File size: 11,809 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Idefics2 model configuration"""

import os
from typing import Union

from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING


logger = logging.get_logger(__name__)


class Idefics2VisionConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`Idefics2VisionModel`]. It is used to instantiate a
    Idefics2 vision encoder according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the SigLIP checkpoint
    [google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) used in the Idefics2 model
    [HuggingFaceM4/idefics2-8b](https://huggingface.co/HuggingFaceM4/idefics2-8b).

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the encoder layers and the pooler layer.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_channels (`int`, *optional*, defaults to 3):
            Number of channels in the input images.
        image_size (`int`, *optional*, defaults to 224):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 32):
            The size (resolution) of each patch.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
        layer_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the layer normalization layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        intializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation for initializing all weight matrices in the model.

    Example:

    ```python
    >>> from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer
    >>> from transformers.models.idefics2.configuration_idefics2 import Idefics2VisionConfig

    >>> # Initializing a Idefics2VisionConfig with google/siglip-base-patch16-224 style configuration
    >>> configuration = Idefics2VisionConfig()

    >>> # Initializing a Idefics2VisionTransformer (with random weights) from the google/siglip-base-patch16-224 style configuration
    >>> model = Idefics2VisionTransformer(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "idefics2"

    def __init__(
        self,
        hidden_size=768,
        intermediate_size=3072,
        num_hidden_layers=12,
        num_attention_heads=12,
        num_channels=3,
        image_size=224,
        patch_size=32,
        hidden_act="gelu_pytorch_tanh",
        layer_norm_eps=1e-6,
        attention_dropout=0.0,
        initializer_range=0.02,
        **kwargs,
    ):
        super().__init__(**kwargs)

        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.num_channels = num_channels
        self.patch_size = patch_size
        self.image_size = image_size
        self.attention_dropout = attention_dropout
        self.layer_norm_eps = layer_norm_eps
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
        cls._set_token_in_kwargs(kwargs)

        config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)

        # get the vision config dict if we are loading from Idefics2Config
        if config_dict.get("model_type") == "idefics2":
            config_dict = config_dict["vision_config"]

        if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
            logger.warning(
                f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
                f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
            )

        return cls.from_dict(config_dict, **kwargs)


class Idefics2PerceiverConfig(PretrainedConfig):
    r"""
    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the perceiver block.
        resampler_n_latents (`int`, *optional*, defaults to 64):
            Number of latent embeddings to resample ("compress") the input sequence to (usually < 128).
        resampler_depth (`int`, *optional*, defaults to 3):
            Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (<= 3).
        resampler_n_heads (`int`, *optional*, defaults to 16):
            Number of heads in each Transformer block (for multi-headed self-attention).
        resampler_head_dim (`int`, *optional*, defaults to 96):
            Dimensionality of each head projection in the Transformer block.
        num_key_value_heads (`int`, *optional*, defaults to 4):
            Number of key-value heads in the perceiver attention block.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
    """

    model_type = "idefics2"

    def __init__(
        self,
        hidden_act="silu",
        resampler_n_latents=64,
        resampler_depth=3,
        resampler_n_heads=16,
        resampler_head_dim=96,
        num_key_value_heads=4,
        attention_dropout=0.0,
        **kwargs,
    ):
        self.hidden_act = hidden_act
        self.resampler_n_latents = resampler_n_latents
        self.resampler_depth = resampler_depth
        self.resampler_n_heads = resampler_n_heads
        self.num_key_value_heads = num_key_value_heads
        self.resampler_head_dim = resampler_head_dim
        self.attention_dropout = attention_dropout
        if self.num_key_value_heads > self.resampler_n_heads:
            raise ValueError(
                f"num_key_value_heads={self.num_key_value_heads} must be less than or equal to"
                f" resampler_n_heads={self.resampler_n_heads}"
            )
        super().__init__(**kwargs)


class Idefics2Config(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`Idefics2Model`]. It is used to instantiate a
    Idefics2 model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the model of the Idefics2
    [HuggingFaceM4/idefics2-8b](https://huggingface.co/HuggingFaceM4/idefics2-8b) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should cache the key/value pairs of the attention mechanism.
        image_token_id (`int`, *optional*, defaults to 32001):
            The id of the "image" token.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether or not to tie the word embeddings with the token embeddings.
        vision_config (`IdeficsVisionConfig` or `dict`, *optional*):
            Custom vision config or dict
        perceiver_config (`IdeficsPerceiverConfig` or `dict`, *optional*):
            Custom perceiver config or dict
        text_config (`MistralConfig` or `dict`, *optional*):
            Custom text config or dict for the text model

    Example:
    ```python
    >>> from transformers import Idefics2Model, Idefics2Config
    >>> # Initializing configuration
    >>> configuration = Idefics2Config()
    >>> # Initializing a model from the configuration
    >>> model = Idefics2Model(configuration)
    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "idefics2"
    is_composition = True

    def __init__(
        self,
        use_cache=True,
        image_token_id=32_001,
        tie_word_embeddings=False,
        vision_config=None,
        perceiver_config=None,
        text_config=None,
        **kwargs,
    ):
        self.image_token_id = image_token_id
        self.use_cache = use_cache
        self.tie_word_embeddings = tie_word_embeddings

        if perceiver_config is None:
            self.perceiver_config = Idefics2PerceiverConfig()
            logger.info("perciver_config is None, using default perceiver config")
        elif isinstance(perceiver_config, dict):
            self.perceiver_config = Idefics2PerceiverConfig(**perceiver_config)
        elif isinstance(perceiver_config, Idefics2PerceiverConfig):
            self.perceiver_config = perceiver_config

        if vision_config is None:
            self.vision_config = Idefics2VisionConfig()
            logger.info("vision_config is None, using default vision config")
        elif isinstance(vision_config, dict):
            self.vision_config = Idefics2VisionConfig(**vision_config)
        elif isinstance(vision_config, Idefics2VisionConfig):
            self.vision_config = vision_config

        if isinstance(text_config, dict):
            text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "mistral"
            text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
        elif text_config is None:
            logger.info("text_config is None, using default text config")
            text_config = CONFIG_MAPPING["mistral"](
                max_position_embeddings=4096 * 8,
                rms_norm_eps=1e-5,
                # None in the original configuration_mistral, we set it to the unk_token_id
                pad_token_id=0,
                tie_word_embeddings=False,
            )

        self.text_config = text_config

        super().__init__(**kwargs, tie_word_embeddings=tie_word_embeddings)