File size: 10,006 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# This code was adapted from https://github.com/lucidrains/flamingo-pytorch licensed under the MIT License.
#
# MIT License
#
# Copyright (c) 2020  The Google AI Language Team Authors, The HuggingFace Inc. team and github/lonePatient
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.


"""

Generic interface to various configurations of the Perceiver Resampler, that simply takes in a series of (potentially
time-indexed) contextual embeddings, and "resamples" (compresses) them down to a pre-specified number of latents! Note
that the Perceiver in general resamples based solely off the *long-range* context; there's a nice opportunity here to
prime the Perceiver Resampler with say a single layer's worth of language embeddings (the target domain), and use that
to softly "retrieve & compress" what we need --> this would be a novel contribution we should explore.

References:
    - DeepMind's Flamingo: https://www.deepmind.com/blog/tackling-multiple-tasks-with-a-single-visual-language-model
    - Code borrowed w/ love from: https://github.com/lucidrains/flamingo-pytorch

"""

from typing import Optional, Tuple

import tensorflow as tf

from ...modeling_tf_utils import shape_list
from .configuration_idefics import IdeficsConfig


class TFIdeficsPerceiverResampler(tf.keras.layers.Layer):
    def __init__(
        self, config: IdeficsConfig, embed_dim: int, depth: int, n_heads: int, head_dim: int, n_latents: int, **kwargs
    ) -> None:
        """
        Instantiates a Perceiver Resampler that operates over a sequence of embeddings (say from a ResNet or ViT or
        MAE) of a given dimension, performs `depth` blocks of cross-attention with a fixed `n_latents` inputs, then
        returns a Tensor of shape [bsz, n_latents, embed_dim]. :param embed_dim: Dimensionality of embeddings being fed
        to the Perceiver Resampler (also dimensionality of latent embeddings *returned* by the Perceiver Resampler.
        Could be e.g., VIT embed_dim, ResNet pool dim, and so on.

        Args:
            config (`IdeficsConfig`): config object
            embed_dim (`int`): The size of each embedding vector
            depth (`int`): Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3).
            n_heads (`int`): Number of heads in each Transformer block (for multi-headed self-attention).
            head_dim (`int`): Dimensionality of each head projection in the Transformer block.
            n_latents (`int`):
                Number of latent embeddings to resample ("compress") the input sequence to (usually < 128).

        """
        super().__init__(**kwargs)
        self.embed_dim, self.n_heads, self.head_dim, self.n_latents = embed_dim, n_heads, head_dim, n_latents
        self.qk_layer_norms = config.perceiver_config.qk_layer_norms_perceiver

        self.intermediate_dim = (
            self.embed_dim * 4
            if not hasattr(config.vision_config, "embed_dim")
            else config.vision_config.embed_dim * 4
        )
        # Create Transformer Blocks
        self.blocks = []
        for i in range(depth):
            self.blocks.append(
                [
                    TFIdeficsPerceiverAttention(
                        self.embed_dim, self.n_heads, self.head_dim, self.qk_layer_norms, name=f"blocks.{i}.0"
                    ),
                    TFIdeficsMLP(self.intermediate_dim, config, name=f"blocks.{i}.1"),
                ]
            )

        self.layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm")

    def build(self, input_shape):
        # Create Latents for Perceiver
        self.latents = self.add_weight(
            shape=(self.n_latents, self.embed_dim), initializer="random_normal", trainable=True, name="latents"
        )
        super().build(input_shape)

    def call(self, context: tf.Tensor) -> tf.Tensor:
        """Resample arbitrary length context & *compress* down to self.n_latents latent embeddings"""
        # tf.repeat(self.latents, "seq embed -> bsz seq embed", bsz=context.shape[0])
        latents = tf.expand_dims(self.latents, axis=0)
        latents = tf.tile(latents, [tf.shape(context)[0], 1, 1])
        # Feed through Perceiver Attention blocks...
        for attn, ff in self.blocks:
            latents = attn(context, latents) + latents
            latents = ff(latents) + latents
        return self.layer_norm(latents)


class TFIdeficsPerceiverAttention(tf.keras.layers.Layer):
    def __init__(self, embed_dim: int, n_heads: int, head_dim: int, qk_layer_norms: bool, **kwargs) -> None:
        """Perceiver Cross-Attention Module --> let long-form inputs be `context`, resampled embeddings be `latents`"""
        super().__init__(**kwargs)
        self.embed_dim, self.n_heads, self.head_dim = embed_dim, n_heads, head_dim
        self.qk_layer_norms = qk_layer_norms
        # Normalization & Scaling
        self.context_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="context_layer_norm")
        self.latents_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="latents_layer_norm")
        if self.qk_layer_norms:
            self.q_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="q_layer_norm")
            self.k_layer_norm = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="k_layer_norm")

        self.qk_scale = self.head_dim**-0.5

        # Q, K, V Projection (no bias -- detail from Perceiver/Flamingo Papers).
        self.q_proj = tf.keras.layers.Dense(self.n_heads * self.head_dim, use_bias=False, name="q_proj")
        self.k_proj = tf.keras.layers.Dense(self.n_heads * self.head_dim, use_bias=False, name="k_proj")
        self.v_proj = tf.keras.layers.Dense(self.n_heads * self.head_dim, use_bias=False, name="v_proj")

        self.output_proj = tf.keras.layers.Dense(embed_dim, use_bias=False, name="output_proj")

    def call(self, context: tf.Tensor, latents: tf.Tensor) -> tf.Tensor:
        """
        Runs Perceiver Self-Attention, with special (context, latents) appended along the `seq` dimension!

        Args:
            context (`tf.Tensor`):
                Tensor of shape `[bsz, seq, embed_dim]` representing long-form context to resample.
            latents (`tf.Tensor`):
                Tensor of shape `[bsz, n_latents, embed_dim]` representing fixed length latents to compress to.

        Returns:
            `tf.Tensor`: Tensor of shape `[bsz, n_latents, embed_dim]` representing attention over latents w/ cross
            from context.
        """
        context = self.context_layer_norm(context)
        latents = self.latents_layer_norm(latents)
        batch_size, seq_length, embed_dim = shape_list(context)

        # Query, Key, Value Projections --> Note that in Flamingo, latents are *concatenated* with context prior to attn!
        #   Note: This results in queries w/ `seq = n_latents`, and keys, values with `seq = len(context) + n_latents`
        q = self.q_proj(latents)
        k = self.k_proj(tf.concat([context, latents], axis=-2))
        v = self.v_proj(tf.concat([context, latents], axis=-2))

        # Multiheaded Self-Attention w/ stable softmax (subtract per-row max -- `amax` -- before softmax call)
        #   =>> `attn` should be a 2D matrix of shape [n_latents x (context + n_latents)]
        q, k, v = [
            tf.transpose(tf.reshape(x, (batch_size, x.shape[1], self.n_heads, self.head_dim)), perm=[0, 2, 1, 3])
            for x in (q, k, v)
        ]

        if self.qk_layer_norms:
            q = self.q_layer_norm(q)
            k = self.k_layer_norm(k)

        scores = tf.einsum("... i d, ... j d -> ... i j", q * self.qk_scale, k)
        stabilized_scores = scores - tf.reduce_max(scores, axis=-1, keepdims=True)
        attn = tf.nn.softmax(stabilized_scores, axis=-1)

        # Attend & project back to output...
        resampled = tf.einsum("... i j, ... j d -> ... i d", attn, v)
        return self.output_proj(
            tf.reshape(tf.transpose(resampled, perm=[0, 2, 1, 3]), (batch_size, -1, self.n_heads * self.head_dim))
        )


class TFIdeficsMLP(tf.keras.layers.Layer):
    def __init__(self, intermediate_size, config: IdeficsConfig, **kwargs):
        """Simple MLP block with intermediate_size and embedding size"""
        super().__init__(**kwargs)
        self.embed_dim = config.vision_config.embed_dim
        self.ln = tf.keras.layers.LayerNormalization(epsilon=1e-5, name="ln")
        self.fc = tf.keras.layers.Dense(intermediate_size, use_bias=False, name="fc")
        self.act = tf.keras.layers.ReLU(name="act")
        self.c_proj = tf.keras.layers.Dense(self.embed_dim, use_bias=False, name="c_proj")

    def call(self, hidden_states: Optional[Tuple[tf.Tensor]]) -> tf.Tensor:
        hidden_states = self.ln(hidden_states)
        hidden_states = self.fc(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states = self.c_proj(hidden_states)

        return hidden_states