.einsum("... i j, ... j d -> ... i d", attn, v)
# einsum.rearrange(resampled, "bsz heads seq embed -> bsz seq (heads embed)", heads=self.n_heads)
return self.output_proj(resampled.transpose(1, 2).flatten(-2))
class IdeficsMLP(nn.Module):
def __init__(self, intermediate_size, config: IdeficsConfig):
"""Simple MLP block with intermediate_size and embedding size"""
super().__init__()
self.embed_dim = config.vision_config.embed_dim
self.ln = nn.LayerNorm(self.embed_dim)
self.fc = nn.Linear(self.embed_dim, intermediate_size, bias=False)
self.act = nn.ReLU()
self.c_proj = nn.Linear(intermediate_size, self.embed_dim, bias=False)
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
hidden_states = self.ln(hidden_states)
hidden_states = self.fc(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.c_proj(hidden_states)
return hidden_states
|