File size: 6,349 Bytes
d1ceb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for MarkupLM.
"""
from typing import Optional, Union
from ...file_utils import TensorType
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, TruncationStrategy
class MarkupLMProcessor(ProcessorMixin):
r"""
Constructs a MarkupLM processor which combines a MarkupLM feature extractor and a MarkupLM tokenizer into a single
processor.
[`MarkupLMProcessor`] offers all the functionalities you need to prepare data for the model.
It first uses [`MarkupLMFeatureExtractor`] to extract nodes and corresponding xpaths from one or more HTML strings.
Next, these are provided to [`MarkupLMTokenizer`] or [`MarkupLMTokenizerFast`], which turns them into token-level
`input_ids`, `attention_mask`, `token_type_ids`, `xpath_tags_seq` and `xpath_subs_seq`.
Args:
feature_extractor (`MarkupLMFeatureExtractor`):
An instance of [`MarkupLMFeatureExtractor`]. The feature extractor is a required input.
tokenizer (`MarkupLMTokenizer` or `MarkupLMTokenizerFast`):
An instance of [`MarkupLMTokenizer`] or [`MarkupLMTokenizerFast`]. The tokenizer is a required input.
parse_html (`bool`, *optional*, defaults to `True`):
Whether or not to use `MarkupLMFeatureExtractor` to parse HTML strings into nodes and corresponding xpaths.
"""
feature_extractor_class = "MarkupLMFeatureExtractor"
tokenizer_class = ("MarkupLMTokenizer", "MarkupLMTokenizerFast")
parse_html = True
def __call__(
self,
html_strings=None,
nodes=None,
xpaths=None,
node_labels=None,
questions=None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs,
) -> BatchEncoding:
"""
This method first forwards the `html_strings` argument to [`~MarkupLMFeatureExtractor.__call__`]. Next, it
passes the `nodes` and `xpaths` along with the additional arguments to [`~MarkupLMTokenizer.__call__`] and
returns the output.
Optionally, one can also provide a `text` argument which is passed along as first sequence.
Please refer to the docstring of the above two methods for more information.
"""
# first, create nodes and xpaths
if self.parse_html:
if html_strings is None:
raise ValueError("Make sure to pass HTML strings in case `parse_html` is set to `True`")
if nodes is not None or xpaths is not None or node_labels is not None:
raise ValueError(
"Please don't pass nodes, xpaths nor node labels in case `parse_html` is set to `True`"
)
features = self.feature_extractor(html_strings)
nodes = features["nodes"]
xpaths = features["xpaths"]
else:
if html_strings is not None:
raise ValueError("You have passed HTML strings but `parse_html` is set to `False`.")
if nodes is None or xpaths is None:
raise ValueError("Make sure to pass nodes and xpaths in case `parse_html` is set to `False`")
# # second, apply the tokenizer
if questions is not None and self.parse_html:
if isinstance(questions, str):
questions = [questions] # add batch dimension (as the feature extractor always adds a batch dimension)
encoded_inputs = self.tokenizer(
text=questions if questions is not None else nodes,
text_pair=nodes if questions is not None else None,
xpaths=xpaths,
node_labels=node_labels,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
return_tensors=return_tensors,
**kwargs,
)
return encoded_inputs
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to TrOCRTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer
to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to TrOCRTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the
docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
return tokenizer_input_names
|