File size: 7,362 Bytes
d1ceb73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# coding=utf-8
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Nemotron model configuration"""

from ...configuration_utils import PretrainedConfig
from ...modeling_rope_utils import rope_config_validation
from ...utils import logging


logger = logging.get_logger(__name__)


class NemotronConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`NemotronModel`]. It is used to instantiate an Nemotron
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the Nemotron-8B.
    e.g. [nvidia/nemotron-3-8b-base-4k-hf](https://huggingface.co/nvidia/nemotron-3-8b-base-4k-hf).
    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 256000):
            Vocabulary size of the Nemotron model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`NemotronModel`]
        hidden_size (`int`, *optional*, defaults to 6144):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 24576):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 48):
            Number of attention heads for each attention layer in the Transformer decoder.
        head_dim (`int`, *optional*):
            Projection weights dimension in multi-head attention. Set to hidden_size // num_attention_heads if None
        num_key_value_heads (`int`, *optional*):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
            `num_attention_heads`.
        hidden_act (`str` or `function`, *optional*, defaults to `"relu2"`):
            The non-linear activation function (function or string) in the decoder.
        max_position_embeddings (`int`, *optional*, defaults to 4096):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.0134):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        pad_token_id (`int`, *optional*):
            Padding token id.
        bos_token_id (`int`, *optional*, defaults to 2):
            Beginning of stream token id.
        eos_token_id (`int`, *optional*, defaults to 3):
            End of stream token id.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        partial_rotary_factor (`float`, *optional*, defaults to 0.5): Percentage of the query and keys which will have rotary embedding.
        attention_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        mlp_bias (`bool`, *optional*, defaults to `False`):
            Whether to use a bias in up_proj and down_proj layers in the MLP layers.

    ```python
    >>> from transformers import NemotronModel, NemotronConfig

    >>> # Initializing a Nemotron nemotron-15b style configuration
    >>> configuration = NemotronConfig()

    >>> # Initializing a model from the nemotron-15b style configuration
    >>> model = NemotronModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "nemotron"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        vocab_size=256000,
        hidden_size=6144,
        intermediate_size=24576,
        num_hidden_layers=32,
        num_attention_heads=48,
        head_dim=None,
        num_key_value_heads=None,
        hidden_act="relu2",
        max_position_embeddings=4096,
        initializer_range=0.0134,
        norm_eps=1e-5,
        use_cache=True,
        pad_token_id=None,
        bos_token_id=2,
        eos_token_id=3,
        tie_word_embeddings=False,
        rope_theta=10000.0,
        partial_rotary_factor=0.5,
        attention_bias=False,
        attention_dropout=0.0,
        mlp_bias=False,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.head_dim = head_dim if head_dim is not None else hidden_size // num_attention_heads
        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.norm_eps = norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.partial_rotary_factor = partial_rotary_factor
        rope_config_validation(self)
        self.attention_bias = attention_bias
        self.attention_dropout = attention_dropout
        self.mlp_bias = mlp_bias

        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )