File size: 26,010 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
# coding=utf-8
# Copyright 2021 The OpenAI Team Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TF IdeficsVision model: a copy of CLIPVisionModel using a simpler config object"""

import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union

import tensorflow as tf

from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import TFBaseModelOutput, TFBaseModelOutputWithPooling
from ...modeling_tf_utils import TFPreTrainedModel, shape_list
from ...tf_utils import flatten
from ...utils import ModelOutput, logging
from .configuration_idefics import IdeficsVisionConfig


logger = logging.get_logger(__name__)


@dataclass
class TFIdeficsVisionModelOutput(ModelOutput):
    """
    Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.

    Args:
        image_embeds (`tf.Tensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
            The image embeddings obtained by applying the projection layer to the pooler_output.
        last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    image_embeds: Optional[tf.Tensor] = None
    last_hidden_state: tf.Tensor = None
    hidden_states: Optional[Tuple[tf.Tensor]] = None
    attentions: Optional[Tuple[tf.Tensor]] = None


class TFIdeficsVisionEmbeddings(tf.keras.layers.Layer):
    def __init__(self, config: IdeficsVisionConfig, **kwargs):
        super().__init__(**kwargs)
        self.config = config
        self.embed_dim = config.hidden_size
        self.image_size = config.image_size
        self.patch_size = config.patch_size

        self.patch_embedding = tf.keras.layers.Conv2D(
            filters=self.embed_dim,
            kernel_size=self.patch_size,
            strides=self.patch_size,
            use_bias=False,
            padding="valid",
            data_format="channels_last",
            name="patch_embedding",
        )

        self.num_patches = (self.image_size // self.patch_size) ** 2
        self.num_positions = self.num_patches + 1
        self.position_embedding = tf.keras.layers.Embedding(
            self.num_positions, self.embed_dim, name="position_embedding"
        )
        # self.position_ids = tf.range(self.num_positions)[tf.newaxis, :]

    def interpolate_pos_encoding(self, embeddings: tf.Tensor, height: int, width: int) -> tf.Tensor:
        num_patches = shape_list(embeddings)[1] - 1
        pos_embed = self.position_embedding(self.position_ids)
        num_positions = shape_list(pos_embed)[1] - 1
        if num_patches == num_positions and height == width:
            return pos_embed
        class_pos_embed = pos_embed[:, 0]
        patch_pos_embed = pos_embed[:, 1:]

        embed_dim = shape_list(embeddings)[-1]
        num_h_patches = height // self.config.patch_size
        num_w_patches = width // self.config.patch_size
        num_h_patches, num_w_patches = num_h_patches + 0.1, num_w_patches + 0.1
        sqrt_num_positions = math.sqrt(float(num_positions))
        patch_pos_embed = tf.reshape(patch_pos_embed, (1, int(sqrt_num_positions), int(sqrt_num_positions), embed_dim))

        scale_height = num_h_patches / sqrt_num_positions
        scale_width = num_w_patches / sqrt_num_positions
        original_height = tf.cast(tf.shape(patch_pos_embed)[1], tf.float32)
        original_width = tf.cast(tf.shape(patch_pos_embed)[2], tf.float32)
        # Apply scaling
        new_height = tf.cast(original_height * scale_height, tf.int32)
        new_width = tf.cast(original_width * scale_width, tf.int32)

        patch_pos_embed = tf.image.resize(
            patch_pos_embed, size=[new_height, new_width], method=tf.image.ResizeMethod.BICUBIC
        )

        if (
            int(num_h_patches) != shape_list(patch_pos_embed)[-3]
            or int(num_w_patches) != shape_list(patch_pos_embed)[-2]
        ):
            raise ValueError(
                f"Number of patches for images ({int(num_h_patches), int(num_w_patches)}) don't match the "
                f"shape of position embedding ({shape_list(patch_pos_embed)[-2], shape_list(patch_pos_embed)[-1]})"
            )
        patch_pos_embed = tf.reshape(patch_pos_embed, (1, -1, embed_dim))
        return tf.concat((class_pos_embed[tf.newaxis, :], patch_pos_embed), axis=1)

    def call(self, pixel_values: tf.Tensor, interpolate_pos_encoding: bool = False) -> tf.Tensor:
        # Input `pixel_values` is NCHW format which doesn't run on CPU so first thing we do is
        # transpose it to change it to NHWC. We don't care to transpose it back because
        # the Conv2D layer is only hit once for each query

        if isinstance(pixel_values, dict):
            pixel_values = pixel_values["pixel_values"]

        pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
        batch_size, height, width, num_channels = shape_list(pixel_values)
        if not interpolate_pos_encoding:
            if height != self.image_size or width != self.image_size:
                raise ValueError(
                    f"Input image size ({height}*{width}) doesn't match model"
                    f" ({self.image_size}*{self.image_size}). You should try to set `interpolate_pos_encoding=True`"
                )

        patch_embeds = self.patch_embedding(pixel_values)  # shape = [*, width, grid, grid]
        # Change the 2D spatial dimensions to a single temporal dimension.
        # shape = (batch_size, num_patches, out_channels=embed_dim)
        patch_embeds = flatten(patch_embeds, 1, 2)

        class_embeds = tf.broadcast_to(
            self.class_embedding[tf.newaxis, tf.newaxis, :], [batch_size, 1, self.embed_dim]
        )
        embeddings = tf.concat([class_embeds, patch_embeds], axis=1)

        # add positional encoding to each token
        if interpolate_pos_encoding:
            embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
        else:
            embeddings = embeddings + self.position_embedding(self.position_ids)

        return embeddings

    def build(self, input_shape=None):
        if self.built:
            return
        self.built = True
        self.position_ids = tf.range(self.num_positions, name="self.position_ids")[tf.newaxis, :]
        self.class_embedding = self.add_weight(shape=(self.embed_dim,), name="class_embedding")
        if getattr(self, "patch_embedding", None) is not None:
            with tf.name_scope(self.patch_embedding.name):
                self.patch_embedding.build([None, None, None, self.config.num_channels])
        if getattr(self, "position_embedding", None) is not None:
            with tf.name_scope(self.position_embedding.name):
                self.position_embedding.build(None)


class TFIdeficsVisionAttention(tf.keras.layers.Layer):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(self, config, **kwargs):
        super().__init__(**kwargs)
        self.config = config
        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_heads
        if self.head_dim * self.num_heads != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
                f" {self.num_heads})."
            )
        self.scale = self.head_dim**-0.5
        self.dropout = config.attention_dropout

        self.k_proj = tf.keras.layers.Dense(self.embed_dim, name="k_proj")
        self.v_proj = tf.keras.layers.Dense(self.embed_dim, name="v_proj")
        self.q_proj = tf.keras.layers.Dense(self.embed_dim, name="q_proj")
        self.out_proj = tf.keras.layers.Dense(self.embed_dim, name="out_proj")

    def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int):
        return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), perm=[0, 2, 1, 3])

    def call(
        self,
        hidden_states: tf.Tensor,
        attention_mask: Optional[tf.Tensor] = None,
        causal_attention_mask: Optional[tf.Tensor] = None,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[tf.Tensor, Optional[tf.Tensor], Optional[Tuple[tf.Tensor]]]:
        """Input shape: Batch x Time x Channel"""

        bsz, tgt_len, embed_dim = shape_list(hidden_states)

        # get query proj
        query_states = self.q_proj(hidden_states) * self.scale
        key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
        value_states = self._shape(self.v_proj(hidden_states), -1, bsz)

        proj_shape = (bsz * self.num_heads, -1, self.head_dim)
        query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape)
        key_states = tf.reshape(key_states, proj_shape)
        value_states = tf.reshape(value_states, proj_shape)

        src_len = shape_list(key_states)[1]
        attn_weights = tf.linalg.matmul(query_states, key_states, transpose_b=True)

        tf.debugging.assert_equal(
            tf.shape(attn_weights),
            [bsz * self.num_heads, tgt_len, src_len],
            message=f"Attention weights should be of size {[bsz * self.num_heads, tgt_len, src_len]}, but is {tf.shape(attn_weights)}",
        )

        # apply the causal_attention_mask first
        if causal_attention_mask is not None:
            if shape_list(causal_attention_mask) != [bsz, 1, tgt_len, src_len]:
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
                    f" {shape_list(causal_attention_mask)}"
                )
            attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + causal_attention_mask
            attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))

        if attention_mask is not None:
            if shape_list(attention_mask) != [bsz, 1, tgt_len, src_len]:
                raise ValueError(
                    f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {shape_list(attention_mask)}"
                )
            attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask
            attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))

        attn_weights = tf.nn.softmax(attn_weights, axis=-1)

        if output_attentions:
            # this operation is a bit akward, but it's required to
            # make sure that attn_weights keeps its gradient.
            # In order to do so, attn_weights have to reshaped
            # twice and have to be reused in the following
            attn_weights_reshaped = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))
            attn_weights = tf.reshape(attn_weights_reshaped, (bsz * self.num_heads, tgt_len, src_len))
        else:
            attn_weights_reshaped = None

        attn_probs = tf.nn.dropout(attn_weights, rate=self.dropout)

        attn_output = tf.linalg.matmul(attn_probs, value_states)

        tf.debugging.assert_equal(
            tf.shape(attn_output),
            [bsz * self.num_heads, tgt_len, self.head_dim],
            message=f"Attention weights should be of size {[bsz * self.num_heads, tgt_len, self.head_dim]}, but is {tf.shape(attn_output)}",
        )

        attn_output = tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim))
        attn_output = tf.transpose(attn_output, perm=[0, 2, 1, 3])
        attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim))

        attn_output = self.out_proj(attn_output)

        return attn_output, attn_weights_reshaped

    def build(self, input_shape=None):
        if self.built:
            return
        self.built = True
        if getattr(self, "k_proj", None) is not None:
            with tf.name_scope(self.k_proj.name):
                self.k_proj.build((self.embed_dim, self.embed_dim))
        if getattr(self, "v_proj", None) is not None:
            with tf.name_scope(self.v_proj.name):
                self.v_proj.build((self.embed_dim, self.embed_dim))
        if getattr(self, "q_proj", None) is not None:
            with tf.name_scope(self.q_proj.name):
                self.q_proj.build((self.embed_dim, self.embed_dim))
        if getattr(self, "out_proj", None) is not None:
            with tf.name_scope(self.out_proj.name):
                self.out_proj.build((self.embed_dim, self.embed_dim))


class TFIdeficsVisionMLP(tf.keras.layers.Layer):
    def __init__(self, config, **kwargs):
        super().__init__(**kwargs)
        self.config = config
        self.activation_fn = get_tf_activation(config.hidden_act)
        self.fc1 = tf.keras.layers.Dense(config.intermediate_size, name="fc1")
        self.fc2 = tf.keras.layers.Dense(config.hidden_size, name="fc2")

    def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
        hidden_states = self.fc1(hidden_states)
        hidden_states = self.activation_fn(hidden_states)
        hidden_states = self.fc2(hidden_states)
        return hidden_states

    def build(self, input_shape=None):
        if self.built:
            return
        self.built = True
        if getattr(self, "fc1", None) is not None:
            with tf.name_scope(self.fc1.name):
                self.fc1.build(self.config.hidden_size)
        if getattr(self, "fc2", None) is not None:
            with tf.name_scope(self.fc2.name):
                self.fc2.build(self.config.intermediate_size)


class TFIdeficsVisionEncoderLayer(tf.keras.layers.Layer):
    def __init__(self, config: IdeficsVisionConfig, **kwargs):
        super().__init__(**kwargs)
        self.embed_dim = config.hidden_size
        self.self_attn = TFIdeficsVisionAttention(config, name="self_attn")
        self.layer_norm1 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm1")
        self.mlp = TFIdeficsVisionMLP(config, name="mlp")
        self.layer_norm2 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm2")

    def call(
        self,
        hidden_states: tf.Tensor,
        attention_mask: tf.Tensor,
        causal_attention_mask: tf.Tensor,
        output_attentions: Optional[bool] = False,
    ) -> Tuple[tf.Tensor]:
        """
        Args:
            hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`tf.Tensor`): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
                `(config.encoder_attention_heads,)`.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
        """
        residual = hidden_states

        hidden_states = self.layer_norm1(hidden_states)
        hidden_states, attn_weights = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            causal_attention_mask=causal_attention_mask,
            output_attentions=output_attentions,
        )
        hidden_states = residual + hidden_states

        residual = hidden_states
        hidden_states = self.layer_norm2(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attn_weights,)

        return outputs

    def build(self, input_shape=None):
        if self.built:
            return
        self.built = True
        if getattr(self, "layer_norm1", None) is not None:
            with tf.name_scope(self.layer_norm1.name):
                self.layer_norm1.build([None, None, self.embed_dim])
        if getattr(self, "layer_norm2", None) is not None:
            with tf.name_scope(self.layer_norm2.name):
                self.layer_norm2.build([None, None, self.embed_dim])


class TFIdeficsVisionEncoder(tf.keras.layers.Layer):
    """
    Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
    [`TFIdeficsVisionEncoderLayer`].

    Args:
        config: IdeficsVisionConfig
    """

    def __init__(self, config: IdeficsVisionConfig, **kwargs):
        super().__init__(**kwargs)
        self.config = config
        self.layers = [
            TFIdeficsVisionEncoderLayer(config, name=f"layers.{i}") for i in range(config.num_hidden_layers)
        ]
        self.gradient_checkpointing = False

    def call(
        self,
        inputs_embeds,
        attention_mask: Optional[tf.Tensor] = None,
        causal_attention_mask: Optional[tf.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        training: Optional[bool] = None,
    ) -> Union[Tuple, TFBaseModelOutput]:
        r"""
        Args:
            inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
                Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
                This is useful if you want more control over how to convert `input_ids` indices into associated vectors
                than the model's internal embedding lookup matrix.
            attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            causal_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Causal mask for the text model. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        encoder_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None

        hidden_states = inputs_embeds
        for idx, encoder_layer in enumerate(self.layers):
            if output_hidden_states:
                encoder_states = encoder_states + (hidden_states,)
            if self.gradient_checkpointing and training:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs, output_attentions)

                    return custom_forward

                layer_outputs = tf.recompute_grad(
                    create_custom_forward(encoder_layer),
                    hidden_states,
                    attention_mask,
                    causal_attention_mask,
                )
            else:
                layer_outputs = encoder_layer(
                    hidden_states,
                    attention_mask,
                    causal_attention_mask,
                    output_attentions=output_attentions,
                )

            hidden_states = layer_outputs[0]

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        if output_hidden_states:
            encoder_states = encoder_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
        return TFBaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
        )

    def build(self, input_shape=None):
        if self.built:
            return
        self.built = True
        if getattr(self, "layers", None) is not None:
            for layer in self.layers:
                with tf.name_scope(layer.name):
                    layer.build(None)


class TFIdeficsVisionTransformer(TFPreTrainedModel):
    def __init__(self, config: IdeficsVisionConfig, **kwargs):
        super().__init__(config, **kwargs)
        self.config = config
        self.embed_dim = config.hidden_size

        self.embeddings = TFIdeficsVisionEmbeddings(config, name="embeddings")
        self.pre_layrnorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="pre_layrnorm")
        self.encoder = TFIdeficsVisionEncoder(config, name="encoder")
        self.post_layernorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="post_layernorm")

    # Adapted from transformers.models.clip.modeling_clip.CLIPVisionTransformer.forward
    def call(
        self,
        pixel_values: Optional[tf.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        interpolate_pos_encoding: Optional[bool] = False,
        return_dict: Optional[bool] = None,
        training: Optional[bool] = False,
    ) -> Union[Tuple, TFBaseModelOutputWithPooling]:
        r"""
        Returns:

        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if pixel_values is None:
            raise ValueError("You have to specify pixel_values")

        hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
        hidden_states = self.pre_layrnorm(hidden_states)
        encoder_outputs = self.encoder(
            inputs_embeds=hidden_states,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
        )

        last_hidden_state = encoder_outputs[0]
        pooled_output = last_hidden_state[:, 0, :]
        pooled_output = self.post_layernorm(pooled_output)

        if not return_dict:
            return (last_hidden_state, pooled_output) + encoder_outputs[1:]

        return TFBaseModelOutputWithPooling(
            last_hidden_state=last_hidden_state,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )

    def build(self, input_shape=None):
        if self.built:
            return
        self.built = True
        if getattr(self, "embeddings", None) is not None:
            with tf.name_scope(self.embeddings.name):
                self.embeddings.build(None)
        if getattr(self, "pre_layrnorm", None) is not None:
            with tf.name_scope(self.pre_layrnorm.name):
                self.pre_layrnorm.build([None, None, self.embed_dim])
        if getattr(self, "encoder", None) is not None:
            with tf.name_scope(self.encoder.name):
                self.encoder.build(None)
        if getattr(self, "post_layernorm", None) is not None:
            with tf.name_scope(self.post_layernorm.name):
                self.post_layernorm.build([None, self.embed_dim])