File size: 6,775 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# coding=utf-8
# Copyright 2024 JetMoe AI and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""JetMoe model configuration"""

from ...configuration_utils import PretrainedConfig
from ...utils import logging


logger = logging.get_logger(__name__)


class JetMoeConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`JetMoeModel`]. It is used to instantiate a
    JetMoe model according to the specified arguments, defining the model architecture. Instantiating a configuration
    with the defaults will yield a configuration of the JetMoe-4B.

    [jetmoe/jetmoe-8b](https://huggingface.co/jetmoe/jetmoe-8b)

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the JetMoe model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`JetMoeModel`]
        hidden_size (`int`, *optional*, defaults to 2048):
            Dimension of the hidden representations.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_key_value_heads (`int`, *optional*, defaults to 16):
            Number of attention heads for each key and value in the Transformer encoder.
        kv_channels (`int`, *optional*, defaults to 128):
            Defines the number of channels for the key and value tensors.
        intermediate_size (`int`, *optional*, defaults to 5632):
            Dimension of the MLP representations.
        max_position_embeddings (`int`, *optional*, defaults to 4096):
            The maximum sequence length that this model might ever be used with. JetMoe's attention allows sequence of
            up to 4096 tokens.
        activation_function (`string`, *optional*, defaults to `"silu"`):
            Defines the activation function for MLP experts.
        num_local_experts (`int`, *optional*, defaults to 8):
            Defines the number of experts in the MoE and MoA.
        num_experts_per_tok (`int, *optional*, defaults to 2):
            The number of experts to route per-token and for MoE and MoA.
        output_router_logits (`bool`, *optional*, defaults to `False`):
            Whether or not the router logits should be returned by the model. Enabeling this will also
            allow the model to output the auxiliary loss.
        aux_loss_coef (`float`, *optional*, defaults to 0.01):
            The coefficient for the auxiliary loss.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        bos_token_id (`int`, *optional*, defaults to 1):
            The id of the "beginning-of-sequence" token.
        eos_token_id (`int`, *optional*, defaults to 2):
            The id of the "end-of-sequence" token.
        tie_word_embeddings (`bool`, *optional*, defaults to `True`):
            Whether the model's input and output word embeddings should be tied.
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        rms_norm_eps (`float`, *optional*, defaults to 1e-06):
            The epsilon used by the rms normalization layers.
        initializer_range (`float`, *optional*, defaults to 0.01):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.

    ```python
    >>> from transformers import JetMoeModel, JetMoeConfig

    >>> # Initializing a JetMoe 4B style configuration
    >>> configuration = JetMoeConfig()

    >>> # Initializing a model from the JetMoe 4B style configuration
    >>> model = JetMoeModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "jetmoe"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        vocab_size=32000,
        hidden_size=2048,
        num_hidden_layers=12,
        num_key_value_heads=16,
        kv_channels=128,
        intermediate_size=5632,
        max_position_embeddings=4096,
        activation_function="silu",
        num_local_experts=8,
        num_experts_per_tok=2,
        output_router_logits=False,
        aux_loss_coef=0.01,
        use_cache=True,
        bos_token_id=1,
        eos_token_id=2,
        tie_word_embeddings=True,
        rope_theta=10000.0,
        rms_norm_eps=1e-6,
        initializer_range=0.01,
        attention_dropout=0.0,
        **kwargs,
    ):
        if num_experts_per_tok > num_local_experts:
            raise ValueError("`num_experts_per_tok` must be less than or equal to `num_local_experts`")
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_key_value_heads * num_experts_per_tok
        self.num_key_value_heads = num_key_value_heads
        self.kv_channels = kv_channels
        self.intermediate_size = intermediate_size
        self.max_position_embeddings = max_position_embeddings
        self.activation_function = activation_function
        self.num_local_experts = num_local_experts
        self.num_experts_per_tok = num_experts_per_tok
        self.output_router_logits = output_router_logits
        self.aux_loss_coef = aux_loss_coef
        self.use_cache = use_cache
        self.initializer_range = initializer_range
        self.attention_dropout = attention_dropout

        self.bos_token_id = bos_token_id
        self.eos_token_id = eos_token_id

        self.rope_theta = rope_theta
        self.rms_norm_eps = rms_norm_eps

        super().__init__(
            bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs
        )