File size: 10,881 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# coding=utf-8
# Copyright Microsoft Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""LayoutLMv2 model configuration"""

from ...configuration_utils import PretrainedConfig
from ...utils import is_detectron2_available, logging


logger = logging.get_logger(__name__)


# soft dependency
if is_detectron2_available():
    import detectron2


class LayoutLMv2Config(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`LayoutLMv2Model`]. It is used to instantiate an
    LayoutLMv2 model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the LayoutLMv2
    [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        vocab_size (`int`, *optional*, defaults to 30522):
            Vocabulary size of the LayoutLMv2 model. Defines the number of different tokens that can be represented by
            the `inputs_ids` passed when calling [`LayoutLMv2Model`] or [`TFLayoutLMv2Model`].
        hidden_size (`int`, *optional*, defaults to 768):
            Dimension of the encoder layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer encoder.
        intermediate_size (`int`, *optional*, defaults to 3072):
            Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"selu"` and `"gelu_new"` are supported.
        hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 512):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        type_vocab_size (`int`, *optional*, defaults to 2):
            The vocabulary size of the `token_type_ids` passed when calling [`LayoutLMv2Model`] or
            [`TFLayoutLMv2Model`].
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the layer normalization layers.
        max_2d_position_embeddings (`int`, *optional*, defaults to 1024):
            The maximum value that the 2D position embedding might ever be used with. Typically set this to something
            large just in case (e.g., 1024).
        max_rel_pos (`int`, *optional*, defaults to 128):
            The maximum number of relative positions to be used in the self-attention mechanism.
        rel_pos_bins (`int`, *optional*, defaults to 32):
            The number of relative position bins to be used in the self-attention mechanism.
        fast_qkv (`bool`, *optional*, defaults to `True`):
            Whether or not to use a single matrix for the queries, keys, values in the self-attention layers.
        max_rel_2d_pos (`int`, *optional*, defaults to 256):
            The maximum number of relative 2D positions in the self-attention mechanism.
        rel_2d_pos_bins (`int`, *optional*, defaults to 64):
            The number of 2D relative position bins in the self-attention mechanism.
        image_feature_pool_shape (`List[int]`, *optional*, defaults to [7, 7, 256]):
            The shape of the average-pooled feature map.
        coordinate_size (`int`, *optional*, defaults to 128):
            Dimension of the coordinate embeddings.
        shape_size (`int`, *optional*, defaults to 128):
            Dimension of the width and height embeddings.
        has_relative_attention_bias (`bool`, *optional*, defaults to `True`):
            Whether or not to use a relative attention bias in the self-attention mechanism.
        has_spatial_attention_bias (`bool`, *optional*, defaults to `True`):
            Whether or not to use a spatial attention bias in the self-attention mechanism.
        has_visual_segment_embedding (`bool`, *optional*, defaults to `False`):
            Whether or not to add visual segment embeddings.
        detectron2_config_args (`dict`, *optional*):
            Dictionary containing the configuration arguments of the Detectron2 visual backbone. Refer to [this
            file](https://github.com/microsoft/unilm/blob/master/layoutlmft/layoutlmft/models/layoutlmv2/detectron2_config.py)
            for details regarding default values.

    Example:

    ```python
    >>> from transformers import LayoutLMv2Config, LayoutLMv2Model

    >>> # Initializing a LayoutLMv2 microsoft/layoutlmv2-base-uncased style configuration
    >>> configuration = LayoutLMv2Config()

    >>> # Initializing a model (with random weights) from the microsoft/layoutlmv2-base-uncased style configuration
    >>> model = LayoutLMv2Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "layoutlmv2"

    def __init__(
        self,
        vocab_size=30522,
        hidden_size=768,
        num_hidden_layers=12,
        num_attention_heads=12,
        intermediate_size=3072,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=2,
        initializer_range=0.02,
        layer_norm_eps=1e-12,
        pad_token_id=0,
        max_2d_position_embeddings=1024,
        max_rel_pos=128,
        rel_pos_bins=32,
        fast_qkv=True,
        max_rel_2d_pos=256,
        rel_2d_pos_bins=64,
        convert_sync_batchnorm=True,
        image_feature_pool_shape=[7, 7, 256],
        coordinate_size=128,
        shape_size=128,
        has_relative_attention_bias=True,
        has_spatial_attention_bias=True,
        has_visual_segment_embedding=False,
        detectron2_config_args=None,
        **kwargs,
    ):
        super().__init__(
            vocab_size=vocab_size,
            hidden_size=hidden_size,
            num_hidden_layers=num_hidden_layers,
            num_attention_heads=num_attention_heads,
            intermediate_size=intermediate_size,
            hidden_act=hidden_act,
            hidden_dropout_prob=hidden_dropout_prob,
            attention_probs_dropout_prob=attention_probs_dropout_prob,
            max_position_embeddings=max_position_embeddings,
            type_vocab_size=type_vocab_size,
            initializer_range=initializer_range,
            layer_norm_eps=layer_norm_eps,
            pad_token_id=pad_token_id,
            **kwargs,
        )
        self.max_2d_position_embeddings = max_2d_position_embeddings
        self.max_rel_pos = max_rel_pos
        self.rel_pos_bins = rel_pos_bins
        self.fast_qkv = fast_qkv
        self.max_rel_2d_pos = max_rel_2d_pos
        self.rel_2d_pos_bins = rel_2d_pos_bins
        self.convert_sync_batchnorm = convert_sync_batchnorm
        self.image_feature_pool_shape = image_feature_pool_shape
        self.coordinate_size = coordinate_size
        self.shape_size = shape_size
        self.has_relative_attention_bias = has_relative_attention_bias
        self.has_spatial_attention_bias = has_spatial_attention_bias
        self.has_visual_segment_embedding = has_visual_segment_embedding
        self.detectron2_config_args = (
            detectron2_config_args if detectron2_config_args is not None else self.get_default_detectron2_config()
        )

    @classmethod
    def get_default_detectron2_config(cls):
        return {
            "MODEL.MASK_ON": True,
            "MODEL.PIXEL_STD": [57.375, 57.120, 58.395],
            "MODEL.BACKBONE.NAME": "build_resnet_fpn_backbone",
            "MODEL.FPN.IN_FEATURES": ["res2", "res3", "res4", "res5"],
            "MODEL.ANCHOR_GENERATOR.SIZES": [[32], [64], [128], [256], [512]],
            "MODEL.RPN.IN_FEATURES": ["p2", "p3", "p4", "p5", "p6"],
            "MODEL.RPN.PRE_NMS_TOPK_TRAIN": 2000,
            "MODEL.RPN.PRE_NMS_TOPK_TEST": 1000,
            "MODEL.RPN.POST_NMS_TOPK_TRAIN": 1000,
            "MODEL.POST_NMS_TOPK_TEST": 1000,
            "MODEL.ROI_HEADS.NAME": "StandardROIHeads",
            "MODEL.ROI_HEADS.NUM_CLASSES": 5,
            "MODEL.ROI_HEADS.IN_FEATURES": ["p2", "p3", "p4", "p5"],
            "MODEL.ROI_BOX_HEAD.NAME": "FastRCNNConvFCHead",
            "MODEL.ROI_BOX_HEAD.NUM_FC": 2,
            "MODEL.ROI_BOX_HEAD.POOLER_RESOLUTION": 14,
            "MODEL.ROI_MASK_HEAD.NAME": "MaskRCNNConvUpsampleHead",
            "MODEL.ROI_MASK_HEAD.NUM_CONV": 4,
            "MODEL.ROI_MASK_HEAD.POOLER_RESOLUTION": 7,
            "MODEL.RESNETS.DEPTH": 101,
            "MODEL.RESNETS.SIZES": [[32], [64], [128], [256], [512]],
            "MODEL.RESNETS.ASPECT_RATIOS": [[0.5, 1.0, 2.0]],
            "MODEL.RESNETS.OUT_FEATURES": ["res2", "res3", "res4", "res5"],
            "MODEL.RESNETS.NUM_GROUPS": 32,
            "MODEL.RESNETS.WIDTH_PER_GROUP": 8,
            "MODEL.RESNETS.STRIDE_IN_1X1": False,
        }

    def get_detectron2_config(self):
        detectron2_config = detectron2.config.get_cfg()
        for k, v in self.detectron2_config_args.items():
            attributes = k.split(".")
            to_set = detectron2_config
            for attribute in attributes[:-1]:
                to_set = getattr(to_set, attribute)
            setattr(to_set, attributes[-1], v)

        return detectron2_config