File size: 18,360 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
# coding=utf-8
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
from typing import Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch.nn import CrossEntropyLoss

from transformers.models.instructblip.configuration_instructblip import (
    InstructBlipConfig,
    InstructBlipQFormerConfig,
    InstructBlipVisionConfig,
)
from transformers.models.instructblip.modeling_instructblip import (
    InstructBlipAttention,
    InstructBlipEncoder,
    InstructBlipEncoderLayer,
    InstructBlipForConditionalGeneration,
    InstructBlipForConditionalGenerationModelOutput,
    InstructBlipMLP,
    InstructBlipPreTrainedModel,
    InstructBlipQFormerAttention,
    InstructBlipQFormerEmbeddings,
    InstructBlipQFormerEncoder,
    InstructBlipQFormerIntermediate,
    InstructBlipQFormerLayer,
    InstructBlipQFormerModel,
    InstructBlipQFormerOutput,
    InstructBlipQFormerSelfOutput,
    InstructBlipVisionEmbeddings,
    InstructBlipVisionModel,
)

from ...utils import logging


logger = logging.get_logger(__name__)


class InstructBlipVideoVisionConfig(InstructBlipVisionConfig):
    pass


class InstructBlipVideoQFormerConfig(InstructBlipQFormerConfig):
    pass


class InstructBlipVideoConfig(InstructBlipConfig):
    pass


@dataclass
class InstructBlipVideoForConditionalGenerationModelOutput(InstructBlipForConditionalGenerationModelOutput):
    pass


class InstructBlipVideoVisionEmbeddings(InstructBlipVisionEmbeddings):
    pass


class InstructBlipVideoAttention(InstructBlipAttention):
    pass


class InstructBlipVideoMLP(InstructBlipMLP):
    pass


class InstructBlipVideoEncoderLayer(InstructBlipEncoderLayer):
    pass


class InstructBlipVideoPreTrainedModel(InstructBlipPreTrainedModel):
    pass


class InstructBlipVideoEncoder(InstructBlipEncoder):
    pass


class InstructBlipVideoVisionModel(InstructBlipVisionModel):
    pass


class InstructBlipVideoQFormerSelfOutput(InstructBlipQFormerSelfOutput):
    pass


class InstructBlipVideoQFormerAttention(InstructBlipQFormerAttention):
    pass


class InstructBlipVideoQFormerIntermediate(InstructBlipQFormerIntermediate):
    pass


class InstructBlipVideoQFormerOutput(InstructBlipQFormerOutput):
    pass


class InstructBlipVideoQFormerLayer(InstructBlipQFormerLayer):
    pass


class InstructBlipVideoQFormerEncoder(InstructBlipQFormerEncoder):
    pass


class InstructBlipVideoQFormerEmbeddings(InstructBlipQFormerEmbeddings):
    pass


class InstructBlipVideoQFormerModel(InstructBlipQFormerModel):
    pass


class InstructBlipVideoForConditionalGeneration(InstructBlipForConditionalGeneration):
    def forward(
        self,
        pixel_values: torch.FloatTensor,
        qformer_input_ids: torch.FloatTensor,
        qformer_attention_mask: Optional[torch.LongTensor] = None,
        input_ids: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.LongTensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.LongTensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        labels: Optional[torch.LongTensor] = None,
        return_dict: Optional[bool] = None,
        interpolate_pos_encoding: bool = False,
    ) -> Union[Tuple, InstructBlipVideoForConditionalGenerationModelOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size -
            1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ...,
            config.vocab_size]`

        Returns:

        Examples:

        ```python
        >>> from transformers import InstructBlipVideoProcessor, InstructBlipVideoForConditionalGeneration
        >>> import torch
        >>> from huggingface_hub import hf_hub_download
        >>> import av
        >>> import numpy as np

        >>> def read_video_pyav(container, indices):
        ...     '''
        ...     Decode the video with PyAV decoder.
        ...     Args:
        ...         container (`av.container.input.InputContainer`): PyAV container.
        ...         indices (`List[int]`): List of frame indices to decode.
        ...     Returns:
        ...         result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
        ...     '''
        ...     frames = []
        ...     container.seek(0)
        ...     start_index = indices[0]
        ...     end_index = indices[-1]
        ...     for i, frame in enumerate(container.decode(video=0)):
        ...         if i > end_index:
        ...             break
        ...         if i >= start_index and i in indices:
        ...             frames.append(frame)
        ...     return np.stack([x.to_ndarray(format="rgb24") for x in frames])

        >>> model = InstructBlipVideoForConditionalGeneration.from_pretrained("Salesforce/instructblip-vicuna-7b", device_map="auto")
        >>> processor = InstructBlipVideoProcessor.from_pretrained("Salesforce/instructblip-vicuna-7b")

        >>> file_path = hf_hub_download(
        ...       repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
        ... )
        >>> container = av.open(file_path)

        >>> # sample uniformly 4 frames from the videWhy is this video funny?o
        >>> total_frames = container.streams.video[0].frames
        >>> indices = np.arange(0, total_frames, total_frames / 4).astype(int)
        >>> clip = read_video_pyav(container, indices)

        >>> prompt = "What is happening in the video?"
        >>> inputs = processor(text=prompt, images=clip, return_tensors="pt").to(model.device)

        >>> outputs = model.generate(
        ...     **inputs,
        ...     do_sample=False,
        ...     num_beams=5,
        ...     max_length=256,
        ...     repetition_penalty=1.5,
        ...     length_penalty=1.0,
        ... )
        >>> generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0].strip()
        >>> print(generated_text)
        "A person is eating a bowl of pasta, and they are using a fork to eat it. The person is sitting at a table, and the plate of pasta is on the table in front"
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # step 1: forward the images through the vision encoder,
        # we process in a batched way, later unbatch it back (video has frames=4 always)
        batch_size, frames, channel, height, width = pixel_values.shape
        pixel_values = pixel_values.reshape(batch_size * frames, channel, height, width)

        vision_outputs = self.vision_model(
            pixel_values=pixel_values,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            interpolate_pos_encoding=interpolate_pos_encoding,
        )
        image_embeds = vision_outputs[0]

        # step 2: forward the query tokens through the QFormer, using the image embeddings for cross-attention
        image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device)

        # difference with BLIP-2 here: we also feed the instruction prompt to the Q-Former
        query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
        query_attention_mask = torch.ones(query_tokens.size()[:-1], dtype=torch.long, device=image_embeds.device)

        if qformer_attention_mask is None:
            qformer_attention_mask = torch.ones_like(qformer_input_ids)

        qformer_input_ids = qformer_input_ids.repeat_interleave(frames, dim=0)
        qformer_attention_mask = qformer_attention_mask.repeat_interleave(frames, dim=0)
        qformer_attention_mask = torch.cat([query_attention_mask, qformer_attention_mask], dim=1)
        query_outputs = self.qformer(
            input_ids=qformer_input_ids,
            attention_mask=qformer_attention_mask,
            query_embeds=query_tokens,
            encoder_hidden_states=image_embeds,
            encoder_attention_mask=image_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        query_output = query_outputs[0][:, : query_tokens.size(1), :]

        # step 3: use the language model, conditioned on the query outputs and the prompt
        language_model_inputs = self.language_projection(query_output)

        # unbatch inputs back, each video-frame gets `num_query_tokens` seq length
        language_model_inputs = language_model_inputs.reshape(batch_size, self.config.num_query_tokens * frames, -1)
        language_model_attention_mask = torch.ones(
            language_model_inputs.size()[:-1], dtype=torch.long, device=language_model_inputs.device
        )

        inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
        inputs_embeds = torch.cat([language_model_inputs, inputs_embeds.to(language_model_inputs.device)], dim=1)

        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)
        attention_mask = torch.cat([language_model_attention_mask.to(attention_mask.device), attention_mask], dim=1)

        if self.config.use_decoder_only_language_model:
            outputs = self.language_model(
                inputs_embeds=inputs_embeds,
                attention_mask=attention_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )
            logits = outputs.logits if return_dict else outputs[0]
            loss = None
            # we compute the loss here since we need to take into account the sequence length of the query embeds
            if labels is not None:
                labels = labels.to(logits.device)
                logits = logits[:, -labels.size(1) :, :]
                # Shift so that tokens < n predict n
                shift_logits = logits[..., :-1, :].contiguous()
                shift_labels = labels[..., 1:].contiguous().to(logits.device)

                # Flatten the tokens
                loss_fct = CrossEntropyLoss(reduction="mean")

                loss = loss_fct(shift_logits.view(-1, self.config.text_config.vocab_size), shift_labels.view(-1))
        else:
            outputs = self.language_model(
                inputs_embeds=inputs_embeds,
                attention_mask=attention_mask,
                decoder_input_ids=decoder_input_ids,
                decoder_attention_mask=decoder_attention_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
                labels=labels,
            )
            loss = outputs.loss if return_dict else outputs[0]
            logits = outputs.logits if return_dict else outputs[1]

        if not return_dict:
            output = (logits, vision_outputs, query_outputs, outputs)
            return ((loss,) + output) if loss is not None else output

        return InstructBlipVideoForConditionalGenerationModelOutput(
            loss=loss,
            logits=logits,
            vision_outputs=vision_outputs,
            qformer_outputs=query_outputs,
            language_model_outputs=outputs,
        )

    @torch.no_grad()
    def generate(
        self,
        pixel_values: torch.FloatTensor,
        qformer_input_ids: Optional[torch.LongTensor] = None,
        qformer_attention_mask: Optional[torch.LongTensor] = None,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.LongTensor] = None,
        interpolate_pos_encoding: bool = False,
        **generate_kwargs,
    ) -> torch.LongTensor:
        """
        Overrides `generate` function to be able to use the model as a conditional generator.

        Args:
           pixel_values (`torch.FloatTensor` of shape (batch_size, num_channels, height, width) or
                (batch_size, num_frames, num_channels, height, width)): Input images or videos to be processed.
            qformer_input_ids (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*):
                The sequence used as a prompt to be fed to the Q-Former module.
            qformer_attention_mask (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*):
                Mask to avoid performing attention on padding token indices.
            input_ids (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*):
                The sequence used as a prompt for the generation.
            attention_mask (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*):
                Mask to avoid performing attention on padding token indices.
            interpolate_pos_encoding (`bool`, *optional*, defaults to `False`):
                Whether to interpolate the positional encoding of the image embeddings.

        Returns:
            captions (list): A list of strings of length batch_size * num_captions.
        """
        if hasattr(self, "hf_device_map"):
            # preprocess for `accelerate`
            self._preprocess_accelerate()

        # we process in a batched way, later unbatch it back (video has frames=4)
        batch_size, frames, channel, height, width = pixel_values.shape
        pixel_values = pixel_values.reshape(batch_size * frames, channel, height, width)

        image_embeds = self.vision_model(
            pixel_values,
            return_dict=True,
            interpolate_pos_encoding=interpolate_pos_encoding,
        ).last_hidden_state
        image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device)

        query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
        query_attention_mask = torch.ones(query_tokens.size()[:-1], dtype=torch.long, device=image_embeds.device)
        if qformer_attention_mask is None:
            qformer_attention_mask = torch.ones_like(qformer_input_ids)

        qformer_input_ids = qformer_input_ids.repeat_interleave(frames, dim=0)
        qformer_attention_mask = qformer_attention_mask.repeat_interleave(frames, dim=0)
        qformer_attention_mask = torch.cat([query_attention_mask, qformer_attention_mask], dim=1)
        query_outputs = self.qformer(
            input_ids=qformer_input_ids,
            attention_mask=qformer_attention_mask,
            query_embeds=query_tokens,
            encoder_hidden_states=image_embeds,
            encoder_attention_mask=image_attention_mask,
            return_dict=True,
        )
        query_output = query_outputs.last_hidden_state[:, : query_tokens.size(1), :]

        language_model_inputs = self.language_projection(query_output)

        # unbatch the embeddings back by moving frames to seq-len
        language_model_inputs = language_model_inputs.reshape(batch_size, self.config.num_query_tokens * frames, -1)
        language_attention_mask = torch.ones(
            language_model_inputs.size()[:-1], dtype=torch.long, device=language_model_inputs.device
        )

        if input_ids is None:
            input_ids = (
                torch.LongTensor([[self.config.text_config.bos_token_id]])
                .repeat(batch_size, 1)
                .to(image_embeds.device)
            )
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids)
        attention_mask = torch.cat([language_attention_mask, attention_mask.to(language_attention_mask.device)], dim=1)

        # concatenate query embeddings with prompt embeddings
        inputs_embeds = self.get_input_embeddings()(input_ids)
        inputs_embeds = torch.cat([language_model_inputs, inputs_embeds.to(language_model_inputs.device)], dim=1)

        # add image_embeds length to max_length, so that the final max_length in counted only on token embeds
        # -1 is to account for the prepended BOS after `generate.`
        if not self.language_model.config.is_encoder_decoder:
            generate_kwargs["max_length"] = generate_kwargs.get("max_length", 20) + language_model_inputs.shape[1] - 1
            generate_kwargs["min_length"] = generate_kwargs.get("min_length", 0) + language_model_inputs.shape[1]

        outputs = self.language_model.generate(
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            **generate_kwargs,
        )

        # this is a temporary workaround to be consistent with other generation models and
        # have BOS as the first token, even though under the hood we are calling LM with embeds
        if not self.language_model.config.is_encoder_decoder:
            # the InstructBLIP authors used inconsistent tokenizer/model files during training,
            # with the tokenizer's bos token being set to </s> which has ID=2,
            # whereas the model's text config has bos token id = 0
            bos_token_id = (
                2
                if self.config.text_config.architectures[0] == "LLaMAForCausalLM"
                else self.config.text_config.bos_token_id
            )
            bos_tokens = torch.LongTensor([[bos_token_id]]).repeat(batch_size, 1).to(image_embeds.device)
            if not isinstance(outputs, torch.Tensor):
                outputs.sequences = torch.cat([bos_tokens, outputs.sequences], dim=-1)
            else:
                outputs = torch.cat([bos_tokens, outputs], dim=-1)

        return outputs