File size: 7,091 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MobileViTV2 model configuration"""

from collections import OrderedDict
from typing import Mapping

from packaging import version

from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging


logger = logging.get_logger(__name__)


class MobileViTV2Config(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`MobileViTV2Model`]. It is used to instantiate a
    MobileViTV2 model according to the specified arguments, defining the model architecture. Instantiating a
    configuration with the defaults will yield a similar configuration to that of the MobileViTV2
    [apple/mobilevitv2-1.0](https://huggingface.co/apple/mobilevitv2-1.0) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.

    Args:
        num_channels (`int`, *optional*, defaults to 3):
            The number of input channels.
        image_size (`int`, *optional*, defaults to 256):
            The size (resolution) of each image.
        patch_size (`int`, *optional*, defaults to 2):
            The size (resolution) of each patch.
        expand_ratio (`float`, *optional*, defaults to 2.0):
            Expansion factor for the MobileNetv2 layers.
        hidden_act (`str` or `function`, *optional*, defaults to `"swish"`):
            The non-linear activation function (function or string) in the Transformer encoder and convolution layers.
        conv_kernel_size (`int`, *optional*, defaults to 3):
            The size of the convolutional kernel in the MobileViTV2 layer.
        output_stride (`int`, *optional*, defaults to 32):
            The ratio of the spatial resolution of the output to the resolution of the input image.
        classifier_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for attached classifiers.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the layer normalization layers.
        aspp_out_channels (`int`, *optional*, defaults to 512):
            Number of output channels used in the ASPP layer for semantic segmentation.
        atrous_rates (`List[int]`, *optional*, defaults to `[6, 12, 18]`):
            Dilation (atrous) factors used in the ASPP layer for semantic segmentation.
        aspp_dropout_prob (`float`, *optional*, defaults to 0.1):
            The dropout ratio for the ASPP layer for semantic segmentation.
        semantic_loss_ignore_index (`int`, *optional*, defaults to 255):
            The index that is ignored by the loss function of the semantic segmentation model.
        n_attn_blocks (`List[int]`, *optional*, defaults to `[2, 4, 3]`):
            The number of attention blocks in each MobileViTV2Layer
        base_attn_unit_dims (`List[int]`, *optional*, defaults to `[128, 192, 256]`):
            The base multiplier for dimensions of attention blocks in each MobileViTV2Layer
        width_multiplier (`float`, *optional*, defaults to 1.0):
            The width multiplier for MobileViTV2.
        ffn_multiplier (`int`, *optional*, defaults to 2):
            The FFN multiplier for MobileViTV2.
        attn_dropout (`float`, *optional*, defaults to 0.0):
            The dropout in the attention layer.
        ffn_dropout (`float`, *optional*, defaults to 0.0):
            The dropout between FFN layers.

    Example:

    ```python
    >>> from transformers import MobileViTV2Config, MobileViTV2Model

    >>> # Initializing a mobilevitv2-small style configuration
    >>> configuration = MobileViTV2Config()

    >>> # Initializing a model from the mobilevitv2-small style configuration
    >>> model = MobileViTV2Model(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "mobilevitv2"

    def __init__(
        self,
        num_channels=3,
        image_size=256,
        patch_size=2,
        expand_ratio=2.0,
        hidden_act="swish",
        conv_kernel_size=3,
        output_stride=32,
        classifier_dropout_prob=0.1,
        initializer_range=0.02,
        layer_norm_eps=1e-5,
        aspp_out_channels=512,
        atrous_rates=[6, 12, 18],
        aspp_dropout_prob=0.1,
        semantic_loss_ignore_index=255,
        n_attn_blocks=[2, 4, 3],
        base_attn_unit_dims=[128, 192, 256],
        width_multiplier=1.0,
        ffn_multiplier=2,
        attn_dropout=0.0,
        ffn_dropout=0.0,
        **kwargs,
    ):
        super().__init__(**kwargs)

        self.num_channels = num_channels
        self.image_size = image_size
        self.patch_size = patch_size
        self.expand_ratio = expand_ratio
        self.hidden_act = hidden_act
        self.conv_kernel_size = conv_kernel_size
        self.output_stride = output_stride
        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.n_attn_blocks = n_attn_blocks
        self.base_attn_unit_dims = base_attn_unit_dims
        self.width_multiplier = width_multiplier
        self.ffn_multiplier = ffn_multiplier
        self.ffn_dropout = ffn_dropout
        self.attn_dropout = attn_dropout
        self.classifier_dropout_prob = classifier_dropout_prob

        # decode head attributes for semantic segmentation
        self.aspp_out_channels = aspp_out_channels
        self.atrous_rates = atrous_rates
        self.aspp_dropout_prob = aspp_dropout_prob
        self.semantic_loss_ignore_index = semantic_loss_ignore_index


class MobileViTV2OnnxConfig(OnnxConfig):
    torch_onnx_minimum_version = version.parse("1.11")

    @property
    def inputs(self) -> Mapping[str, Mapping[int, str]]:
        return OrderedDict([("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"})])

    @property
    def outputs(self) -> Mapping[str, Mapping[int, str]]:
        if self.task == "image-classification":
            return OrderedDict([("logits", {0: "batch"})])
        else:
            return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})])

    @property
    def atol_for_validation(self) -> float:
        return 1e-4