File size: 11,809 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Idefics2 model configuration"""
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
logger = logging.get_logger(__name__)
class Idefics2VisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Idefics2VisionModel`]. It is used to instantiate a
Idefics2 vision encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the SigLIP checkpoint
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) used in the Idefics2 model
[HuggingFaceM4/idefics2-8b](https://huggingface.co/HuggingFaceM4/idefics2-8b).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
num_channels (`int`, *optional*, defaults to 3):
Number of channels in the input images.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 32):
The size (resolution) of each patch.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
intializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation for initializing all weight matrices in the model.
Example:
```python
>>> from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer
>>> from transformers.models.idefics2.configuration_idefics2 import Idefics2VisionConfig
>>> # Initializing a Idefics2VisionConfig with google/siglip-base-patch16-224 style configuration
>>> configuration = Idefics2VisionConfig()
>>> # Initializing a Idefics2VisionTransformer (with random weights) from the google/siglip-base-patch16-224 style configuration
>>> model = Idefics2VisionTransformer(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "idefics2"
def __init__(
self,
hidden_size=768,
intermediate_size=3072,
num_hidden_layers=12,
num_attention_heads=12,
num_channels=3,
image_size=224,
patch_size=32,
hidden_act="gelu_pytorch_tanh",
layer_norm_eps=1e-6,
attention_dropout=0.0,
initializer_range=0.02,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.initializer_range = initializer_range
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the vision config dict if we are loading from Idefics2Config
if config_dict.get("model_type") == "idefics2":
config_dict = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class Idefics2PerceiverConfig(PretrainedConfig):
r"""
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the perceiver block.
resampler_n_latents (`int`, *optional*, defaults to 64):
Number of latent embeddings to resample ("compress") the input sequence to (usually < 128).
resampler_depth (`int`, *optional*, defaults to 3):
Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (<= 3).
resampler_n_heads (`int`, *optional*, defaults to 16):
Number of heads in each Transformer block (for multi-headed self-attention).
resampler_head_dim (`int`, *optional*, defaults to 96):
Dimensionality of each head projection in the Transformer block.
num_key_value_heads (`int`, *optional*, defaults to 4):
Number of key-value heads in the perceiver attention block.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
"""
model_type = "idefics2"
def __init__(
self,
hidden_act="silu",
resampler_n_latents=64,
resampler_depth=3,
resampler_n_heads=16,
resampler_head_dim=96,
num_key_value_heads=4,
attention_dropout=0.0,
**kwargs,
):
self.hidden_act = hidden_act
self.resampler_n_latents = resampler_n_latents
self.resampler_depth = resampler_depth
self.resampler_n_heads = resampler_n_heads
self.num_key_value_heads = num_key_value_heads
self.resampler_head_dim = resampler_head_dim
self.attention_dropout = attention_dropout
if self.num_key_value_heads > self.resampler_n_heads:
raise ValueError(
f"num_key_value_heads={self.num_key_value_heads} must be less than or equal to"
f" resampler_n_heads={self.resampler_n_heads}"
)
super().__init__(**kwargs)
class Idefics2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Idefics2Model`]. It is used to instantiate a
Idefics2 model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the model of the Idefics2
[HuggingFaceM4/idefics2-8b](https://huggingface.co/HuggingFaceM4/idefics2-8b) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should cache the key/value pairs of the attention mechanism.
image_token_id (`int`, *optional*, defaults to 32001):
The id of the "image" token.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether or not to tie the word embeddings with the token embeddings.
vision_config (`IdeficsVisionConfig` or `dict`, *optional*):
Custom vision config or dict
perceiver_config (`IdeficsPerceiverConfig` or `dict`, *optional*):
Custom perceiver config or dict
text_config (`MistralConfig` or `dict`, *optional*):
Custom text config or dict for the text model
Example:
```python
>>> from transformers import Idefics2Model, Idefics2Config
>>> # Initializing configuration
>>> configuration = Idefics2Config()
>>> # Initializing a model from the configuration
>>> model = Idefics2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "idefics2"
is_composition = True
def __init__(
self,
use_cache=True,
image_token_id=32_001,
tie_word_embeddings=False,
vision_config=None,
perceiver_config=None,
text_config=None,
**kwargs,
):
self.image_token_id = image_token_id
self.use_cache = use_cache
self.tie_word_embeddings = tie_word_embeddings
if perceiver_config is None:
self.perceiver_config = Idefics2PerceiverConfig()
logger.info("perciver_config is None, using default perceiver config")
elif isinstance(perceiver_config, dict):
self.perceiver_config = Idefics2PerceiverConfig(**perceiver_config)
elif isinstance(perceiver_config, Idefics2PerceiverConfig):
self.perceiver_config = perceiver_config
if vision_config is None:
self.vision_config = Idefics2VisionConfig()
logger.info("vision_config is None, using default vision config")
elif isinstance(vision_config, dict):
self.vision_config = Idefics2VisionConfig(**vision_config)
elif isinstance(vision_config, Idefics2VisionConfig):
self.vision_config = vision_config
if isinstance(text_config, dict):
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "mistral"
text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
elif text_config is None:
logger.info("text_config is None, using default text config")
text_config = CONFIG_MAPPING["mistral"](
max_position_embeddings=4096 * 8,
rms_norm_eps=1e-5,
# None in the original configuration_mistral, we set it to the unk_token_id
pad_token_id=0,
tie_word_embeddings=False,
)
self.text_config = text_config
super().__init__(**kwargs, tie_word_embeddings=tie_word_embeddings)
|